Messier 17 (M17) – the Omega Nebula

The rose-coloured star forming region Messier 17, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile.. Credit: ESO/Subaru Telescope (NAOJ)/Hubble Space Telescope

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Messier 17 nebula – aka. The Omega Nebula (and a few other names).

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier began noticing a series of “nebulous objects” in the night sky. Hoping to ensure that other astronomers did not make the same mistake, he began compiling a list of these objects,. Known to posterity as the Messier Catalog, this list has come to be one of the most important milestones in the research of Deep Sky objects.

One of these is the star-forming nebula known as Messier 17 – or as it’s more famously known, the Omega Nebula (or Swan Nebula, Checkmark Nebula, and Horseshoe Nebula). Located in the Sagittarius constellation, this beautiful nebula is considered one of the brightest and most massive star-forming regions in our galaxy.

Description:

From its position in space some 5,000 to 6,000 light years from Earth, the “Omega” nebula occupies a region as large as 40 light years across, with its brightest porition covering a 15 light year expanse. Like many nebulae, this giant cosmic cloud of interstellar matter is a starforming region in the Sagittarius or Sagittarius-Carina arm of our Milky Way galaxy.

What you see is the hot hydrogen gas that is illuminated when its particles are excited by the hottest of the stars that have just formed within the nebula. Also, some of the light is being reflected by the nebula’s own dust. These remain hidden by dark obscuring material, and we know their presence only through the detection of their infrared radiation.

Credit: NASA/Ignacio de la Cueva Torregrosa
Image of M17 showing specific elements based on their color, including sulfur (red), hydrogen (green), oxygen (blue). Credit: NASA/Ignacio de la Cueva Torregrosa

In an study titled “Interstellar Weather Vanes: GLIMPSE Mid-Infrared Stellar-Wind Bowshocks in M17 and RCW49“, astronomer Matthew S. Povich (et al.) of the University of Wisconsin-Madison said of M17:

“We report the discovery of six infrared stellar-wind bowshocks in the Galactic massive star formation regions M17 and RCW49 from Spitzer GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire) images. The InfraRed Array Camera (IRAC) on the Spitzer Space Telescope clearly resolves the arc-shaped emission produced by the bowshocks. We use the stellar SEDs to estimate the spectral types of the three newly-identified O stars in RCW49 and one previously undiscovered O star in M17. One of the bowshocks in RCW49 reveals the presence of a large-scale flow of gas escaping the HII region. Radiation-transfer modeling of the steep rise in the SED of this bowshock toward longer mid-infrared wavelengths indicates that the emission is coming principally from dust heated by the star driving the shock. The other 5 bowshocks occur where the stellar winds of O stars sweep up dust in the expanding HII regions.”

Is Messier 17 still actively producing stars? You bet. Even protostars have been discovered hiding in its folds. As M. Nielbock (et al), wrote in 2008:

“For the first time, we resolve the elongated central infrared emission of the large accretion disk in M 17 into a point-source and a jet-like feature that extends to the northeast. We regard the unresolved emission as to originate from an accreting intermediate to high-mass protostar. In addition, our images reveal a weak and curved southwestern lobe whose morphology resembles that of the previously detected northeastern one. We interpret these lobes as the working surfaces of a recently detected jet interacting with the ambient medium at a distance of 1700 AU from the disk centre. The accreting protostar is embedded inside a circumstellar disk and an envelope causing a visual extinction. This and its K-band magnitude argue in favour of an intermediate to high-mass object, equivalent to a spectral type of at least B4. For a main-sequence star, this would correspond to a stellar mass of 4 M.”

Omega Nebula location. Image: Wikisky
The location of the Omega Nebula, with other Messier objects and major stars shown. Image: Wikisky

How many new stars lay hidden inside? Far more than the famous Orion nebula may contain. So says a 2013 study produced by L. Eisa (et al):

“The complex resembles the Orion Nebula/KL region seen nearly edge-on: the bowl-shaped ionization blister is eroding the edge of the clumpy molecular cloud and triggering massive star formation, as evidenced by an ultra-compact HII region and luminous protostars. Only the most massive members of the young NGC 6618 stellar cluster exciting the nebula have been characterized, due to the comparatively high extinction. Near-infrared imagery and spectroscopy reveal an embedded cluster of about 100 stars earlier than B9. These studies did not cover the entire cluster, so even more early stars may be present. This is substantially richer than the Orion Nebula Cluster which has only 8 stars between O6 and B9.”

History of Observation:

The Omega Nebula was first discovered by Philippe Loys de Cheseaux and is just one of the six nebulae in his documents. As he wrote of his discovery:

“Finally, another nebula, which has never been observed. It is of a completely different shape than the others: It has perfectly the form of a ray, or of the tail of a comet, of 7′ length and 2′ broadth; its sides are exactly parallel and rather well terminated, as are its two ends. Its middle is whiter than the border.” Because De Cheseaux’s work wasn’t widely read, Charles Messier independently rediscovered it on June 3, 1764 and cataloged it in his own way: “In the same night, I have discovered at little distance of the cluster of stars of which I just have told, a train of light of five or six minutes of arc in extension, in the shape of a spindle, and in almost the same as that in the girdle of Andromeda; but of a very faint light, not containing any star; one can see two of them nearby which are telescopic and placed parallel to the Equator: in a good sky one perceives very well that nebula with an ordinary refractor of 3 feet and a half. I have determined its position in right ascension of 271d 45′ 48″, and its declination of 16d 14′ 44” south.

Omega Nebula sketch by John Herschel, 1833. Credit: messier-objects.com
Omega Nebula sketch by John Herschel, 1833. Credit: messier-objects.com

By historical accounts, it was Sir William Herschel who may have truly had a little bit of insight on what this object might one day mean when he observed it on his own and reported:

“1783, July 31. A very singular nebula; it seems to be the link to join the nebula in Orion to others, for this is not without a possibility of being stars. I think a great deal more of light and a much higher power would be of service. 1784, June 22 (Sw. 231). A wonderful nebula. Very much extended, with a hook on the preceding [Western] side; the nebulosity of the milky kind; several stars visible in it, but they seem to have no connection with the nebula, which is far more distant. I saw it only through short intervals of flying clouds and haziness; but the extent of the light including the hook is above 10′. I suspect besides, that on the following [Eastern] side it goes on much farther and diffuses itself towards the north and south. It is not of equal brightness throughout and has one or more places where the milky nebulosity seems to degenerate into the resolvable [mottled] kind; such a one is that just following the hook towards the north. Should this be confirmed on a very fine night, it would bring on the step between these two nebulosities which is at present wanting, and would lead us to surmise that this nebula is a stupendous stratum of immensely distant fixed stars, some of whose branches come near enough to us to be visible as a resolvable nebulosity, while the rest runs on to so great a distance as only to appear under the milky form.”

So where did the name “Omega Nebula” come from? That credit goes to John Herschel, who stated in his observing notes:

“The figure of this nebula is nearly that of the Greek capital Omega, somewhat distorted and very unequally bright. It is remarkable that this is the form usually attributed to the great nebula in Orion, though in that nebula I confess I can discern no resemblence whatever to the Greek letter. Messier perceived only the bright preceding branch of the nebula now in question, without any of the attached convolutions which were first noticed by my Father. The chief peculiarities which I have observed in it are, 1st, the resolvable knot in the following portion of the bright branch, which is in a considerable degree insulated from the surrounding nebula; strongly suggesting the idea of an absorption of nebulous matter; and 2ndly, the much feebler and smaller knot in the north preceding end of the same branch, where the nebula makes a sudden bend at an acute angle. With a view to a more exact representation of this curious nebula, I have at different times taken micrometrical measures of the relative places of the stars in and near it, by which, when laid down on the chart, its limits may be traced and identified, as I hope soon to have better opportunity to do than its low situation in this latitudes will permit.”

