Massive Planet Gone Rogue Discovered

In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)
In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)

A massive rogue planet has been discovered in the Beta Pictoris moving group. The planet, called PSO J318.5338-22.8603 (Sorry, I didn’t name it), is over eight times as massive as Jupiter. Because it’s one of the few directly-imaged exoplanets we know of, and is accessible for study by spectroscopy, this massive planet will be extremely important when piecing together the details of planetary formation and evolution.

Most planets outside our solar system are not directly observable. They are discovered when they transit in front of their host star. That’s how the Kepler mission finds exoplanets. After that, their properties are inferred by their gravitational interactions with their star and with any other planets in their system. We can infer a lot, and get quite detailed, but studying planets with spectroscopy is a whole other ball game.

The team of researchers, led by K. Allers of Bucknell University, used the Gemini North telescope, and its Near-Infrared Spectrograph, to find PSO’s  radial and rotational velocities. As reported in a draft study on January 20th, PSO J318.5338-22.8603 (PSO from now on…) was confirmed as a member of the Beta Pictoris moving group, a group of young stars with a known age.

The Beta Pictoris moving group is a group of stars moving through space together. Since they are together, they are understood to be formed at the same time, and to have the same age. Confirming that PSO is a member of this group also confirmed PSO’s age.

Once the age of PSO was known, its identity as a planet was confirmed. Without knowing the age, it’s impossible to rule it out as a brown dwarf, a “failed star” that lacked the mass to ignite fusion.

This new rogue planet is 8.3 + or – 0.5 times the mass of Jupiter, and its temperature is about 1130 K. Spectra from the Gemini scope show that PSO rotates at between 5 to 10.2 hours, and that its radial velocity is within the envelope of values for this group. According to the researchers, determining these properties accurately means that PSO J318.5338-22.8603 is “an important benchmark for studies of young, directly imaged planets.”

PSO is in an intermediate position in terms of other planets in the Beta Pictoris moving group. 51 Eridani-b is another directly imaged planet, only slightly larger than Jupiter, discovered in 2014. The third planet in the group is Beta Pictoris b, which is thought to be almost 11 times as massive as Jupiter.

Beta Pictoris-b in orbit around the debris-disk star Beta Pictoris. Image: ESA/A-M LeGrange et. al.
Beta Pictoris-b in orbit around the debris-disk star Beta Pictoris. Image: ESA/A-M LeGrange et. al.

Rogue, or “free-floating” planets like PSO J318.5338-22.8603 are important because they are not near a star. Light from a star dominates the star’s  surroundings, and makes it difficult to discern much detail in the planets that orbit the star. Now that PSO is confirmed as a planet, rather than a brown dwarf, studying it will add to our knowledge of planetary formation.

Sources of Gravitational Waves: The Most Violent Events in the Universe

One of the most promising gravitational wave sources: Bodies orbiting each other under their own gravity

Soon, very soon, Thursday, February 11, at 10:30 Eastern time, we are likely to learn at any one of several press conferences – at the National Press Club in Washington, D.C., in Hannover, Germany, near Pisa in Italy and elswhere – that gravitational waves have been measured directly, for the first time. This would mean the first direct detection of minute distortions of spacetime, travelling at the speed of light, first postulated by Albert Einstein almost exactly 100 years ago.

Time to brush up on your gravitational wave basics: In Gravitational waves and how they distort space, we had a look at what gravitational waves do. In Gravitational wave detectors: How they work we saw how you can measure gravitational waves. Third and final step: What are typical gravitational wave sources? How are these waves produced?

Objects in orbit

The simplest situation that produces gravitational waves in the cosmos is almost ubiquitous: two or more objects orbiting around each other under their own gravity. The waves they generate are reminiscent to a very slow mixer in the middle of a pool of water: One of the most promising gravitational wave sources: Objects in orbit around each other. By Sascha Husa, Universitat de les Illes Balears This is not something you would see, of course. The wave that is pictured here represents the strength of the minute changes in distance that would be caused by the gravitational wave, just as we’ve seen in Gravitational waves and how they distort space. The animation is courtesy of Sascha Husa of the Universitat de les Illes Balears.

Indirect evidence

Gravitational waves emitted by orbiting objects carry away energy. Elementary physics tells you that if you remove energy from an orbiting system, the distance between the orbiting objects will shrink, and they will orbit each other faster than before.

In fact, gravitational waves making a binary system of neutron stars speed up was the first evidence for the existence of gravitational waves. The binary neutron star was discovered by Hulse and Taylor in 1974, and the speed-up caused by gravitational waves published by Taylor and Weisberg in 1984, after a careful analysis of seven years’ worth of data. Hulse and Taylor were awarded the Nobel prize in physics in 1993 for their discovery.

Here, in an image from an article by Weisberg 2010, is the match between general relativistic prediction and observation in all its glory (or at least in all its glory up to 2005): weisberg2010As the two neutron stars speed up, they will reach the point of closest approach within their orbit earlier and earlier. How much earlier, in seconds, is plotted on the vertical axis, year of measurement on the horizontal axis.

A matter of frequency

Today’s ground-based detectors cannot detect gravitational waves from all kinds of bodies in mutual orbit. The bodies need to be massive, compact and, crucially, orbit each other quickly enough. For bodies orbiting each other less than a few times per second (very quick, if you are talking about astronomical bodies!), the frequency of the resulting gravitational wave will be too low for ground-based detectors to measure reliably. In the low-frequency regime, below 10–100 Hertz, disturbances caused by undulating motions of the Earth’s surface (“seismic noise”) are dominant, and drown out the minute effects of gravitational waves.

