The Moon Greets the Planets in the November Dawn

A tri-planetary grouping from the morning of October 31st. Image credit and copyright: Joseph Brimacombe

So, did this past weekend’s shift back to Standard Time for most of North America throw you for a loop? Coming the day after Halloween, 2015 was the earliest we can now shift back off Daylight Saving Time. Sunday won’t fall on November 1st again until 2020. Expect evenings get darker sooner for northern hemisphere residents, while the planetary action remains in the dawn sky.

Though Mercury has exited the morning twilight stage, the planets Jupiter, Venus and Mars continue to put on a fine show, joined by the waning crescent Moon later this week. The action starts today on November 3rd, which finds +1.9 magnitude Mars passing just 0.68 degrees (40’, just over the apparent diameter of a Full Moon) from brilliant -3.9 magnitude Venus. Though the two nearest planets to the Earth appear to meet up in the dawn sky, Mars is actually 2.5 times more distant than Venus, which sits 74.4 million miles (124 million kilometres) from the Earth. Venus exhibits a 57% illuminated gibbous phase 21” across this week, versus Mars’ paltry 4.5” disc.

November 6th. Image credit: Starry Night Education Software
The lunar planetary lineup on the morning of November 6th… Image credit: Starry Night Education Software

Watch the scene shift, as the Moon joins the dance this weekend. The mornings of Friday, November 6th and Saturday, November 7th are key, as the Moon passes just two degrees from the Jupiter and Mars pair and just over one degree from Venus worldwide. Similar close pairings of the Moon and Venus adorn many national flags, possibly inspired by a close grouping of Venus and the Moon witnessed by skywatchers of yore.

November 7th
… and the view the next morning on November 7th. Image credit: Starry Night Education software

Saturday November 7th is also a fine time to try your hand at seeing Venus in the daytime, using the nearby crescent Moon as a guide. The Moon will be only four days from New, and the pair will be 46 degrees west of the Sun, an optimal situation as Venus just passed greatest western elongation 46.4 degrees west of the Sun on October 26th.

Nov 3
Mars meets Venus on November 3rd-4th… the center circle = 1 degree FoV. Image credit: Stellarium

Though Venus may seem like a difficult daytime object, it’s actually intrinsically brighter than the Moon per square arc second. Difficulty finding it stems from seeing it against a low contrast blue daytime sky, its small size, and lack of context and depth. The larger but dimmer Moon actually serves as a good anchor to complete this feat of visual athletics.

Venus from the morning of November 3rd. Image credit and copyright: Shahrin Ahmad
Venus from the morning of November 3rd. Image credit and copyright: Shahrin Ahmad

Looking for more? Comet C/2013 US10 Catalina will join the planetary lineup next lunation ‘round, hopefully shining at magnitude +5 as it glides past Venus and the Moon on December 7th. Karl Battams at the U.S. Naval Research Labs has confirmed that Comet US10 Catalina—which reaches perihelion this month on November 15th –should also briefly graze the field of view for SOHO’s LASCO C3 camera on November 7th.

There’s also a few notable lunar occultations this week. The Moon also occults the +5 magnitude star Chi Leonis for viewers around the Gulf of Mexico on November 4th, including a dramatic grazing event for Northern Florida. The Moon also occults the +3.5 magnitude star Omicron Leonis on Nov 4th for Alaska as well.

Image credit:
The occultation footprint for Chi Leonis. The solid lines indicate where the event will occur during darkness and twilight hours, while the dashed lines denote where the event transpires during the daytime. Image credit: Occult 4.2 software

See a bright star near the Venus this week? It’s none other than +3.6 magnitude Beta Virginis (Zavijava). The star passes 15’ from Venus on the morning of November 6th. Stick around ‘til 2069, and you can actually witness Venus occult Beta Virginis. Between Beta Virginis and Mars, Venus has the appearance this week of having the large pseudo-moon it never possessed. From Venus, our Moon would appear near magnitude +0.4 with a disk 6.4” this week, and range 12’ from the Earth.