Credit: NASA/JPL-Caltech/M. Povich (Univ. of Wisconsin)
Infrared images of M17, taken by the Spitzer Space Telescope. Credit: NASA/JPL-Caltech/M. Povich (Univ. of Wisconsin)

Locating Messier 17:

Because M17 is both large and quite bright, its distinctive “2” shape isn’t hard to make out in optics of any size. For binoculars and image correct finderscopes, try starting with the constellation of Aquila and begin tracing the stars down the eagle’s back to Lambda. When you reach that point, continue to extend the line through to Alpha Scuti, then southwards towards Gamma Scuti. M16 is slightly more than 2 degrees (about a fingerwidth) southwest of this star.

If you are in a dark sky location, you can also identify it easily in binoculars by starting at the M24 “Star Cloud”, north of Lambda Sagittari (the teapot lid star), and simply scanning north. This nebula is bright enough to even cut through moderately light polluted skies with ease, but don’t expect to see it when the Moon is nearby. You’ll enjoy the rich starfields combined with an interesting nebula in binoculars, while telescopes will easily begin resolving the interior stars.

And here are the quick facts on M17 for your convenience:

Object Name: Messier 17
Alternative Designations: M17, NGC 6618, Omega, Swan, Horseshoe, or Lobster Nebula
Object Type: Open Star Cluster with Emission Nebula
Constellation: Sagittarius
Right Ascension: 18 : 20.8 (h:m)
Declination: -16 : 11 (deg:m)
Distance: 5.0 (kly)
Visual Brightness: 6.0 (mag)
Apparent Dimension: 11.0 (arc min)

And be sure to enjoy this video from the European Southern Observatory (ESO) that shows this nebula in all its glory:

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Stars Are The Universe’s Neat Freaks

The Andromeda Galaxy, viewed using conventional optics and IR. Credit: Kitt Peak National Observatory

Imagine, if you will, that the Universe was once a much dirtier place than it is today. Imagine also that what we see around us, a relatively clean and unobscured Universe, is the result of billions of years of stars behaving like giant celestial Roombas, cleaning up the space around them in preparation for our arrival. According to a set of recently published catalogues, which detail the latest findings from the ESA’s Herschel Space Observatory, this description is actually quite fitting.

These catalogues represents the work of an international team of over 100 astronomers who have spent the past seven years analyzing the infrared images taken by the Herschel Astrophysical Terahertz Large Area Survey (Herschel-ATLAS). Presented earlier this week at the National Astronomy Meeting in Nottingham, this catalogue revealed that 1 billion years after the Big Bang, the Universe looked much different than it does today.

In order to put this research into context, it is important to understand the important of infrared astronomy. Prior to the deployment of missions like Herschel (which was launched in 2009), astronomers were unable to see a good portion of the light emitted by stars and galaxies. With roughly half of this light being absorbed by interstellar dust grains, research into the birth and lives of galaxies was difficult.

But thanks to surveys like Herschel ATLAS – as well NASA’s Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE) – astronomers have been able to account for this missing energy. And what they have seen (especially from this latest survey) has been quite remarkable, presenting a Universe that is far denser than previously expected.

Artist's impression of the Herschel Space Telescope. Credit: ESA/AOES Medialab/NASA/ESA/STScI
Artist’s impression of the Herschel Space Telescope. Credit: ESA/AOES Medialab/NASA/ESA/STScI

Professor Haley Gomez of Cardiff University presented this catalogue during the third day of the National Astronomy Meeting (which ran from June 27th to July 1st). As she told Universe Today via email:

“The Herschel survey is the largest one of the sky in these special infrared light. Because of this we see rare objects that we might not see in a smaller patch of sky, but also we now see hundreds of thousands of dusty galaxies, compared to the few hundred we saw in previous telescopes. So this is a massive improvement in terms of knowing what kinds of galaxies there are. Some of these are so covered in dust we might never had seen them using visible light telescopes. Because of the unprecedented large area we have with this Herschel survey, we see a huge variety in the type of objects too, from nearby dusty star forming clouds, to nearby dusty galaxies like Andromeda, to galaxies that shone their infrared light more than 12 billion years ago.  We can also use this survey to understand the structure of galaxies in the universe – the so-called cosmic web in a way we’ve never been able to do in the far infrared.”

The images they showed gave all those present a glimpse of the unseen stars and galaxies that have existed over the last 12 billion years of cosmic history. In sum,  over half-a-million far-infrared sources have been spotted by the Herschel-ATLAS survey. Many of these sources were galaxies that are nearby and similar to our own, and which are detectable using using conventional telescopes.

The others were much more distant, their light taking billions of years to reach us, and were obscured by concentrations of cosmic dust. The most distant of these galaxies were roughly 12 billion light-years away, which means that they appeared as they would have 12 billion years ago.

Herschel fig2smallAn illustration of the time reach of the Herschel ATLAS and the kinds of objects it has discovered. Credit: Herschel-ATLAS/ESA/ALMA/ NRAO
Herschel fig2smallAn illustration of the time reach of the Herschel ATLAS and the kinds of objects it has discovered. Credit: Herschel-ATLAS/ESA/ALMA/ NRAO

Ergo, astronomers now know that 12 billion years ago (i.e. shortly after the Big Bang)., stars and galaxies were much dustier than they are now. They further concluded that the evolution of our galaxies since shortly after the Big Bang has essentially been a major clean-up effort, as stars gradually absorbed the dust that obscured their light, thus making it the more “visible” place it is today.

The data released by the survey includes several maps and additional files which were described in an article produced by Dr. Elisabetta Valiante and a research team from Cardiff University – titled “The Herschel-ATLAS Data Release 1 Paper I: Maps, Catalogues and Number Counts“. As Dr. Valiante told Universe Today via email:

“Gas and dust are the main components of stars: they collapse to form stars and they are ejected at the end of stars’ life. The interesting thing that has been discovered thanks to the Herschel data is that the two phenomena are not in equilibrium. We knew this was true 10 billion years ago, but we expected, according to the current models, that some equilibrium was reached at more recent times. Instead, the amount of dust in galaxies 5 billion years ago was much larger than the amount we see in galaxies today: this was unexpected.”

Until recently, such a survey would have been impossible due to the fact that many of these infrared sources would have  been invisible to astronomers. The reason for this, which was revealed by the survey, was that these galaxies were so dusty that they would have been virtually impossible to detect with conventional optics. What’s more, their light would have been gravitationally magnified by intervening galaxies.

"This dazzling infrared image from NASA's Spitzer Space Telescope shows hundreds of thousands of stars crowded into the swirling core of our spiral Milky Way galaxy. In visible-light pictures, this region cannot be seen at all because dust lying between Earth and the galactic center blocks our view. Credit: NASA/JPL-Caltech
Infrared images (like the one captured by NASA’s Spitzer Space Telescope here) show countless stars and galaxies that are obscured in visible-light by cosmic dust. Credit: NASA/JPL-Caltech

The huge size of the survey has also meant that changes that have occurred in galaxies – relatively recent in cosmic history – can be studied for the first time. For instance, the survey showed that even only one billion years in the past, a small fraction of the age of the universe, galaxies were forming stars at a faster rate and contained more dust than they do today.

Dr. Nathan Bourne – from the University of Edinburgh – is the lead author of another other paper describing the catalogues. As he told Universe Today via email:

“We can think of galaxies as big recycling machines. When they form, they accrete gas (mostly hydrogen and helium, with traces of lithium and a couple of other elements) from the universe around them, and they turn it into stars. As time goes on, the stars pump this gas back out into the galaxy, into the interstellar medium. Due to the nuclear processes within the stars, the gas is now enriched by heavy elements (what we call metals, though they include both metals and non-metals), and some of these form microscopic solid particles of dust, as a sort of by-product.