When it comes to gravitational waves from supermassive black holes, or from white dwarfs, we will have to wait for future space-based gravitational wave detectors.

The most promising gravitational wave sources go “chirp”

When an orbiting system emits gravitational waves, orbital motion speeds up. And when orbital motion speeds up, the system emits even more energy in form of gravitational wave. This runaway process ends only when the orbiting objects collide and merge.

The final phase is marked by a quick increase in orbital speed, corresponding to ever higher gravitational wave frequency, and ever higher intensity. Here’s what such a signal looks like (image and audio from “Chirping Neutron Stars” on Einstein Online): chirp-enYou can see how the frequency and intensity increase right up to time 0, when the two neutron stars collide and merge.

For stellar black holes (with masses between a few and a few dozen solar masses) and neutron stars, in any combination, the frequencies of these gravitational waves are the same as the frequencies of audible sound waves. One can actually represent these changes in frequency as an audible tone, as in this example of two neutron stars merging (Audio © B. Owen, Penn State University):

Here is the same kind of audible representation for the merger of a black hole and a neutron star (© AEI/GEO600):

Sadly, what a gravitational wave detector registers is the combination of this sound plus assorted noise, which sounds like this (© AEI/GEO600):

Colleagues at Cardiff University have made this into a nice online game: Black Hole Hunter. Head over there and see if you can hear the signal beneath the noise!

(And you can hear live chirps by various astrophysicists (and others) under the hashtag #chirpForLIGO on Twitter.)

This kind of signal, from merging stellar black holes or neutron stars (in any combination) is the most promising candidate signal for today’s detectors – and going by the rumors, that is indeed what LIGO appears to have found.

The final part of the signal is interesting for a particular reason: It doesn’t follow from any simple formulae, and can only be modelled with complex computer simulations of such situations known as numerical relativity. If the detectors get a good detection of this very last bit, that will be a good test for current numerical simulations of general relativity!

Other gravitational wave sources

Chirps are comparatively simple, and likely the first signals to be found.

Another kind of signal that could be found is periodic (or nearly so), and would be produced e.g. if rapidly rotating neutron stars are less than perfectly smooth. No such luck as of yet, though.

Next would come the gravitational wave sources that are somewhat less understood, such as the processes in the interior of supernova explosions. And finally, once numerous signals have been detected, showing the scientists that their detectors are indeed working as they should, there might be the detection of completely unexpected signals. Whenever astronomers have opened a new window to the cosmos – the radio window, infrared window, x-ray window – they have found something new and unexpected. Who can tell what opening the Einstein window, the window of gravitational waves, will teach us about the universe?

Update: Gravitational Waves Discovered

Gravitational Wave Detectors: How They Work

Simplified gravitational wave detectors

It’s official: this Thursday, February 11, at 10:30 EST, there will be parallel press conferences at the National Press Club in Washington, D.C., in Hannover, Germany, and near Pisa in Italy. Not officially confirmed, but highly probable, is that people running the LIGO gravitational wave detectors will announce the first direct detection of a gravitational wave. The first direct detection of minute distortions of spacetime, travelling at the speed of light, first postulated by Albert Einstein almost exactly 100 years ago. Nobel prize time.

Time to brush up on your gravitational wave basics, if you haven’t done so! In Gravitational waves and how they distort space, I had a look at what gravitational waves do. Now, on to the next step: How can we measure what they do? How do gravitational wave detectors such as LIGO work?

Recall that this is how a gravitational wave will change the distances between particles, floating freely in a circular formation in empty space: How distances change when a simple gravitational wave passes through a ring of particles. This is what gravitational wave detectors need to measure.The wave is moving at right angles to the screen, towards you. I’ve greatly exaggerated the distance changes. For a realistic wave, even the giant distance between the Earth and the Sun would only change by a fraction of the diameter of a hydrogen atom. Tiny changes indeed.

How to detect something like this?

The first unsuccessful attempts to detect gravitational waves in the 1960s tried to measure how they make aluminum cylinders ring like a very soft bell. (Tragic story; Joe Weber [1919-2000], the pioneering physicist behind this, was sure he had detected gravitational waves in this way; after thorough analysis and replication attempts, community consensus emerged that he hadn’t.)

Afterwards, physicists came up with alternative scheme. Imagine that you are replacing the black point in the center of the previous animation with a detector, and the rightmost red particle with a laser light source. Now you send light pulses (represented here by fast red dots) from the light source to the detector; let’s first look at this with the gravitational wave switched off:Simplified gravitational wave detector without gravitational wave

Every time a light pulse reaches the detector, an indicator light flashes yellow. The pulses are sent out regularly, they all travel at the same speed, hence they also reach the detector in regular intervals.

If a gravitational wave passes through this system, again from the back and coming towards you, distances will change. Let us keep our camera trained on the detector, so the detector remains where it is. The changing distance to the light source, and also the changing distances between the light pulses, and some of the changes in distance between light pulses and detector or source, are due to the gravitational wave. Here is what that would look like (again, hugely exaggerated): The same simplified gravitational wave detector, but now with a gravitational wave passing through.

Keep your eye on the blinking light, and you will see that its blinking is not so regular any more. Sometimes, the light blinks faster, sometimes slower. This is an effect of the gravitational wave. An effect by which we can hope to detect the gravitational wave.