Nov 7
The closeup view on the morning of November 7th along with a 5 degree Telrad FoV. image credit: Stellarium

Now for the wow factor. All of these disparate objects merely lie along our Earthbound line of sight this week. Traveling at the speed of light (186,282 miles or 299,792 kilometers a second), the Moon lies just over a second away. Venus, Mars and Jupiter are next, at 6, 18, and 49 light minutes out, respectively… and Beta Virginis? It lies 36 light years distant.

This pass of the Moon also sets us up for an occultation of Mars and a dramatic daytime occultation of Venus for North America during the next lunation…

More to come!

-Got pictures of the planetary grouping this week with the Moon? Be sure to send ’em in to Universe Today and our Flickr forum.

Artificial Object in Trans-lunar Orbit to Impact Earth on November 13

WT1190F observed on 9 October 2015 with the University of Hawaii 2.2 meter telescope on Mauna Kea, Hawaii. [Credits: B. Bolin, R. Jedicke, M. Micheli]

Get ready for a man-made fireball. A object discovered by the Catalina Sky Survey on Oct 3rd temporarily designated WT1190F is predicted to impact the Earth about 60 miles (100 km) off the southern coast of Sri Lanka around 6:20 Universal Time (12:20 a.m CST) on November 13.

The object orbits Earth with a period of about three weeks. Because it was also observed twice in 2013 by the same survey team, astronomers have the data they need to model its orbit and trajectory, and as far anyone can tell,  it’s likely man-made. 

S-IVB stage of Apollo 17. Credit: NASA
The first two stages of the Saturn V rockets used to send the seven Apollo missions to the Moon fell back to Earth, but the third stage (S-IVB), pictured here, propelled the spacecraft into a lunar trajectory. Could this be WT1190F? Credit: NASA

Solar radiation pressure, the physical “push” exerted by photons of sunlight, is proportional to a space object’s area-to-mass ratio. Small, lightweight objects get pushed around more easily than heavier, denser ones. Taking that factor into account in examining WT1190F’s motion over two years, the survey team has indirectly measured WT1190F’s density at about 10% that of water. This is too low to be a typical asteroid made of rock, but a good fit with a hollow shell, possibly the upper stage of a rocket.

Spectacular re-entry of the Jules Verne ATV-1 cargo ship over the Pacific Ocean on September 29, 2008. Still image definition TV camera operated by Jessie Carpenter and Bill Moede of NASA Ames Research Center
Spectacular re-entry of the Jules Verne ATV-1 cargo ship over the Pacific Ocean on September 29, 2008. Still image from a TV camera operated by Jessie Carpenter and Bill Moede of NASA Ames Research Center. A similar spectacle is expected on November 13 south of Sri Lanka.

It’s also quite small, at most only about six feet or a couple of meters in diameter. Most or all of it is likely to burn up upon re-entry, creating a spectacular show for anyone near the scene. During the next week and a half, the European Space Agency’s NEO (Near-Earth Object) Coordination Center is organizing observing campaigns to collect as much data as possible on the object, according to a posting on their website. The agency has two goals: to better understand satellite re-entries from high orbits and to use the opportunity to test our readiness for a possible future event involving a real asteroid. The latter happened once before when 2008 TC3 (a real asteroid) was spotted on October 6, 2008 and predicted to strike Earth the very next day. Incredibly, it did and peppered the Sudan with meteorites that were later recovered.

Assuming WT1190F is artificial, its trans-lunar orbit (orbit that carries it beyond the Moon) hints at several possibilities. Third stages from the Saturn-V rockets that launched the Apollo missions to the Moon are still out there. It could also be a stage from one of the old Russian or more recent Chinese lunar missions. Even rockets used to give interplanetary probes a final push are game.

J002E3 discovery images taken by Bill Yeung on September 3, 2002. J002E3 is in the circle. Images taken with Astroworks Centurion 18" f2.8 scope and Apogee AP9e CCD camera, 10 u second exposure. Auto detected with PinPoint Astrometry Engine by Bob Denny. North is up. Animation created by Bob Denny.
Near-Earth object J002E3 discovery images taken by Bill Yeung on September 3, 2002. The 16th magnitude object was tentatively identified as the Apollo 12 third stage rocket. Animation created by Bob Denny.