“But there are still stars forming, and the next generations of stars recycle this interstellar material, and now that it contains heavy elements and dust, things are a bit different, and planets can also form around the new stars, from accumulations of this heavy material. So, if you look at the big picture, when the first galaxies started forming within the first billion years after the Big Bang, they began using up the gas around them, and then while they are active they fill their interstellar medium up with gas and dust, but by the end of a galaxy’s lifecycle, it has used up all this gas and dust, and you could say that it has cleaned itself.”

The catalogues and maps of the hidden universe are a triumph for the Herschel team. Despite the fact that the last information obtained by the Herschel observatory was back in 2013, the maps and catalogues produced from its years of service have become vital to astronomers. In addition to showing the Universe’s hidden energy, they are also laying the groundwork for future research.

. Credit: NASA/JPL-Caltech/UCLA (top), NASA/DIRBE Team/COBE/ (bottom)
IR images of the entire sky take by the WISE All-Sky Data Release (top), and a projection of the IR sky created by images taken by the COBE spacecraft (bottom). Credit: NASA/JPL-Caltech/UCLA (top), NASA/DIRBE Team/COBE/ (bottom)

“Now we need to explain why there is dust where we did not expect to find it.” said Valiante. “And to explain this, we need to change our theories about how the Universe evolves. Our data poses a challenge we have accepted, but we haven’t overcome it yet!”

“[W]e understand a lot more about how galaxies evolve,” added Bourne, “about when most of the stars formed, what happens to the gas and dust as galaxies evolve, and how rapidly the star-forming activity in the Universe as a whole has faded in the latter half of the Universe’s history. It’s fair to say that this understanding comes from having a whole suite of different types of instruments studying different aspects of galaxies in complementary ways, but Herschel has certainly contributed a major part of that effort and will have a lasting legacy.”

Ensuring Herschel’s lasting legacy is one of the main aims of the Herschel Extragalactic Project (HELP) program, which is overseen by the EU Research Executive Agency. Other projects they oversee include the Herschel Multi-tiered Extragalactic Survey (HerMES), which also released survey data late last month. All of this has left a lasting mark on the field of astronomy, despite the fact that Herschel is no longer in operation. As Professor Gomez said of the Herschel Observatory’s enduring contributions:

“The Herschel Space Observatory stopped taking data in 2013, yet our understanding of the dusty universe is really only just starting with the release of large surveys and galaxy catalogues in recent months. Ultimately, once astronomers have gone through all the valuable data, Herschel will have provided a view of the infrared universe covering 1000 square degrees of the sky.”

The implications of these findings are also likely to have a far-reaching effect, ranging from cosmology and astronomy, to perhaps shedding some light on that tricky Fermi paradox. Could it be intelligent life that emerged billions of years ago didn’t venture to other star systems because they couldn’t see them? Just a thought…

Further Reading: Royal Astronomical Society, ESA

Earth at Aphelion 2016

Sunset over Naples, Florida. Image credit: Dave Dickinson

Having a great July 4th? The day gives us another cause to celebrate, as the Earth reaches aphelion today, or our farthest point to our host star.

Aphelion is the opposite of the closest point of the year, known as perihelion. Note that the ‘helion’ part only applies to things in solar orbit, perigee/apogee for orbit ’round the Earth, apolune/perilune for orbit around the Moon, and so on. You’ll hear the words apijove and perijove bandied about this week a bit, as NASA’s Juno spacecraft enters orbit around Jupiter tonight. And there are crazier and even more obscure counterparts out there, such as peribothron and apobothron (orbiting a black hole) and apastron/periastron (orbiting a star other than our Sun). And finally, there’s the one-size fits all generic periapsis and apoapsis, good for all occasions and ending pedantic arguments.

In the 21st century, aphelion for the Earth can actually fall anywhere from July 2nd to the 7th. The once every four year leap day is the primary driver in this oscillation, and the exclusion of a century leap day in 2100 — the first such exclusion since 1900 — will reset things even farther astray.

Aphelion versus perihelion. (orbits exaggerated). Image credit: NOAA/NASA.
Aphelion versus perihelion. (orbits exaggerated). Image credit: NOAA/NASA.

In 2016, the Moon reaches New on July 4th at 11:01 Universal Time (UT) just over five hours prior to aphelion, marking the start of lunation 1157. The sighting of the waxing crescent Moon also marks the end of the Muslim fasting month of Ramadan.

Earth reaches aphelion at 16:24 UT today, 1.0168 AU from the Sun. This year’s close occurrence of aphelion versus a New Moon won’t get topped until 2054, with an aphelion versus New Moon just 5 hours 6 minutes apart. The 2016 coincidence is also the closest since the start of the 21st century.

Fun fact: we’re headed towards an aphelion maximum just 6,590 kilometers off of the mean on July 4th, 2019, the widest for the 21st century. Mean distance from the Sun at aphelion is 1.0167 AU (152,097,701 km). Aphelion for the Earth can range over a variation of 21,225 kilometers for the 21st century.

It’s a happy circumstance that Earth reaches aphelion in our current epoch in the midst of northern hemisphere summer, and just a few weeks after the June solstice. The eccentricity of the Earth’s orbit actually varies from near-circular to 0.0679 and back over the span of 413,000 years. In our current epoch, the eccentricity of our orbit is 0.017 and decreasing. Add this variation to changes in the axial tilt of our planet and orbital obliquity, and you have what are known as Milankovitch Cycles. One only has to look at Mars’s wacky orbit with an eccentricity of 0.0934 to see what a difference it makes. Ironically, Mars reaches perihelion in October 29th, 2016, and will make a very close pass near next opposition pass in 2018.

The orbits of Mercury, Earth and Mars compared. image credit: NASA
The orbits of Mercury, Earth and Mars compared. image credit: NASA

Want to prove it for yourself? You can indeed ‘observe’ aphelion. The trick is to image the solar disk using the same rig and settings… about six months apart. At aphelion, the solar disk is 31.6′ across, versus 32.7′ across at perihelion. This variation is slight, but you can indeed see the subtle difference side by side:

The Sun as seen from the Earth: perihelion vs aphelion. The red circles are the size of the opposing solar disk transposed on the other. Image credit: Dave Dickinson.
The Sun as seen from the Earth: perihelion vs aphelion. The red circles are the size of the opposing solar disk transposed on the other. Image credit: Dave Dickinson.

Aphelion means a smaller apparent Sun, a good target for a total solar eclipse. Stick around until July 2nd, 2019 and you’ll see just that, as a total solar eclipse occurs near aphelion for South America and the southern Pacific at 4 minutes and 33 seconds in central duration.

Aphelion versus perihelion 2008. Image credit and copyright: Alex Conu.
Aphelion versus perihelion 2008. Image credit and copyright: Alex Conu.

This month also sees another special treat, as all classical planets enter the evening sky.

More to come on that soon. For now, happy 4th of July, and merry aphelion!

The Juno Mission

NASA's Juno spacecraft launched on August 6, 2011 and should arrive at Jupiter on July 4, 2016. Credit: NASA / JPL

Ever since Galileo first observed it through a telescope in 1610, Jupiter and its system of moons have fascinated humanity. And while many spacecraft have visited the system in the past forty years, the majority of these missions were flybys. With the exception of the Galileo space probe, the visits of these spacecraft to the Jupiter system were one of several intended objectives, taking place before they made their way deeper into the Solar System.