“We” in this case are the radio astronomers working on what are known as Pulsar Timing Arrays. The sender of regular pulses are pulsars, rotating neutron stars sweeping a radio beam across our antennas like a cosmic lighthouse. The detectors are radio telescopes here on Earth. Detection is anything but easy. With a single pulsar, you’d need to track pulse arrival times with an accuracy of a few billionths of a second over half a year, and make sure you are not being fooled by various other sources of timing variations. So far, no gravitational waves have been detected in this way, although the radio astronomers are keeping at it.

To see how gravitational wave detectors like LIGO work, we need to make things a little more complex.

Interferometric gravitational wave detectors: the set-up

Here is the basic set-up: Two mirrors, a receiver (or “light detector”), a light source and what is known as a beamsplitter: Basic setup for an interferometric gravitational wave detector

Light is sent into the detector from the (laser) light source LS to the beamsplitter B which, true to its name, sends half of the light on to the mirror M1 and lets the other half through to the mirror M2. At M1 and M2, respectively, the light is reflected back to the beam splitter. There, the light arriving from M1 (or M2) is split again, with half going towards the light detector LD, the other half back in the direction of the light source LS. We will ignore the latter half and pretend, for the sake of our simplified explanation, that all the light reaching B from M1 or M2 goes on to the light detector LD.

(To avoid confusion, I will always refer to LD as the “light detector” and take the unqualified word “detector” to mean the whole setup.)

This setup, by the way, is called a Michelson Interferometer. We’ll see below why it is a good setup for gravitational wave detectors.

In what follows, we will assume that the mirrors and the beam splitter, shown as being suspended, react to the gravitational wave in the same way freely floating particles would react. The key effects are between the mirrors and the beam splitter in what are called the two arms of the detector. Arm length is huge in today’s detectors, running to a few kilometers. In comparison, light source and light detector are very close to the beamsplitter; changes of the distances between these three do not signify.

Light pulses in a gravitational wave detector

Next, let us see how light pulses run through this detector. Here is the same setup, seen from above: Simple interferometric gravitational wave detector, seen from aboveLight source LS, the two mirrors M1 and M2, the beamsplitter B and the light detector LD: all present and accounted for.

Next, we let the light source emit light pulses. For greater clarity, I will make two artificial and unrealistic changes. I will send red and green pulses into the detector, representing the light that goes into the horizontal and the vertical arm, respectively. In reality, there is no distinction, just light apportioned at the beamsplitter. Light running towards M1 will be offset a little to the left, light coming back from M1 to the right, for better clarity. Same goes for M2. This, too, is different in a real detector. That said, here come the light pulses: Simplified interferometric gravitational wave detector with light running through both armsLight starts at the light source to the left. Light that has left the source together, travels together (so green and red pulses are side by side) until the beam splitter. The beam splitter then sends the green pulses on their upward journey and lets the red pulses pass on their way towards the mirror on the right. All the particles that arrive back at the beamsplitter after reflection at M1 or M2. At the beamsplitter, they are directed towards the light detector at the bottom.

In this setup, the horizontal arm is slightly longer than the vertical arm. Red particles have to cover some extra distance. That is why they arrive at the detector a bit later, and we get an alternating rhythm: green, red, green, red, with equal distances in between. This will become important later on.

Here is a diagram, a kind of registration strip, which shows the arrival times for red and green pulses at the light detector (time is measured in “animation frames”): Arrival times at the light detector of a simplified gravitational wave detectorThe pattern is clear: red and green pulses arrive evenly spaced, one after the other.

Bring on the gravitational wave!

Next, let’s switch on our standard gravitational wave (exaggerated, passing through the screen towards you, and so on). Here is the result: Simple interferometric gravitational wave detector with a gravitational wave passing throughWe have trained our camera on the beamsplitter (so in our image, the beamsplitter doesn’t move). We ignore any slight changes in distance between beamsplitter and light source/light detector. Instead, we focus on the mirrors M1 and M2, which change their distance from the beamsplitter just as we would expect from the earlier animations.

Look at the way the pulses arrive at our light detector: sometimes red and green are almost evenly spaced, sometimes they close together. That is caused by the gravitational wave. Without the wave, we had strict regularity.

Here is the corresponding “registration strip” diagram. You can see that at some times, the light pulses of each color are closer together, at others, farther apart: Arrival times for light pulses in a gravitational wave detector

At the time I have marked with a hand-drawn arrow, red and green pulses arrive almost in unison!

The pattern is markedly different from the scenario without a gravitational wave. Detect this change in the pattern, and you have detected the gravitational wave.

Running interference

If you’ve wondered why detectors like LIGO are called interferometric gravitational wave detectors, we will need to think about waves a bit more. If not, let me just state that detectors like LIGO use the wave properties of light to measure the changes in pulse arrival rate you have seen in the last animation. To skip the details, feel free to jump ahead to the last section, “…and now for something a thousand times more complicated.”

Light is a wave, with crests and troughs corresponding to maxima and minima of the electric and of the magnetic field. While the animations I have shown you track the propagation of light pulses, they can also be used to understand what happens to a light wave in the interferometer. Just assume that each of the moving red and green dots in the detector marks the position of a wave crest.

Particles just add up. Take 2 particle and add 2 particles, and you will end up with 4 particles. But if you add up (combine, superimpose) waves, it depends. Sometimes, one wave plus another wave is indeed a bigger wave. Sometimes, it’s a smaller wave, or no wave at all. And sometimes it’s complicated.