Case in point. What was thought initially to be a new asteroid discovered by amateur astronomer Bill Yeung on September 3, 2002 proved a much better fit with an Apollo 12 S-IVB (third) stage after University of Arizona astronomers found that spectra taken of the object strongly correlated with absorption features seen in a combination of man-made materials including white paint, black paint, and aluminum, all consistent with Saturn V rockets.

On April 14th 1970, the Apollo 13 Saturn IVB upper stage impacted the moon north of Mare Cognitum, at -2.55° latitude, -27.88° East longitude. The impact crater, which is roughly 30 meters in diameter, is clearly visible in LROC NAC image M109420042LE. Credit: NASA/Goddard/Arizona State University
On April 14th 1970, the Apollo 13 Saturn IVB upper stage impacted the moon north of Mare Cognitum. The impact crater, which is roughly 30 meters in diameter, is clearly visible in this photo taken by the Lunar Reconnaissance Orbiter. Credit: NASA/Goddard/Arizona State University

Apollo 13’s booster was the first deliberately crashed into the Moon, where it blew out it a crisp, 98-foot-wide (30-meter) crater. Why do such a crazy thing? What better way to test the seismometers left by the Apollo 12 crew? All subsequent boosters ended their lives similarly in the name of seismography. Third stages from earlier missions — Apollos 8, 10 and 11 —  entered orbit around the Sun, while Apollo 12, which is orbiting Earth, briefly masqueraded as asteroid J002E3.

The nominal impact point is located about 60 miles south of the island nation Sri Lanka. Credit: Bill Gray at Project Pluto
The nominal impact point is located about 60 miles south of the island nation Sri Lanka. Given the object’s small size and mass, it will likely be completely incinerated during re-entry. Credit: Bill Gray at Project Pluto

Bill Gray at Project Pluto has a page up about the November 13 impact of WT1190F with more information. Satellite and asteroid watchers are hoping to track the object before and right up until it burns up in the atmosphere. Currently, it’s extremely faint and moving eastward in Orion. You can click HERE for an ephemeris giving its position at the JPL Horizons site. How exciting if we could see whatever’s coming down before its demise on Friday the 13th!

Uranus’ “Frankenstein Moon” Miranda

Color composite of the Uranian satellite Miranda, taken by Voyager 2 on Jan. 24, 1986, from a distance of 147,000 km (91,000 mi). Credit: NASA/JPL

Ever since the Voyager space probes ventured into the outer Solar System, scientists and astronomers have come to understand a great deal of this region of space. In addition to the four massive gas giants that call the outer Solar System home, a great deal has been learned about the many moons that circle them. And thanks to photographs and data obtained, human beings as a whole have come to understand just how strange and awe-inspiring our Solar System really is.

This is especially true of Miranda, the smallest and innermost of Uranus’ large moons – and some would say, the oddest-looking! Like the other major Uranian moons, its orbits close to its planet’s equator, is perpendicular to the Solar System’s ecliptic, and therefore has an extreme seasonal cycle. Combined with one of the most extreme and varied topographies in the Solar System, this makes Miranda an understandable source of interest!

Discovery and Naming:

Miranda was discovered on February 16th, 1948, by Gerard Kuiper using the McDonald Observatory‘s Otto Struve Telescope at the University of Texas in Austin. Its motion around Uranus was confirmed on March 1st of the same year, making it the first satellite of Uranus to be discovered in almost a century (the previous ones being Ariel and Umbriel, which were both discovered in 1851 by William Lassell).

A montage of Uranus's moons. Image credit: NASA
A montage of Uranus’s moons. Image credit: NASA/JPL

Consistent with the names of the other moons, Kuiper decided to the name the object “Miranda” after the character in Shakespeare’s The Tempest. This continued the tradition set down by John Herschel, who suggested that all the large moons of Uranus – Ariel, Umbriel, Titania and Oberon – be named after characters from either The Tempest or Alexander Pope’s The Rape of the Lock.