Having launched on August 5th, 2011, NASA’s Juno spacecraft has a different purpose in mind. Using a suite of scientific instruments, Juno will study Jupiter’s atmosphere, magnetic environment, weather patterns, and shed light on the history of its formation. In essence, it will be the first probe since the Galileo mission to orbit Jupiter, where it will spend the next two years sending information about the gas giant back to Earth.

If successful, Juno will prove to be the only other long-term mission to Jupiter. However, compared to Galileo – which spent seven years in orbit around the gas giant – Juno’s mission is planned to last for just two years. However, its improved suite of instruments are expected to provide a wealth of information in that time. And barring any mission extensions, its targeted impact on the surface of Jupiter will take place in February of 2018.

Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach. (NASA/JPL-Caltech)
Juno will dive between the planet and its intense belts of charged particle radiation, coming  within 5,000 kilometers (about 3,000 miles) from the cloud tops. Credit: NASA/JPL-Caltech

Background:

As part of the NASA’s New Frontiers program, the Juno mission is one of several medium-sized missions intended to explore the various bodies of the Solar System. It is currently one of three probes that NASA is operating, or in the process of building. The other two are the New Horizons probe (which flew by Pluto in 2015) and OSIRIS-REx, which is expected to fly to asteroid 101955 Bennu in 2020 and bring samples back to Earth.

During a 2003 decadal survey – titled “New Frontiers in the Solar System: An Integrated Exploration Strategy” – The National Research Council discussed destinations that would serve as the source for the first competition for the New Frontiers program. A Jupiter orbiter was identified as a scientific priority, which it was hoped would address several unanswered questions pertaining to the gas giant.

These included whether or not Jupiter had a central core (the research of which would help establish how the planet was formed), the water content of Jupiter’s atmosphere, how its weather systems can remain stable, and what the nature of the magnetic field and plasma surrounding Jupiter are. In 2005, Juno was selected for the New Frontiers program alongside New Horizons and OSIRIS-REx.

Though it was originally intended to launch in 2009, NASA budget restrictions forced a delay until August of 2011. The probe was named in honor of the Roman goddess Juno, the wife of Jupiter (the Roman equivalent of Zeus) who was able to peer through a veil of clouds that Jupiter drew around himself. The name was previously a backronym which stood for JUpiter Near-polar Orbiter as well.

Mission Profile:

The Juno mission was created for the specific purpose of studying Jupiter for the sake of learning more about the formation of the Solar System. For some time, astronomers have understood that Jupiter played an important role in the development Solar System. Like the other gas giants, it was assembled during the early stages, before our Sun had the chance to absorb or blow away the light gases in the huge cloud from which they were born.

As such, Jupiter’s composition could tell us much about the early Solar System. Similarly, the gas giants are believed to have played a major role in the process of planet formation because their huge masses allowed them to shape the orbits of other objects – planets, asteroids and comets – in their planetary systems.

However, for astronomers and planetary scientists, much still remains unknown about this massive gas giant. For instance, Jupiter’s interior structure and composition, as well as what drives its magnetic field, are still the subject of theory. Because Jupiter formed at the same time as the Sun, their chemical compositions should be similar, but research has shown that Jupiter has more heavy elements than our Sun (such as carbon and nitrogen).

In addition, there are some unanswered questions about when and where the planet formed. While it may have formed in its current orbit, some evidence suggests that it could have formed farther from the sun before migrating inward. All of these questions, it is hoped, are things the Juno mission will answer.

Technician's install Juno's titanium vault. (Image Credit: NASA/JPL-Caltech/LMSS)
Technician’s install Juno’s titanium vault. (Image Credit: NASA/JPL-Caltech/LMSS)

Having launched on August 5th, 2011, the Juno spacecraft spent the next five years in space, and will reach Jupiter on July 4th, 2018. Once in orbit, it will spend the next two years orbiting the planet a total of 37 times from pole to pole, using its scientific instruments to probe beneath the gas giant’s obscuring cloud cover.

Instrumentation:

The Juno spacecraft comes equipped with a scientific suite of 8 instruments that will allow it to study Jupiter’s atmosphere, magnetic and gravitational field, weather patterns, its internal structure, and its formational history. They include:

  • Gravity Science: Using radio waves and measuring them for Doppler effect, this instrument will measure the distribution of mass inside Jupiter to create a gravity map. Small variations in gravity along the orbital path of the probe will induce small changes in velocity. The principle investigators of this instrument are John Anderson of NASA’s Jet Propulsion Laboratory and Luciano Iess of the Sapienza University of Rome.
  • JunoCam: This visible light/telescope is the spacecraft’s only imaging device. Intended for public outreach and education, it will provide breathtaking pictures of Jupiter and the Solar System, but will operate for only seven orbits around Jupiter (due to the effect Jupiter’s radiation and magnetic field have on instruments). The PI for this instrument is Michael C. Malin, of Malin Space Science Systems
  • Jovian Auroral Distribution Experiment (JADE): Using three energetic particle detectors, the JADE instrument will measure the angular distribution, energy, and velocity vector of low energy ions and electrons in the auroras of Jupiter. The PI is David McComas of the Southwest Research Institute (SwRI).
  • Jovian Energetic Particle Detector Instrument (JEDI): Like JADE, JEDI will measure the angular distribution and the velocity vector of ions and electrons, but at high-energy and in the magnetosphere of Jupiter. The PI is Barry Mauk of NASA’s Applied Physics Laboratory.
Juno spacecraft and its science instruments. Image credit: NASA/JPL
Juno spacecraft and its science instruments. Credit: NASA/JPL
  • Jovian Infrared Aural Mapper (JIRAM): Operating in the near-infrared, this spectrometer will be responsible for mapping the upper layers of Jupiter’s atmosphere. By measuring the heat that is radiated outward, it will determine how water-rich clouds can float beneath the surface. It will also be able to assess the distribution of methane, water vapor, ammonia and phosphine in Jupiter’s atmosphere. Angioletta Coradini of the Italian National Institute for Astrophysics is the PI on this instrument.
  • Magnetometer: This instrument will be used to map Jupiter’s magnetic field, determine the dynamics of the planet’s interior and determine the three-dimensional structure of the polar magnetosphere. Jack Connemey of NASA’s Goddard Space Flight Center is the instrument’s PI.
  • Microwave Radiometer: The MR instrument will perform measurements of the electromagnetic waves that pass through the Jovian atmosphere, measuring the abundance of water and ammonia in its deep layers. In so doing, it will obtain a temperature profile at various levels and determine how deep the atmospheric circulation of Jupiter is. The PI for this instrument is Mike Janssen of the JPL.
  • Radio and Plasma Wave Sensor (RPWS): This RPWS will measure the radio and plasma spectra in Jupiter’s auroral region. In the process, it will identify the regions of auroral currents that define the planet’s radio emissions and accelerate its auroral particles. William Kurth of the University of Iowa is the PI.
  • Ultraviolet Imaging Spectrograph (UVS): The UVS will record the wavelength, position and arrival time of detected ultraviolet photons, providing spectral images of the UV auroral emissions in the polar magnetosphere. G. Randall Gladstone of the SwRI is the PI.

In addition to its scientific suite, the Juno spacecraft also carries a commemorative plaque dedicated to Galileo Galilei. The plaque was provided by the Italian Space Agency and depicts a portrait of Galileo, as well as script that had been composed by Galileo himself on the occasion that he observed Jupiter’s four largest moons (known today as the Galilean Moons).

The Galileo plague aboard the Juno spacecraft. Credit: NASA/JPL-Caltech/KSC
The Galileo plague aboard the Juno spacecraft. Credit: NASA/JPL-Caltech/KSC

The text, written in Italian and transcribed from Galileo’s own handwriting, translates as:

“On the 11th it was in this formation, and the star closest to Jupiter was half the size than the other and very close to the other so that during the previous nights all of the three observed stars looked of the same dimension and among them equally afar; so that it is evident that around Jupiter there are three moving stars invisible till this time to everyone.”