When two waves are in perfect sync, the crests of the one aligning with the crests of the other, and the troughs aligning, too, you indeed get a bigger wave. The following diagram shows at which times the different parts of two light waves arrive at the light detector, and how they add up. (I’ve placed a dot on top of each crest; that is what the dots where meant to signify, after all.) Constructive interference of light wavesOn top, the green wave, perfectly aligned with the red wave (which, for clarity, is shown directly below the green wave). Add the two waves up, and you will get the (markedly stronger) blue wave in the bottom panel.

Not so if the two waves are maximally misaligned, the crests of each aligned with the troughs of the other. A crest and a trough cancel each other out. The sum of a wave and a maximally misaligned wave of equal strength is: no wave at all. Here is the corresponding diagram: Destructive interference of light wavesRecall that this was exactly the setup for our gravitational wave detector in the absence of gravitational waves: Red and green pulses with equal spacing; troughs of the one wave perfectly aligned with the crests of the other. The result: No light at the light detector. (For realistic gravitational wave detectors, that is almost true.)

When a gravitational wave passes through the detector, the situation changes. Here is the corresponding pattern of pulse/wave crest arrival times for the animation above: Interference pattern for a gravitational wave passing through the simplified gravitational wave detectorThe blue pattern, which is the sum of the red and the green, is complex. But it is not a flat line. There is light at the light detector where there was no light before, and the cause of the change is the gravitational wave passing through.

All in all, this makes a (highly simplified) version of how gravitational wave detectors such as LIGO work. Whatever the scientists will report this Thursday, it is based on light signals at the exit of such an interferometric detector.

And now for something a thousand times more complicated

Real gravitational wave detectors are, of course, much more complicated than that. I haven’t even started talking about the many disturbances scientists need to take into account – and to suppress as far as possible. How do you suspend the mirrors so that (at least for certain gravitational waves) they will indeed be influenced as if they were freely floating particles? How do you prevent seismic noise, cars or trains in the wider neighborhood and so on from moving your mirrors a tiny little bit (either by vibrations or by their own gravity)? What about fluctuations of the laser light?

Gravitational wave hunting is largely a hunt for noise, and for ways of suppressing that noise. The LIGO gravitational wave detectors and their kin are highly complex machines, with hundreds of control circuits, highly elaborate mirror suspensions, the most stable lasers known to physics (and some of the most high-powered). The technology has been contributed by numerous group from all over the world.

But all this is taking us too far, and I refer you to the pages of the detectors and collaborations for additional information:

LIGO pages at Caltech

Pages of the LIGO Scientific Collaboration

GEO 600 pages

VIRGO / EGO pages

You can find some further information about gravitational waves on the Einstein Online website:

Einstein Online: Spotlights on gravitational waves

Update: Gravitational Waves Discovered

Messier 2 (M2) – The NGC 7089 Globular Cluster

The compact globular cluster known as Messier Object 2. Credit: NASA/STScI/WikiSky

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects in the night sky. In time, he would come to compile a list of approximately 100 of these objects, with the purpose of making sure that astronomers did not mistake them for comets. However, this list – known as the Messier Catalog – would go on to serve a more important function.

In addition to cataloging some of the most beautiful objects in the night sky, this list would come to be an important milestone in the discovery of Deep Sky Objects. The second object to make the list is known as Messier Object 2 (aka. M2 or NGC 7089), one of the largest globular cluster in the Milky Way, and which is located in the constellation Aquarius.

Description:

As one of the largest known globular clusters, Messier 2 is a rich, round concentration of gravitationally bound stars that orbits the galactic core. Located about 33,000 light years (10,000 parsecs) from our Solar System, this cluster measures some 175 light-years in diameter and is believed to contain about 150,000 stellar members – including 21 known variable stars. Its brightest stars are red and yellow giant stars.

Because its members are so tightly packed together, it has a density classification of II – which is reserved for clusters that are particularly rich and compact. And like most globular clusters, M2’s central region is highly compressed, measuring just 3.7 light years in diameter. It’s tidal influence, on the other hand, has a radius of 233 light years, beyond which members stars would escape due to the influence of the Milky Way’s tidal forces.

Positioned well beyond the galactic center, M2 is also noted for its elliptical shape, and is believed to be as much as 13 billion years old.

The constellation Acquarius. Credit: iau.org
The constellation Aquarius. M2 is visible right of center, above Beta Aquirii. Credit: iau.org

History of Observation:

M2 was first discovered by Jean-Dominique Maraldi in 1746 while observing a comet with Jacques Cassini. According to Cassini’s notes, which detail the discovery, the two believed it to be a “nebulous star” at the time:

“On September 11 I have observed another one [nebulous star] for which the right ascension is 320d 7′ 19″ [21h 20m 29s], and the declination 1d 55′ 38″ south, very near to the parallel where the Comet should be. This one is round, well terminated and brighter in the center, about 4′ or 5′ in extent and not a single star around it to a pretty large distance; none can be seen in the whole field of the telescope. This appears very singular to me, for most of the stars one calls nebulous are surrounded by many stars, making one think that the whiteness found there is an effect of the light of a mass of stars too small to be seen in the largest telescopes. I took, at first, this nebula for the comet.”