Size, Mass and Orbit:

With a mean radius of 235.8 ± 0.7 km and a mass of 6.59 ± 0.75 ×1019 kg, Miranda is 0.03697 Earths times the size of Earth and roughly 0.000011 as massive. Its modest size also makes it one of the smallest object in the Solar System to have achieved hydrostatic equilibrium, with only Saturn’s moon of Mimas being smaller.

Of Uranus’ five larger moons, Miranda is the closest, orbiting at an average distance (semi-major axis) of 129,390 km. It has a very minor eccentricity of 0.0013 and an inclination of 4.232° to Uranus’ equator. This is unusually high for a body so close to its parent planet – roughly ten times that of the other Uranian satellites.

Since there are no mean-motion resonances to explain this, it has been hypothesized that the moons occasionally pass through secondary resonances. At some point, this would have led Miranda into being locked in a temporary 3:1 resonance with Umbriel, and perhaps a 5:3 resonance with Ariel as well. This resonance would have altered the moon’s inclination, and also led to tidal heating in its interior (see below).

Size comparison of all the Solar Systems moons. Credit: The Planetary Society
Size comparison of all the Solar Systems moons. Credit: NASA/The Planetary Society

With an average orbital speed of 6.66 km/s, Miranda takes 1.4 days to complete a single orbit of Uranus. Its orbital period (also 34 hours) is synchronous with its rotational period, meaning that it is tidally-locked with Uranus and maintains one face towards it at all times. Given that it orbits around Uranus’ equator, which means its orbit is perpendicular to the Sun’s ecliptic, Uranus goes through an extreme seasonal cycle where the northern and southern hemispheres experience 42 years of lightness and darkness at a time.

Composition and Surface Structure:

Miranda’s mean density (1.2 g/cm3) makes it the least dense of the Uranian moons. It also suggests that Miranda is largely composed of water ice (at least 60%), with the remainder likely consisting of silicate rock and organic compounds in the interior. The surface of Miranda is also the most diverse and extreme of all moons in the Solar System, with features that appear to be jumbled together in a haphazard fashion.

This consists of huge fault canyons as deep as 20 km (12 mi), terraced layers, and the juxtaposition of old and young surfaces seemingly at random. This patchwork of broken terrain indicates that intense geological activity took place in Miranda’s past, which is believed to have been driven by tidal heating during the time when it was in orbital resonance with Umbriel (and perhaps Ariel).

This resonance would have increased orbital eccentricity, and along with varying tidal forces from Uranus, would have caused warming in Miranda’s interior and led to resurfacing. In addition, the incomplete differentiation of the moon, whereby rock and ice were distributed more uniformly, could have led to an upwelling of lighter material in some areas, thus leading to young and older regions existing side by side.

Miranda
Uranus’ moon Miranda, imaged by the Voyager 2 space probe on January 24th, 1986. Credit: NASA/JPL-Caltech

Another theory is that Miranda was shattered by a massive impact, the fragments of which reassembled to produce a fractured core. In this scenario – which some scientists believe could have happened as many as five times – the denser fragments would have sunk deep into the interior, with water ice and volatiles setting on top of them and mirroring their fractured shape.

Overall, scientists recognize five types of geological features on Miranda, which includes craters, coronae (large grooved features), regiones (geological regions), rupes (scarps or canyons) and sulci (parallel grooves).

Miranda’s cratered regions are differentiated between younger, lightly-cratered regions and older, more-heavily cratered ones. The lightly cratered regions include ridges and valleys, which are separated from the more heavily-cratered areas by sharp boundaries of mismatched features. The largest known craters are about 30 km (20 mi) in diameter, with others lying in the range of 5 to 10 km (3 to 6 mi).

Miranda has the largest known cliff in the Solar System, which is known as Verona Rupes (named after the setting of Shakespeare’s Romeo and Juliet). This rupes has a drop-off of over 5 km (3.1 mi) – making it 12 times as deep as the Grand Canyon. Scientists suspect that Miranda’s ridges and canyons represent extensional tilt blocks – a tectonic event where tectonic plates stretch apart, forming patterns of jagged terrain with steep drops.