The spacecraft also carries three Lego figurines representing Galileo, the Roman god Jupiter and his wife Juno. The figure of Juno holds a magnifying glass as a sign of her searching for the truth, Jupiter holds a lightning bolt, and the figure of Galileo Galilei holds his famous telescope. Lego made these figurines out of aluminum (instead of the usual plastic) to ensure they would survive the extreme conditions of space flight.

Launch:

The Juno mission launched from Cape Canaveral Air Force Station on August 5th, 2011, atop an Atlas V rocket. After approximately 1 minute and 33 seconds, the five Solid Rocket Boosters (SRBs) reached burnout and then fell away. After 4 minutes and 26 seconds after liftoff, the Atlas V main engine cut off, followed 16 seconds later by the separation of the Centaur upper stage rocket.

After a burn that lasted for 6 minutes, the Centaur was put into its initial parking orbit. It coasted for approximately 30 minutes before its engine conducted a second firing which lasted for 9 minutes, putting the spacecraft on an Earth escape trajectory. About 54 minutes after launch, the spacecraft separated from the Centaur and began to extend its solar panels.

A year after launch, between August and September 2012, the Juno spacecraft successfully conducted two Deep Space Maneuvers designed to correct its trajectory. The first maneuver (DSM-1) occurred on August 30th, 2012, with the main engine firing for approximately 30 minutes and altering its velocity by about 388 m/s (1396.8 km/h; 867 mph).

The second maneuver (DSM-2), which had a similar duration and resulted in a similar velocity change, took place on September 14th. The two firings occurred when the probe was about 480 million km (298 million miles) from Earth, and altered the spacecraft’s speed and its Jupiter-bound trajectory, setting the stage for a gravity assist from its flyby of Earth.

Earth Flyby:

Juno’s Earth flyby took place on October 9th, 2013, after the spacecraft completed one elliptical orbit around the Sun. During its closest approach, the probe was at an altitude of about 560 kilometers (348 miles). The Earth flyby boosted Juno’s velocity by 3,900 m/s (14162 km/h; 8,800 mph) and placed the spacecraft on its final flight path for Jupiter.

During the flyby, Juno’s Magnetic Field Investigation (MAG) instrument managed to capture some low-resolution images of the Earth and Moon. These images were taken while the Juno probe was about 966,000 km (600,000 mi) away from Earth – about three times the Earth-moon separation. They were later combined by technicians at NASA’s JPL to create the video shown above.

The Earth flyby was also used as a rehearsal by the Juno science team to test some of the spacecraft’s instruments and to practice certain procedures that will be used once the probe arrives at Jupiter.

Rendezvous With Jupiter:

The Juno spacecraft reached the Jupiter system and established polar orbit around the gas giant on July 4th, 2016. It’s orbit will be highly elliptical and will take it close to the poles – within 4,300 km (2,672 mi) – before reaching beyond the orbit of Callisto, the most distant of Jupiter’s large moons (at an average distance of 1,882,700 km or 1,169,855.5 mi).

This orbit will allow the spacecraft to avoid long-term contact with Jupiter’s radiation belts, while still allowing it to perform close-up surveys of Jupiter’s polar atmosphere, magnetosphere and gravitational field. The spacecraft will spend the next two years orbiting Jupiter a total of 37 times, with each orbit taking 14 days.

Already, the probe has performed measurements of Jupiter’s magnetic field. This began on June 24th when Juno crossed the bow shock just outside Jupiter’s magnetosphere, followed by it’s transit into the lower density of the Jovian magnetosphere on June 25. Having made the transition from an environment characterized by solar wind to one dominated by Jupiter’s magnetosphere, the ship’s instruments revealed some interesting information about the sudden change in particle density.

The probe entered its polar elliptical orbit on July 4th after completing a 35-minute-long firing of the main engine, known as Jupiter Orbital Insertion (or JOI). As the probe approached Jupiter from above its north pole, it was afforded a view of the Jovian system, which it took a final picture of before commencing JOI.

On July 10th, the Juno probe transmitted its first imagery from orbit after powering back up its suite of scientific instruments. The images were taken when the spacecraft was 4.3 million km (2.7 million mi) from Jupiter and on the outbound leg of its initial 53.5-day capture orbit. The color image shows atmospheric features on Jupiter, including the famous Great Red Spot, and three of the massive planet’s four largest moons – Io, Europa and Ganymede, from left to right in the image.

While the mission team had hoped to reduce Juno’s orbital period to 14 days, thus allowing for it to conduct a total of 37 perijoves before mission’s end. However, due to a malfunction with the probe’s helium valves, the firing was delayed. NASA has since announced that it will not conduct this engine firing, and that the probe will conduct a total perijoves in total before the end of its mission.

End of Mission:

The Juno mission is set to conclude in February of 2018, after completing 12 orbits of Jupiter. At this point, and barring any mission extensions, the probe will be de-orbited to burn up in Jupiter’s outer atmosphere. As with the Galileo spacecraft, this is meant be to avoid any possibility of impact and biological contamination with one of Jupiter’s moons.

The mission is managed by the JPL, and its principal investigator is Scott Bolton of the Southwest Research Institute. NASA’s Launch Services Program, located at the Kennedy Space Center in Florida, is responsible for managing launch services for the probe. The Juno mission is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Ala.

As of the writing of this article, the Juno mission is one day, four hours and fifty-five minutes away from its historic arrival with Jupiter. Check out NASA’s Juno mission page to get up-to-date information on the mission, and stay tuned to Universe Today for updates!

We have written many interesting articles about Jupiter here at Universe today. Here’s Juno Blasts off on Science Trek to Discover Jupiter’s Genesis, Jupiter Bound Juno snaps Dazzling Gallery of Planet Earth Portraits, Understanding Juno’s Orbit: An Interview with NASA’s Scott Bolton, NASA’s Juno probe Gets Gravity Speed Boost during Earth Flyby But Enters ‘Safe Mode.

Astronomy cast also has relevant episodes on the subject. Here’s Episode 59: Jupiter, and Episode 232: Galileo Spacecraft,

For more information, check out NASA’s Juno mission page, and the Southwest Research Institute’s Juno page.

The Dutch Are Going To The Moon With The Chinese

Radio image of the night sky. Credit: Max Planck Institute for Radio Astronomy, generated by Glyn Haslam.

One of the defining characteristics of the New Space era is partnerships. Whether it is between the private and public sector, different space agencies, or different institutions across the world, collaboration has become the cornerstone to success. Consider the recent agreement between the Netherlands Space Office (NSO) and the Chinese National Space Agency (CNSA) that was announced earlier this week.

In an agreement made possible by the Memorandum of Understanding (MoU) signed in 2015 between the Netherlands and China, a Dutch-built radio antenna will travel to the Moon aboard the Chinese Chang’e 4 satellite, which is scheduled to launch in 2018. Once the lunar exploration mission reaches the Moon, it will deposit the radio antenna on the far side, where it will begin to provide scientists with fascinating new views of the Universe.

The radio antenna itself is also the result of collaboration, between scientists from Radboud University, the Netherlands Institute for Radio Astronomy (ASTRON) and the small satellite company Innovative Solutions in Space (ISIS). After years of research and development, these three organizations have produced an instrument which they hope will usher in a new era of radio astronomy.