The object was independently recovered by Charles Messier in 1769, though he too mistook it for something else. In his notes, which were also taken on September 11th (fourteen years later), he described the object as a nebula:

“On September 11, 1760, I discovered in the head of Aquarius a beautiful nebula which doesn’t contain any star; I examined it with a good Gregorian telescope of 30 pouces focal length, which magnified hundred four [104] times; the center is brilliant, and the nebulosity which surrounds it is round; it resembles quite well the beautiful nebula which is located between the head and the bow of Sagittarius: It extends 4 minutes of arc in diameter; one can see it quite well in an ordinary telescope [refractor] of 2 feet [focal length]: I compared its passage of the meridian with that of Alpha Aquarii which is situated on the same parallel; its right ascension was derived at 320d 17′, and its declination at 1d 47′ south. In the night of June 26 and 27, 1764, I reviewed this nebula for a second time; it was the same, with the same appearances. This nebula can be found placed in the chart of the famous Comet of Halley, which I observed at its return in 1759 (b).”

Charles Messier, French astronomer, at the age of 40, by Ansiaume. Credit: Public Domain.
Charles Messier, French astronomer, at the age of 40, by Nicolas Ansiaume. Credit: Public Domain.

Ultimately, it was William Herschel who finally resolved Messier 2 into the object we recognize today. This took in 1783, where – according to his notes – he was able to resolve individual stars:

“The scattered stars were brought to a good, well determined focus, from which it appears that the central condensed light is owing to a multitude of stars that appeared at various distances behind and near each other. I could actually see and distinguish the stars even in the central mass. The Rev. Mr. Vince, Plumian Professor of Astronomy at Cambridge, saw it in the same telescope as described.”

Locating Messier 2:

Messier 2 is located approximately 5 degrees (about 3 finger widths) north of Beta Aquarii, on the same declination as Alpha Aquarii. M2 is sufficiently bright enough to be seen in urban settings where light pollution is a factor, and can alternately be found by looking about 10 degrees (a fist width) south/southwest of Epsilon Pegasi (Enif).

Using binoculars, it will appear as a large, fuzzy ball with little or no resolution. To amateur astronomers using small telescopes, individual stars will be visible around the outer edges, with resolution improving significantly with aperture size of 6” or more. Those with large telescopes, and who are looking for a challenge, should look for a dark dust lane which crosses the north-east edge of this globular cluster.

An all-sky map showing the distribution of Messier objects. (Click to enlarge). Credit: Jim Cornmell under a Wikimedia Commons Attribution-Share Alike 3.0 Unported license.
An all-sky map showing the distribution of Messier objects. Credit: Jim Cornmell/Wikimedia Commons

Of course, John Herschel saw it as “It is like a heap of fine sand!” which is perhaps as apt an description as can be rendered. Through a large telescope, the globular cluster does resemble a glittering mass of sparkling granules.

And for your convenience, here are the vital statistics of this globular cluster:

Object Name: Messier 2
Alternative Designations: NGC 7089, GC 4678, Bode 70
Object Type: Class II Globular Cluster
Constellation: Aquarius
Right Ascension: 21 : 33.5 (h:m)
Declination: -00 : 49 (deg:m)
Distance: 33 (kly)
Visual Brightness: 6.5 (mag)
Apparent Dimension: 16.0 (arc min)

Good luck searching for this and other Deep Sky Objects!

We have written many interesting articles on Messier Objects here at Universe Today.  For instance, here’s Tammy Plotner’s Introduction to the Messier ObjectsM1 – The Crab Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog.

For more information, check out the SEDS Messier Database.

New Horizons Latest Find: Floating Ice Hills On Pluto!

The latest photographs from the New Horizons mission have revealed hills of water ice that ‘float’ in a sea of frozen nitrogen and move slowly over time, like icebergs. Credits: NASA/JHUAPL/SwRI

Ever since the New Horizons spacecraft flew by Pluto in July 2015, people here at Earth have been treated to an endless supply of discoveries about the dwarf planet. These included the first accurate pictures of what Pluto looks like, images of “Pluto’s Heart“, information about the geology and morphology of the surface (and its largest moon, Charon), and information about Pluto’s atmosphere and its escape rate.

And based on the data obtained from images by the New Horizons probe, NASA recently announced that Pluto’s flowing glaciers have numerous hills composed of water ice floating on top of them. Located in the vast ice plain known as “Sputnik Planum” – named after Sputnik One, the first satellite to orbit Earth – these hills measure several kilometers across, and are believed to be fragments that originated from the surrounding uplands.

Continue reading “New Horizons Latest Find: Floating Ice Hills On Pluto!”

All Primary Mirrors Fully Installed on NASA’s James Webb Space Telescope

All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Credit: Ken Kremer/kenkremer.com
All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credit: Ken Kremer/kenkremer.com
All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: Ken Kremer/kenkremer.com

NASA GODDARD SPACE FLIGHT CENTER, MD – All 18 of the primary mirrors have been fully installed onto the flight structure of what will become the biggest and most powerful space telescope ever built by humankind – NASA’s James Webb Space Telescope (JWST).

Completion of the huge and complex primary mirror marks a historic milestone and a banner start to 2016 for JWST, commencing the final assembly phase of the colossal observatory that will revolutionize our understanding of the cosmos and our place it in.

After JWST launches in slightly less than three years time, the gargantuan observatory will significantly exceed the light gathering power of the currently most powerful space telescope ever sent to space – NASA’s Hubble!

Indeed JWST is the scientific successor to NASA’s 25 year old Hubble Space Telescope.

Technicians working inside the massive clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, have been toiling around the clock 24/7 to fully install all 18 primary mirror segments onto the mirror holding backplane structure. This author witnessed ongoing work in progress during installation of the last of the primary mirrors.