. Credit: NASA/JPL
Image taken by the Voyager 2 probe during its close approach on January 24th, 1986, with a resolution of about 700 m (2300 ft). Credit: NASA/JPL

The most well known coronae exist in the southern hemisphere, with three giant ‘racetrack’-like grooved structures that measure at least 200 km (120 mi) wide and up to 20 km (12 mi) deep. These features, named Arden, Elsinore and Inverness – all locations in Shakespeare’s plays – may have formed via extensional processes at the tops of diapirs (aka. upwellings of warm ice).

Other features may be due to cryovolcanic eruptions of icy magma, which would have been driven by tidal flexing and heating in the past. With an albedo of 0.32, Miranda’s surface is nearly as bright as that of Ariel, the brightest of the larger Uranian moons. It’s slightly darker appearance is likely due to the presence of carbonaceous material within its surface ice.

Exploration:

Miranda’s apparent magnitude makes it invisible to many amateur telescopes. As a result, virtually all known information regarding its geology and geography was obtained during the only flyby of the Uranian system, which was made by Voyager 2 in 1986. During the flyby, Miranda’s southern hemisphere pointed towards the Sun (while the northern was shrouded in darkness), so only the southern hemisphere could be studied.

At this time, no future missions have been planned or are under consideration. But given Miranda’s “Frankenstein”-like appearance and the mysteries that still surround its history and geology, any future missions to study Uranus and its system of moons would be well-advised.

We have many interesting articles on Miranda and Uranus’ moons here at Universe Today. Here’s one about about why they call it the “Frankenstein Moon“, and one about Voyager 2‘s historic flyby. And here’s one that answers the question How Many Moons Does Uranus Have?

For more information, check out NASA’s Solar System Exploration page on Miranda.

Sources:

Uranus’ “Sprightly” Moon Ariel

Mosaic of the four highest-resolution images of Ariel taken by the Voyager 2 space probe during its 1986 flyby of Uranus. Credit: NASA/JPL

The outer Solar System has enough mysteries and potential discoveries to keep scientists busy for decades. Case in point, Uranus and it’s system of moons. Since the beginning of the Space Age, only one space probe has ever passed by this planet and its system of moons. And yet, that which has been gleaned from this one mission, and over a century and a half of Earth- (and space-) based observation, has been enough to pique the interest of many generations of scientists.

For instance, just about all detailed knowledge of Uranus’ 27 known moons – including the “sprightly” moon Ariel – has been derived from information obtained by the Voyager 2 probe. Nevertheless, this single flyby revealed that Ariel is composed of equal parts ice and rock, a cratered and geologically active surface, and a seasonal cycle that is both extreme and very unusual (at least by our standards!)

Discovery and Naming:

Ariel was discovered on October 24th, 1851, by English astronomer William Lassel, who also discovered the larger moon of Umbriel on the same day. While William Herschel, who discovered Uranus’ two largest moons of Oberon and Titania in 1787, claimed to have observed four other moons in Uranus’ orbit, those claims have since been concluded to be erroneous.

A montage of Uranus's moons. Image credit: NASA
A montage of Uranus’s major moons. Image credit: NASA

As with all of Uranus’ moons, Ariel was named after a character from Alexander Pope’s The Rape of the Lock and Shakespeare’s The Tempest. In this case, Ariel refers to a spirit of the air who initiates the great storm in The Tempest and a sylph who protects the female protagonist in The Rape of the Lock. The names of all four then-known satellites of Uranus were suggested by John Herschel in 1852 at the request of Lassell.

Size, Mass and Orbit:

With a mean radius of 578.9 ± 0.6 km and a mass of 1.353 ± 0.120 × 1021 kg, Ariel is equivalent in size to 0.0908 Earths and 0.000226 times as massive. Ariel’s orbit of Uranus is almost circular, with an average distance (semi-major axis) of 191,020 km – making it the second closest of Uranus’ five major moons (behind Miranda). It has a very small orbital eccentricity (0.0012) and is inclined very little relative to Uranus’ equator (0.260°).

With an average orbital velocity of 5.51 km/s, Ariel takes 2.52 days to complete a single orbit of Uranus. Like most moons in the outer Solar System, Ariel’s rotation is synchronous with its orbit. This means that the moon is tidally locked with Uranus, with one face constantly pointed towards the planet.