The satellite rotates around a fixed point behind the moon – the second Lagrange, or L2, point in the Earth-moon system. This point is located 65,000 kilometres from the moon.. Credit: ru.nl
Diagram showing how the Chang’e 4 satellite will rotate around a fixed point behind the moon – the second Lagrange, or L2, point in the Earth-moon system. Credit: ru.nl

Essentially, radio astronomy involves the study of celestial objects – ranging from stars and galaxies to pulsars, quasars, masers and the Cosmic Microwave Background (CMB) – at radio frequencies. Using radio antennas, radio telescopes, and radio interferometers, this method allows for the study of objects that might otherwise be invisible or hidden in other parts of the electromagnetic spectrum.

One drawback of radio astronomy is the potential for interference. Since only certain wavelengths can pass through the Earth’s atmosphere, and local radio wave sources can throw off readings, radio antennas are usually located in remote areas of the world. A good example of this is the Very-Long Baseline Array (VLBA) located across the US, and the Square Kilometer Array (SKA) under construction in Australia and South Africa.

One other solution is to place radio antennas in space, where they will not be subject to interference or local radio sources. The antenna being produced by Radbound, ASTRON and ISIS is being delivered to the far side of the Moon for just this reason. As the latest space-based radio antenna to be deployed, it will be able to search the cosmos in ways Earth-based arrays cannot, looking for vital clues to the origins of the universe.

As Heino Falke – a professor of Astroparticle Physics and Radio Astronomy at Radboud – explained in a University press release, the deployment of this radio antenna on the far side of the Moon will be an historic achievement:

“Radio astronomers study the universe using radio waves, light coming from stars and planets, for example, which is not visible with the naked eye. We can receive almost all celestial radio wave frequencies here on Earth. We cannot detect radio waves below 30 MHz, however, as these are blocked by our atmosphere. It is these frequencies in particular that contain information about the early universe, which is why we want to measure them.”

The planned Square Kilometer Array will be the world's largest radio telescope when it begins operations in 2018  Swinburne Astronomy Productions for SKA Project Development Office
The planned Square Kilometer Array will be the world’s largest radio telescope when it begins operations in 2018. Credit: SKA Project Development Office/SAP

As it stands, very little is known about this part of the electromagnetic spectrum. As a result, the Dutch radio antenna could be the first to provide information on the development of the earliest structures in the Universe. It is also the first instrument to be sent into space as part of a Chinese space mission.

Alongside Heino Falcke, Marc Klein Wolt – the director of the Radboud Radio Lab – is one of the scientific advisors for the project. For years, he and Falcke have been working towards the deployment of this radio antenna, and have high hopes for the project. As Professor Wolt said about the scientific package he is helping to create:

“The instrument we are developing will be a precursor to a future radio telescope in space. We will ultimately need such a facility to map the early universe and to provide information on the development of the earliest structures in it, like stars and galaxies.”

Together with engineers from ASTRON and ISIS, the Dutch team has accumulated a great deal of expertise from their years working on other radio astronomy projects, which includes experience working on the Low Frequency Array (LOFAR) and the development of the Square Kilometre Array, all of which is being put to work on this new project.

A radio antenna on the far side of the Moon will enable deep space surveys that were never before possible. Credit: NASA Goddard
A radio antenna on the far side of the Moon will enable deep space surveys that were never before possible. Credit: NASA Goddard

Other tasks that this antenna will perform include monitoring space for solar storms, which are known to have a significant impact on telecommunications here on Earth. With a radio antenna on the far side of the Moon, astronomers will be able to better predict such events and prepare for them in advance.

Another benefit will be the ability to measure strong radio pulses from gas giants like Jupiter and Saturn, which will help us to learn more about their rotational speed. Combined with the recent ESO efforts to map Jupiter at IR frequencies, and the data that is already arriving from the Juno mission, this data is likely to lead to some major breakthroughs in our understanding of this mysterious planet.

Last, but certainly not least, the Dutch team wants to create the first map of the early Universe using low-frequency radio data. This map is expected to take shape after two years, once the Moon has completed a few full rotations around the Earth and computer analysis can be completed.

It is also expected that such a map will provide scientists with additional evidence that confirms the Standard Model of Big Bang cosmology (aka. the Lambda CDM model). As with other projects currently in the works, the results are likely to be exciting and groundbreaking!

Further Reading: Radbound University

What is Time Dilation?

What is Time Dilation?

One of the most interesting topics in the field of science is the concept of General Relativity. You know, this idea that strange things happen as you near the speed of light. There are strange changes to the length of things, bizarre shifting of wavelengths. And most puzzling of all, there’s the concept of dilation: how you can literally experience more or less time based on how fast you’re traveling compared to someone else.

And even stranger than that? As we saw in the movie Interstellar, just spending time near a very massive object, like a black hole, can cause these same relativistic effects. Because mass and acceleration are sort of the same thing?

Honestly, it’s enough to give you a massive headache.

But just because I find the concept baffling, I’m still going to keep chipping away, trying to understand more about it and help you wrap your brain around it too. For my own benefit, for your benefit, but mostly for my benefit.

There’s a great anecdote in the history of physics – it’s probably not what actually happened, but I still love it.

One of the most famous astronomers of the 20th century was Sir Arthur Eddington, played by a dashing David Tennant in the 2008 movie, Einstein and Eddington. Which, you should really see, if you haven’t already.

So anyway, Doctor Who, I mean Eddington, had worked out how stars generate energy (through fusion) and personally confirmed that Einstein’s predictions of General Relativity were correct when he observed a total Solar Eclipse in 1919.

Arthur Eddington
Arthur Eddington

Apparently during a lecture by Sir Arthur Eddington, someone asked, “Professor Eddington, you must be one of the three people in the world who understands General Relativity.” He paused for a moment, and then said, “yes, but I’m trying to think of who the third person is.”

It’s definitely not me, but I know someone who does have a handle on General Relativity, and that’s Dr. Brian Koberlein, an astrophysics professor at the Rochester Institute of Technology. He covers this topic all the time on his blog, One Universe At A Time, which you should totally visit and read at briankoberlein.com.

In fact, just to demonstrate how this works, Brian has conveniently pushed his RIT office to nearly light speed, and is hurtling towards us right now.


Dr. Brian Koberlein:
Hi Fraser, thanks for having me. If you can hang on one second, I just have to slow down.

Fraser Cain:
What just happened there? Why were you all slowed down?

Brian:
It’s actually an interesting effect known as time dilation. One of the things about light is that no matter what frame of reference you’re in, no matter how you’re moving through the Universe, you’ll always measure the speed of light in a vacuum to be the same. About 300,000 kilometres per second.

And in order to do that, if you are moving relative to me, or if I’m moving relative to you, our references for time and space have to shift to keep the speed of light constant. As I move faster away from you, my time according to you has to appear to slow down. On the same hand, your time will appear to slow down relative to me.

And that time dilation effect is necessary to keep the speed of light constant.

Fraser:
Does this only happen when you’re moving?

A representation of the coordinate system of the warped space around Earth. Credit: NASA

Brian:
Time dilation doesn’t just occur because of relative motion, it can also occur because of gravity. Einstein’s theory of relativity says that gravity is a property of the warping of space and time. So when you have a mass like Earth, it actually warps space and time.

If you’re standing on the Earth, your time appears to move a little bit more slowly than someone up in space, because of the difference in gravity.

Now, for Earth, that doesn’t really matter that much, but for something like a black hole, it could matter a great deal. As you get closer and closer to a black hole, your time will appear to slow down more and more and more.

Fraser:
What would this mean for space travel?

Brian:
In many times in science fiction, you’ll see the idea of a rocket moving very close to the speed of light, and using time dilation to travel to distant stars.

But you could actually do the same thing with gravity. If you had a black hole that was going out to another star or another galaxy, you could actually take your spaceship and orbit it very close to the black hole. And your time would seem to slow down. While you’re orbiting the black hole, the black hole would take its time to get to another star or another galaxy, and for you it would seem really quick.