The engineers and scientists kept up the pace of their assembly work over the Christmas holidays and also during January’s record breaking monster Snowzilla storm, that dumped two feet or more of snow across the Eastern US from Washington DC to New York City and temporarily shut down virtually all travel.

The team used a specialized robotic arm functioning like a claw to meticulously latch on to, maneuver and attach each of the 18 primary mirrors onto the telescope structure.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium and about the size of a coffee table.

Inside a massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland the James Webb Space Telescope team used a robotic am to install the last of the telescope's 18 mirrors onto the telescope structure.  Credits: NASA/Chris Gunn
Inside a massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland the James Webb Space Telescope team used a robotic am to install the last of the telescope’s 18 mirrors onto the telescope structure. Credits: NASA/Chris Gunn

In space, the folded mirror structure will unfold into side by side sections and work together as one large 21.3-foot (6.5-meter) mirror, unprecedented in size and light gathering capability.

The telescopes mirror assembly is comprised of three segments – the main central segment holding 12 mirrors and a pair of foldable outer wing-like segments that hold three mirrors each.

The painstaking assembly work to piece the primary mirrors together began just before the Thanksgiving 2015 holiday, when the first unit was successfully installed onto the central segment of the mirror holding backplane assembly.

One by one the team populated the telescope structure with the primary mirrors at a pace of roughly two per week since the installations started some two and a half months ago.

During the installation process each of the gold coated primary mirrors was covered with a black colored cover to protect them from optical contamination.

The mirror covers will be removed over the summer for testing purposes, said Lee Feinberg, optical telescope element manager at Goddard, told Universe Today.

The two wings were unfolded from their stowed-for-launch configuration to the “deployed” configuration to carry out the mirror installation. They will be folded back over into launch configuration for eventual placement inside the payload fairing of the Ariane V ECA booster rocket that will launch JWST three years from now.

Up close view of primary mirrors installed on mirror holding structure of  NASA’s James Webb Space Telescope by technicians working inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credit: Ken Kremer/kenkremer.com
Up close view of primary mirrors installed on mirror holding structure of NASA’s James Webb Space Telescope by technicians working inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: Ken Kremer/kenkremer.com

“Scientists and engineers have been working tirelessly to install these incredible, nearly perfect mirrors that will focus light from previously hidden realms of planetary atmospheres, star forming regions and the very beginnings of the Universe,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, in a statement.

“With the mirrors finally complete, we are one step closer to the audacious observations that will unravel the mysteries of the Universe.”

The mirrors were built by Ball Aerospace & Technologies Corp., in Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope, according to NASA.

In this rare view, the James Webb Space Telescope's 18 mirrors are seen fully installed on the James Webb Space Telescope structure at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credits: NASA/Chris Gunn
In this rare view, the James Webb Space Telescope’s 18 mirrors are seen fully installed on the James Webb Space Telescope structure at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA/Chris Gunn

Among the next construction steps are installation of the aft optics assembly and the secondary mirror.

After that the team will install what’s known as the ‘heart of the telescope’ – the Integrated Science Instrument Module ISIM). Then comes acoustic and vibration tests throughout this year. Eventually the finished assembly will be shipped to Johnson Space Center in Houston “for an intensive cryogenic optical test to ensure everything is working properly,” say officials.

Up close view of JWST secondary mirror yet to be installed on tripod of telescope structure inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credit: Ken Kremer/kenkremer.com
Up close view of JWST secondary mirror yet to be installed on tripod of telescope structure inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: Ken Kremer/kenkremer.com

The flight structure and backplane assembly serve as the $8.6 Billion Webb telescopes backbone.

The telescope will launch on an Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

“JWST has the capability to look back towards the very first objects that formed after the Big Bang,” said Dr. John Mather, NASA’s Nobel Prize Winning scientist, in a recent exclusive interview with Universe Today at NASA Goddard.

Technician monitors installation of last of 18 primary mirrors onto structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Secondary mirror holding tripod at right, top.  Credit: Ken Kremer/kenkremer.com
Technician monitors installation of last of 18 primary mirrors onto structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Secondary mirror holding tripod at right, top. Credit: Ken Kremer/kenkremer.com

Watch this space for my ongoing reports on JWST mirrors, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

View showing actual flight structure of mirror backplane unit for NASA's James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration.  JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md.  Credit: Ken Kremer/kenkremer.com
View showing actual flight structure of mirror backplane unit for NASA’s James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

Gravitational Waves and How They Distort Space

Gravitational waves distort space in a rhythmic fashion. These simple animations show how.
That's not a space worm. It's what a gravitational wave does to space according to Einstein's theory of general relativity.

It’s official: on February 11, 10:30 EST, there will be a big press conference about gravitational waves by the people running the gravitational wave detector LIGO. It’s a fair bet that they will announce the first direct detection of gravitational waves, predicted by Albert Einstein 100 years ago. If all goes as the scientists hope, this will be the kick-off for an era of gravitational wave astronomy: for learning about some of the most extreme and violent events in the cosmos by measuring the tiny ripples of space distortions that emanate from them.

Time to brush up on your gravitational wave knowledge, if you haven’t already done so! Here’s a visualization to help you – and we’ll go step by step to see what it means: Visualization of a simple gravitational wave. Gravitational waves distort space in a rhythmic fashion.

Einstein’s distorted spacetime

In the words of the eminent relativist John Wheeler, Einstein’s theory of general relativity can be summarized in two statements: Matter tells space and time how to curve. And (curved) space and time tell matter how to move. (Here is a slightly longer version on Einstein Online.)