Ariel orbits and rotates within Uranus’ equatorial plane, which means it rotates perpendicular to the Sun. This means that its northern and southern hemispheres face either directly towards the Sun or away from it at the solstices, which results in an extreme seasonal cycle of permanent day or night for a period of 42 years.

Size comparison between Earth, the Moon, and Ariel. Credit: NASA/JPL/USGS/Tom Reding
Size comparison between Earth, the Moon, and Ariel. Credit: NASA/JPL/USGS/Tom Reding

Ariel’s orbit lies completely inside the Uranian magnetosphere, which means that its trailing hemisphere is regularly struck by magnetospheric plasma co-rotating with the planet. This bombardment is believed to be the cause of the darkening of the trailing hemispheres (see below), which has been observed for all Uranian moons (with the exception of Oberon).

Currently Ariel is not involved in any orbital resonance with other Uranian satellites. In the past, however, it may have been in a 5:3 resonance with Miranda, which could have been partially responsible for the heating of that moon, and 4:1 resonance with Titania, from which it later escaped.

Composition and Surface Features:

Ariel is the fourth largest of Uranus’ moons, but is believed to be the third most-massive. Its average density of 1.66 g/cm3 indicates that it is roughly composed of equal parts water ice and rock/carbonaceous material, including heavy organic compounds. Based on spectrographic analysis of the surface, the leading hemisphere of Ariel has been revealed to be richer in water ice than its trailing hemisphere.

The cause of this is currently unknown, but it may be related to bombardment by charged particles from Uranus’s magnetosphere, which is stronger on the trailing hemisphere. The interaction of energetic particles and water ice causes sublimation and the decomposition of methane trapped in the ice (as clathrate hydrate), darkening the methanogenic and other organic molecules and leaving behind a dark, carbon-rich residue (aka. tholins).

The highest-resolution Voyager 2 color image of Ariel. Canyons with floors covered by smooth plains are visible at lower right. The bright crater Laica is at lower left. Credit: NASA/JPL
The highest-resolution Voyager 2 color image of Ariel, showing canyons with floors covered by smooth plains (lower right) and the bright Laica crater (lower left). Credit: NASA/JPL

Based on its size, estimates of its ice/rock distribution, and the possibility of salt or ammonia in its interior, Ariel’s interior is thought to be differentiated between a rocky core and an icy mantle. If true, the radius of the core would account for 64% of the moon’s radius (372 km) and 52% of its mass. And while the presence of water ice and ammonia could mean Ariel harbors an interior ocean at it’s core-mantle boundary, the existence of such an ocean is considered unlikely.

Infrared spectroscopy has also identified concentrations of carbon dioxide (CO²) on Ariel’s surface, particularly on its trailing hemisphere. In fact, Ariel shows the highest concentrations of CO² on of any Uranian satellite, and was the first moon to have this compound discovered on its surface.

Though the precise reason for this is unknown, it is possible that it is produced from carbonates or organic material that have been exposed to Uranus’ magnetosphere or solar ultraviolet radiation – due to the asymmetry between the leading and trailing hemispheres. Another explanation is outgassing, where primordial CO² trapped in Ariel’s interior ice escaped thanks to past geological activity.

The observed surface of Ariel can be divided into three terrain types: cratered terrain, ridged terrain and plains. Other features include chasmata (canyons), fault scarps (cliffs), dorsa (ridges) and graben (troughs or trenches). Impact craters are the most common feature on Ariel, particularly in the south pole, which is the moon’s oldest and most geographically extensive region.

False-color map of Ariel. The prominent noncircular crater below and left of center is Yangoor. Part of it was erased during formation of ridged terrain via extensional tectonics. Credit: NASA/JPL/USGS
False-color map of Ariel, showing the prominent Yangoor crater (left of center) and patches of ridged terrain (far left). Credit: USGS

Compared to the other moons of Uranus, Ariel appears to be fairly evenly-cratered. The surface density of the craters, which is significantly lower than those of Oberon and Umbriel, suggest that they do not date to the early history of the Solar System. This means that Ariel must have been completely resurfaced at some point in its history, most likely in the past when the planet had a more eccentric orbit and was therefore more geologically active.