Orbiting near a moving black hole doesn't seem like the safest mode of transportation, but time dilation might make it worth the risk. Credit: NAOJ
Orbiting near a moving black hole doesn’t seem like the safest mode of transportation, but time dilation might make it worth the risk. Credit: NAOJ

So that’s another way that you could use time dilation to travel to the stars, at least in science fiction.

Fraser:
All right Brian, I’ve got one final question for you. If you get more massive as you get closer to the speed of light, could you get so much mass that you turn into a black hole? I’d like you to answer this question in the form of a blog post on briankoberlein.com and on the Google+ post we’re going to link right here.

Brian:
Thanks Fraser, I’ll have that answer up on my website.


Once again, we visited the baffling realm of time dilation, and returned relatively unscathed. It doesn’t mean that I understand it any better, but I hope you do, anyway. Once again, a big thanks to Dr. Koberlein for taking a few minutes out of his relativistic travel to answer our questions. Make sure you visit his blog and read his answer to my question.

New System Discovered with Five Planets

A new study announced the discovery of a system hosting five transiting planets (image credit: jhmart1/deviantart).
A new study announced the discovery of a new system hosting five transiting planets (image credit: jhmart1/deviantart).
A new study announced the discovery of a system hosting five transiting planets (image credit: jhmart1/deviantart).

NASA’s planet-discovering Kepler mission suffered a major mechanical failure in May 2013, but thanks to innovative techniques subsequently implemented by astronomers the satellite continues to uncover worlds beyond our Solar System (i.e., exoplanets).  Indeed, Andrew Vanderburg (CfA) and colleagues just published results highlighting a new system found to host five transiting planets, which include: two sub-Neptune sized planets, a Neptune sized planet, a sub-Saturn sized planet, and a Jupiter sized planet.

Continue reading “New System Discovered with Five Planets”

Behold The Distant Universe!

An image of a small section (0.4%) of the UDS field - showing a series of very distant galaxies as they appeared 9 billion years ago. Credit: Omar Almaini, University of Nottingham

This past Monday (June 27th), the National Astronomy Meeting – which is hosted by the Royal Astronomy Society – kicked off at the University of Nottingham in the UK. As one of the largest professional conferences in Europe (with over 500 scientists in attendance), this annual meeting is an opportunity for astronomers and scientists from a variety of fields to present that latest in their research.

And of the many presentations made so far, one of the most exciting came from a research team from the University of Nottingham’s School of Physics and Astronomy, which presented the latest near-infrared images obtained by the Ultra Deep Survey (UDS). In addition to being a spectacular series of pictures, they also happened to be the deepest view of the Universe to date.

The UDS survey, which began in 2005, is one of the five projects that make up the UKIRT’s Infrared Deep Sky Survey (UKIDSS). For the sake of their survey, the UDS team relies on the Wide Field Camera (WFCAM) on the United Kingdom Infrared Telescope in Mauna Kea, Hawaii. At 3.8-metres in diameter, the UKIRT is the world’s second largest telescope dedicated to infrared astronomy.

As Professor Omar Almaini, the head of the University of Nottingham research team, explained to Universe Today via email:

“The UDS is by far the deepest near-infrared survey over such a large, contiguous area (0.8 sq degrees). There is only one other similar survey, which is known as UltraVISTA. It covers a larger area (1.5 sq degree) but is not quite so deep. Together the UDS and UltraVISTA should revolutionize studies of the high-redshift Universe over the next few years.”
An optical/IR image taken by the UDS survey. Credit: nottingham.ac.uk
An optical/IR image taken with the United Kingdom Infrared Telescope as part of the UDS. Credit: nottingham.ac.uk

Ultimately, the goal of UDS is shed light on how and when galaxies form, and to chart their evolution over the course of the last 13 billion years (roughly 820 million years after the Big Bang). For over a decade, the UDS has been observing the same patch of sky repeatedly, relying on optical and infrared imaging to ensure that the light of distant objects (which is redshifted due to the profound distances involved) can be captured.

“Stars emit most of their radiation at optical wavelengths, which is redshifted to the near-infrared at high redshift,” said Almaini. “Near-infrared surveys therefore provide the least biased census of galaxies in the early Universe and the best measurements of the stellar mass. Deep optical surveys will only detect galaxies that are bright in the rest-frame ultraviolet, so they are biased against galaxies that are obscured by dust, or those that have stopped forming stars.”

In total, the project has accumulated more than 1000 hours of exposure time, detecting over two hundred and fifty thousand galaxies – several hundred of which were observed within the first billion years after the Big Bang. The final images, which were released yesterday and presented at the National Astronomy Meeting, showed an area four times the size of the full Moon, and at an unprecedented depth.

Data previously released by the UDS project has already led to several scientific advances. These include studies of the earliest galaxies in the Universe after the Big Bang, measurements on the build-up of galaxies over time, and studies of the large-scale distribution of galaxies to measure the influence of dark matter.

New research suggests that Dark Matter may exist in clumps distributed throughout our universe. Credit: Max-Planck Institute for Astrophysics
Research into the USD images is inspiring scientific research, which includes studies into dark matter. Credit: Max-Planck Institute for Astrophysics

With this latest release, many more are anticipated, with astronomers around the world spending the next few years studying the early stages of galaxy formation and evolution. As Almaini put it:

“With the UDS (and UltraVISTA) we now have the ability to study large samples of galaxies in the distant Universe, rather than just a handful. With thousands of galaxies at each epoch we can perform detailed comparisons of the evolving galaxy populations, and we can also study their large-scale structure to understand how they trace the underlying cosmic web of dark matter. With large samples we can also look for rare but important populations, such as those in transition.”

“A key aim is to understand why many massive galaxies abruptly stop forming stars around 10 billion years ago, and also how they transform from disk-like systems into elliptical galaxies. We have recently identified a few hundred examples of galaxies in the process of transformation at early times, which we are actively studying to understand what is driving the rapid changes.”

Along with the subject of galaxy surveys and large scale structure, “galaxy formation and evolution” and “galaxy surveys and large scale structure” were two of the 2016 National Astronomy Meeting’s main themes. Naturally, the UDS release fit neatly into both categories. The others themes included the Sun, stars and planetary science, gravitational waves, modified gravity, archeoastronomy, astrochemistry, and education and outreach.

The Meeting will run until tomorrow (Friday, July 1st), and also included a presentations on the latest infrared images of Jupiter, which were taken by the ESO in preparation for the Juno spacecraft’s arrival on July 4th.

Further Reading: Royal Astronomical Society

Very Large Telescope Images Of Jupiter Prepare Us For Juno Arrival

In preparation for the arrival of Juno, the ESO's released stunning IR images of Jupiter, taken by the VLT. Credit: ESO
In preparation for the arrival of Juno, the ESO's released stunning IR images of Jupiter, taken by the VLT. Credit: ESO

Launching back in 2011, NASA’s Juno mission has spent the past five years traversing the gulf that lies between Earth and Jupiter. When it arrives (in just a few days time!), it will be the second long-term mission to the gas giant in history. And in the process, it will obtain information about its composition, weather patterns, magnetic and gravitational fields, and history of formation.

With just days to go before this historic rendezvous takes place, the European Southern Observatory is taking the opportunity to release some spectacular infrared images of Jupiter. Taken with the Very Large Telescope (VLT), these images are part of a campaign to create high-resolutions maps of the planet, and provide a preview of the work that Juno will be doing in the coming months.