Einstein published the final form of his theory in November 1915. By spring 1916, he had realized another consequence of distorting space and time: general relativity allows for gravitational waves, rhythmic distortions which propagate through space at the speed of light.

For quite some time, physicists weren’t sure whether these gravitational waves were real or a mathematical artifact within Einstein’s theory. (For more about this controversy, see Daniel Kennefick’s book “Traveling at the Speed of Thought and  this article.) But since the 1980s, there has been indirect evidence for these waves (which earned its discoverers a Nobel prize, no less, in 1993).

Gravitational waves are emitted by orbiting bodies and certain other accelerated masses. Right now, major international efforts are underway to detect gravitational waves directly. Once detection is possible, the scientists hope to use gravitational waves to “listen” to some of the most violent processes in the universe: merging black holes and/or neutron stars, or the core region of supernova explosions.

Just as regular astronomy uses light and other forms of electromagnetic radiation to learn about distant objects, gravitational wave astronomy will decipher the information contained within gravitational waves. And if you go by recent rumors, gravitational wave astronomy might already have kicked off in mid-September 2015.

What do gravitational waves do?

But what do gravitational waves do? For that, let us look at a simplified, entirely hypothetical situation. (The following are variations on images and animations originally published here on Einstein Online.) Consider particles drifting in space, far from any sources of gravity. Imagine that the particles (red) are arranged in a circle around a center (marked in black): A ring of particles floating in space in a circle

If a simple gravitational wave were to pass through this image, coming directly at the reader, distances between these particles would change rhythmically as follows: How distances change when a simple gravitational wave passes through a ring of particles

Note the distinctive pattern: When the circle is stretched in the vertical direction, it is compressed in the horizontal direction, and vice versa. That’s typical for gravitational waves (“quadrupole distortion”).

It’s important to keep in mind that this animation, and the ones that will follow, exaggerate the gravitational wave’s effect quite considerably. The gravitational waves detectors such as aLIGO hope to measure are much, much weaker. If our hypothetical circle of particles were as large as the Earth’s orbit around the Sun, a realistic gravitational wave would distort it by less than the diameter of a hydrogen atom.

Gravitational waves moving through space

The animation above shows what could be called a “gravitational oscillation.” To see the whole wave, we need to consider the third dimension.

We talk about a wave when oscillations propagate through space. Consider a water wave: At each point of the surface, we have an oscillation, with the surface rising and falling rhythmically. But it’s only the fact that this oscillation propagates, and that we can see a crest moving over the surface, that makes this into a wave.

It’s the same with gravitational waves. To see that, we will look not at a single circle of freely floating particles, but at many such circles, stacked one behind the other, forming the surface of a cylinder: Circles of particles, stacked so as to form a cylinder

In this image, it’s hard to see which points are in front and which in the back. Let us join each particle to its nearest neighbors with a blue line, and let us also fill out the area between those lines. That way, the geometry is much more obvious:  The previous cylinder, with neighboring particles joined with lines.

Just remember that neither the lines nor the whitish surface is physical. On the contrary, if we want the particles to be maximally susceptible to the effect of the gravitational wave, we should make sure they are truly floating freely, and certainly they shouldn’t be linked in any way!

Now, let us see what the same gravitational wave we saw before does to this assembly of particles. From this perspective, the wave is passing from the right-hand side in the back towards the left-hand side on the front: A gravitational wave passing through a 3d cylinder of particlesAs you can see, the wave is propagating through space. For instance, the point where the vertical distances within the circle of particles is maximal is moving towards the observer. The wave nature can be seen even more clearly if we look at this cylinder directly from the side: The action of a gravitational wave on an assembly of particles, seen directly from the side

What the animations show is just one kind of simple gravitational wave (“linearly polarized”). Here is another kind (“circularly polarized”): Action of a circularly polarized gravitational wave

This, then, is what the gravitational wave hunters are looking for. Except that they do not have particles floating in free space. Instead, their detectors contain test masses (notably large mirrors) elaborately suspended here on Earth, with laser light to detect the minute distance changes caused by gravitational waves.

More realistic gravitational wave signals, which contain information about merging black holes or the bulk motion of matter inside a supernova explosion, are more complicated still. They combine many simple waves of different frequencies, and the strength of such waves (their amplitude) will change over time in a characteristic fashion.

In these animations, gravitational waves look a bit like wriggling space worms. But these space worms could become the astronomers’ best friends, carrying information about the cosmos that is hard or even impossible to obtain in any other way.

[Don’t miss the sequel: Gravitational wave detectors: how they work]

Update: Gravitational Waves Detected

Peculiar ‘Cauliflower Rocks’ May Hold Clues To Ancient Mars Life

"Cauliflower" shaped silica-rich rocks photographed by the Spirit Rover near the Home Plate rock formation in Gusev Crater in 2008. Could microbes have built their nodular shapes? Credit: NASA/JPL-Caltech
"Cauliflower" shaped silica-rich rocks photographed by the Spirit Rover near the Home Plate rock formation in Gusev Crater in 2008. Could microbes have built their nodular shapes? Credit: NASA/JPL-Caltech
“Cauliflower” shaped silica-rich rocks photographed by the Spirit Rover near the Home Plate rock formation in Gusev Crater in 2008. Credit: NASA/JPL-Caltech

Evidence of water and a warmer, wetter climate abound on Mars, but did life ever put its stamp on the Red Planet? Rocks may hold the secret. Knobby protuberances of rock discovered by the Spirit Rover in 2008 near the rock outcrop Home Plate in Gusev Crater caught the attention of scientists back on Earth. They look like cauliflower or coral, but were these strange Martian rocks sculpted by microbes, wind or some other process?