Using the VTL Imager and Spectrometer for mid-Infrared (VISIR) instrument, the ESO team – led by Dr. Leigh Fletcher of the University of Leicester – hopes that their efforts to map the planet will improve our understanding of Jupiter’s atmosphere. Naturally, with the upcoming arrival of Juno, some may wonder if these efforts are necessary.

The Very Large Telescoping Interferometer firing it's adaptive optics laser. Credit: ESO/G. Hüdepohl
Using images obtained by the Very Large Telescope, an ESO team managed to obtain detailed IR images of Jupiter’s atmosphere. Credit: ESO/G. Hüdepohl

After all, ground-based telescopes like the VLT are forced to contend with limitations that space-based probes are not. These include interference from our constantly-shifting atmosphere, not to mention the distances between Earth and the object in question. But in truth, the Juno mission and ground-based campaigns like these are often highly complimentary.

For one, in the past few months, while Juno was nearing in on its destination, Jupiter’s atmosphere has undergone some significant shifts. Mapping these is important to Juno‘s upcoming arrival, at which point it will be attempting to peer beneath Jupiter’s thick clouds to discern what is going on beneath. In short, the more we know about Jupiter’s shifting atmosphere, the easier it will be to interpret the Juno data.

As Dr. Fletcher described the significance of his team’s efforts:

These maps will help set the scene for what Juno will witness in the coming months. Observations at different wavelengths across the infrared spectrum allow us to piece together a three-dimensional picture of how energy and material are transported upwards through the atmosphere.”

Like all ground-based efforts, the ESO campaign – which has involved the use of several telescopes based in Hawaii and Chile, as well as contributions from amateur astronomers around the world – faced some serious challenges (like the aforementioned interference). However, the team used a technique known as “lucky imaging” to take the breathtaking snapshots of Jupiter’s turbulent atmosphere.

This view compares a lucky imaging view of Jupiter from VISIR (left) at infrared wavelengths with a very sharp amateur image in visible light from about the same time (right). Credit: ESO/L.N. Fletcher/Damian Peach
This view compares a lucky imaging view of Jupiter from VISIR (left) at infrared wavelengths with a very sharp amateur image in visible light from about the same time (right). Credit: ESO/L.N. Fletcher/Damian Peach

What this comes down to is taking many sequences of images with very short exposures, thus producing thousands of individual frames. The lucky frames, those where the image are least affected by the atmosphere’s turbulence, are then selected while the rest discarded. These selected frames are aligned and combined to produce final pictures, like the one shown above.

In addition to providing information that would be of use to the Juno mission, the ESO’s campaign has value that extends beyond the space-based mission. As Glenn Orton, the leader of ESO’s ground-based campaign, explained, observations like these are valuable because they help to advance our understanding of planets as a whole, and provide opportunities for astronomers from all over the world to collaborate.

“The combined efforts of an international team of amateur and professional astronomers have provided us with an incredibly rich dataset over the past eight months,” he said. “Together with the new results from Juno, the VISIR dataset in particular will allow researchers to characterize Jupiter’s global thermal structure, cloud cover and distribution of gaseous species.”

The Juno probe will be arriving at Jupiter this coming Monday, July 4th. Once there, it will spend the next two years orbiting the gas giant, sending information back to Earth that will help to advance our understanding of not only Jupiter, but the history of the Solar System as well.

Further Reading: ESO

Professor Stephen Hawking Intends To Map The Known Universe

In honor of Dr. Stephen Hawking, the COSMOS center will be creating the most detailed 3D mapping effort of the Universe to date. Credit: BBC, Illus.: T.Reyes

Back in 1997, a team of leading scientists and cosmologists came together to establish the COSMOS supercomputing center at Cambridge University. Under the auspices of famed physicist Stephen Hawking, this facility and its supercomputer are dedicated to the research of cosmology, astrophysics and particle physics – ultimately, for the purpose of unlocking the deeper mysteries of the Universe.

Yesterday, in what was themed as a “tribute to Stephen Hawking”, the COSMOS center announced that it will be embarking on what is perhaps the boldest experiment in cosmological mapping. Essentially, they intend to create the most detailed 3D map of the early universe to date, plotting the position of billions of cosmic structures including supernovas, black holes, and galaxies.

This map will be created using the facility’s supercomputer, located in Cambridge’s Department of Applied Mathematics and Theoretical Physics. Currently, it is the largest shared-memory computer in Europe, boasting 1,856 Intel Xeon E5 processor cores, 31 Intel Many Integrated Core (MIC) co-processors, and 14.5 terabytes of globally shared memory.

The COSMOS IX supercomputer. Credit: cosmos.damtp.cam.ac.uk
The COSMOS IX supercomputer. Credit: cosmos.damtp.cam.ac.uk

The 3D will also rely on data obtained by two previous surveys – the ESA’s Planck satellite and the Dark Energy Survey. From the former, the COSMOS team will use the detailed images of the Cosmic Microwave Background (CMB) – the radiation leftover by the Big Ban – that were released in 2013. These images of the oldest light in the cosmos allowed physicists to refine their estimates for the age of the Universe (13.82 billion years) and its rate of expansion.

This information will be combined with data from the Dark Energy Survey which shows the expansion of the Universe over the course of the last 10 billion years. From all of this, the COSMOS team will compare the early distribution of matter in the Universe with its subsequent expansion to see how the two link up.

While cosmological simulations that looked at the evolution and large-scale structure of the Universe have been performed in the past – such as the Evolution and Assembly of GaLaxies and their Environments (EAGLE) project and the survey performed by the Institute for the Physics and Mathematics of the Universe at Tokyo University – this will be the first time where scientists compare data the early Universe to its evolution since.

The project is also expected to receive a boost from the deployment of the ESA’s Euclid probe, which is scheduled for launch in 2020. This mission will measure the shapes and redshifts of galaxies (looking 10 billion years into the past), thereby helping scientists to understand the geometry of the “dark Universe” – i.e. how dark matter and dark energy influence it as a whole.

Artist impression of the Euclid probe, which is set to launch in 2020. Credit: ESA
Artist impression of the Euclid probe, which is set to launch in 2020. Credit: ESA

The plans for the COSMOS center’s 3D map are will be unveiled at the Starmus science conference, which will be taking place from July 2nd to 27th, 2016, in Tenerife – the largest of the Canary Islands, located off the coast of Spain. At this conference, Hawking will be discussing the details of the COSMOS project.

In addition to being the man who brought the COSMOS team together, the theme of the project – “Beyond the Horizon – Tribute to Stephen Hawking” – was selected because of Hawking’s long-standing commitment to physics and cosmology. “Hawking is a great theorist but he always wants to test his theories against observations,” said Prof. Shellard in a Cambridge press release. “What will emerge is a 3D map of the universe with the positions of billions of galaxies.”

Hawking will also present the first ever Stephen Hawking Medal for Science Communication, an award established by Hawking that will be bestowed on those who help promote science to the public through media – i.e. cinema, music, writing and art. Other speakers who will attending the event include Neil deGrasse Tyson, Chris Hadfield, Martin Rees, Adam Riess, Rusty Schweickart, Eric Betzig, Neil Turok, and Kip Thorne.

Professor Hawking, flanked by , announcing the launch of the Stephen Hawking Medal for Science Communication, Dec. 16th, 2015. Credit:
Professor Hawking and colleagues from the Royal Society announcing the launch of the Stephen Hawking Medal for Science Communication, Dec. 16th, 2015. Credit: starmus.com

Naturally, it is hoped that the creation of this 3D map will confirm current cosmological theories, which include the current age of the Universe and whether or not the Standard Model of cosmology – aka. the Lambda Cold Dark Matter (CDM) model – is in fact the correct one. As Hawking is surely hoping, this could bring us one step closer to a Theory of Everything!

Further Reading: Cambridge News