Close-up of the lobed silica rocks on Mars photographed by the Spirit Rover on Sol 1157. Credit: NASA/ JPL-Caltech
Close-up of the lobed silica rocks on Mars photographed by the Spirit Rover’s microscopic imager on Sol 1157. It’s not known where wind (or other non-biological process) or micro-life had a hand in creating these shapes. Credit: NASA/ JPL-Caltech

When analyzed by Spirit’s mini-TES (Mini-Thermal Emission Spectrometer), they proved to be made of nearly pure silica (SiO2), a mineral that forms in hot, volcanic environments. Rainwater and snow seep into cracks in the ground and come in contact with rocks heated by magma from below. Heated to hundreds of degrees, the water becomes buoyant and rises back toward the surface, dissolving silica and other minerals along the way before depositing them around a vent or fumarole. Here on Earth, silica precipitated from water leaves a pale border around many Yellowstone National Park’hot springs.

The Grand Prismatic Spring at Yellowstone National Park. Could it be an analog to similar springs, hydrothermal vents and geysers that may once have existed in Gusev Crater on Mars? Credit: Jim Peaco, National Park Service
The Grand Prismatic Spring at Yellowstone National Park. Could it be an analog to similar springs, hydrothermal vents and geysers that may once have existed in Gusev Crater on Mars? Credit: Jim Peaco, National Park Service

Both at Yellowstone, the Taupo Volcanic Zone in New Zealand and in Iceland, heat-loving bacteria are intimately involved in creating curious bulbous and branching shapes in silica formations that strongly resemble the Martian cauliflower rocks. New research presented at the American Geophysical Union meeting last month by planetary geologist Steven Ruff and geology professor Jack Farmer, both of Arizona State University, explores the possibility that microbes might have been involved in fashioning the Martian rocks, too.


A sizzling visit to El Tatio’s geysers

The researchers ventured to the remote geyser fields of El Tatio in the Chilean Atacama Desert to study an environment that may have mimicked Gusev Crater billions of years ago when it bubbled with hydrothermal activity. One of the driest places on Earth, the Atacama’s average elevation is 13,000 feet (4 km), exposing it to considerably more UV light from the sun and extreme temperatures ranging from -13°F to 113°F (-10° to 45°C). Outside of parts of Antarctica, it’s about as close to Mars as you’ll find on Earth.

Ruff and Farmer studied silica deposits around hot springs and geysers in El Tatio and discovered forms they call “micro-digitate silica structures” similar in appearance and composition to those on Mars (Here’s a photo). The infrared spectra of the two were also a good match. They’re still analyzing the samples to determine if heat-loving microbes may have played a role in their formation, but hypothesize that the features are “micro-stromatolites” much like those found at Yellowstone and Taupo.

A stromatolite from Wyoming made of many layers of bacteria-cemented mineral grains. Credit: Bob King
A stromatolite from Wyoming made of many layers of bacteria-cemented mineral grains. Credit: Bob King

Stromatolites form when a sticky film of bacteria traps and cements mineral grains to create a thin layer. Other layers form atop that one until a laminar mound or column results. The most ancient stromatolites on Earth may be about 3.5 billion years old. If Ruff finds evidence of biology in the El Tatio formations in the punishing Atacama Desert environment, it puts us one step closer to considering the possibility that ancient bacteria may have been at work on Mars.

Scientists have found evidence that Home Plate at Gusev crater on Mars is composed of debris deposited from a hydrovolcanic explosion. The finding suggests that water may have been involved in driving an eruption that formed the deposits found on Home Plate. Spirit found the silica-rich rocks at lower right near
Scientists have found evidence that Home Plate at Gusev crater on Mars is composed of debris deposited from a hydrovolcanic explosion. The finding suggests that water may have been involved in driving an eruption that formed the deposits found on Home Plate. Spirit found the silica-rich rocks at lower right near Tyrone in 2008. Credit: NASA/JPL-Caltech

Silica forms may originate with biology or from non-biological processes like wind, water and other environmental factors. Short of going there and collecting samples, there’s no way to be certain if the cauliflower rocks are imprinted with the signature of past Martian life. But at least we know of a promising place to look during a future sample return mission to the Red Planet. Indeed, according to Ruff, the Columbia Hills inside Gusev Crater he short list of potential sites for the 2020 Mars rover.

More resources:

NASA Says “No Chance” Small Asteroid Will Hit Earth On March 5th

Artist's impression of a Near-Earth Asteroid passing by Earth. Credit: ESA

On October 6th, 2013, the Catalina Sky Survey discovered a small asteroid which was later designated as 2013 TX68. As part Apollo group this 30 meter (100 ft) rock is one of many Near-Earth Objects (NEOs) that periodically crosses Earth’s orbit and passes close to our planet. A few years ago, it did just that, flying by our planet at a safe distance of about 2 million km (1.3 million miles).

And according to NASA’s Center for NEO Studies (CNEOS) at the Jet Propulsion Laboratory, it will be passing us again in a few weeks time, specifically between March 2nd and 6th. Of course, asteroids pass Earth by on a regular basis, and there is very rarely any cause for alarm. However, there is some anxiety about 2013 TX68’s latest flyby, mainly because its distance could be subject to some serious variation.

Continue reading “NASA Says “No Chance” Small Asteroid Will Hit Earth On March 5th”