The largest crater observed on Ariel, Yangoor, is only 78 km across, and shows signs of subsequent deformation. All large craters on Ariel have flat floors and central peaks, and few are surrounded by bright ejecta deposits. Many craters are polygonal, indicating that their appearance was influenced by the crust’s preexisting structure. In the cratered plains there are a few large (about 100 km in diameter) light patches that may be degraded impact craters.

The cratered terrain is intersected by a network of scarps, canyons and narrow ridges, most of which occur in Ariel’s mid-southern latitudes. Known as chasmata, these canyons were probably graben that formed due to extensional faulting triggered by global tension stresses – which in turn are believed to have been caused by water and/or liquid ammonia freezing in the interior.

These chasmata are typically 15–50 km wide and are mainly oriented in an east- or northeasterly direction. The widest graben have grooves running along the crests of their convex floors (known as valles). The longest canyon is Kachina Chasma, which is over 620 km long.

was taken Jan. 24, 1986, from a distance of 130,000 km (80,000 mi). The complexity of Ariel's surface indicates that a variety of geologic processes have occurred. Credit: NASA/JPL
Image of Ariel, taken on Jan. 24, 1986, from a distance of 130,000 km (80,000 mi) showing the complexity of Ariel’s surface. Credit: NASA/JPL

The ridged terrain on Ariel, which is the second most-common type, consists of bands of ridges and troughs hundreds of kilometers long. These ridges are found bordering cratered terrain and cutting it into polygons. Within each band (25-70 km wide) individual ridges and troughs have been observed that are up to 200 km long and 10-35 km apart. Here too, these features are believed to be a modified form of graben or the result of geological stresses.

The youngest type of terrain observed on Ariel are its plains, which consists of relatively low-lying smooth areas. Due to the varying levels of cratering found in these areas, the plains are believed to have formed over a long period of time. They  are found on the floors of canyons and in a few irregular depressions in the middle of the cratered terrain.

The most likely origin for the plains is through cryovolcanism, since their geometry resembles that of shield volcanoes on Earth, and their topographic margins suggests the eruption of viscous liquid – possibly liquid ammonia. The canyons must therefore have formed at a time when endogenic resurfacing was still taking place on Ariel.

Uranus and Ariel
Ariel’s transit of Uranus, which was captured by the Hubble Space Telescope on July 26th, 2008. Credit: NASA, ESA, L. Sromovsky (University of Wisconsin, Madison), H. Hammel (Space Science Institute), and K. Rages (SETI)

Ariel is the most reflective of Uranus’s moons, with a Bond albedo of about 23%. The surface of Ariel is generally neutral in color, but there appears to be an asymmetry where the trailing hemisphere is slightly redder. The cause of this, is believed to be interaction between Ariel’s trailing hemisphere and radiation from Uranus’ magnetosphere and Solar ultraviolet radiation, which converts organic compounds in the ice into tholins.

Like all of Uranus’ major moons, Ariel is thought to have formed in the Uranunian accretion disc; which existed around Uranus for some time after its formation, or resulted from a large impact suffered by Uranus early in its history.

Exploration:

Due to its proximity to Uranus’ glare, Ariel is difficult to view by amateur astronomers. However, since the 19th century, Ariel has been observed many times by ground-based on space-based instruments. For example, on July 26th, 2006, the Hubble Space Telescope captured a rare transit made by Ariel of Uranus, which cast a shadow that could be seen on the Uranian cloud tops. Another transit, in 2008, was recorded by the European Southern Observatory.

It was not until the 1980s that images were obtained by the first and only orbiter to ever pass through the Uranus’ system. This was the Voyager 2 space probe, which photographed the moon during its January 1986 flyby.  The probe’s closest approach was at a distance of 127,000 km (79,000 mi) – significantly less than the distances to all other Uranian moons except Miranda.

Voyager 2. Credit: NASA
Artist’s impression of the Voyager 2 space probe. Credit: NASA

The images acquired covered only about 40% of the surface, but only 35% was captured with the quality required for geological mapping and crater counting. This was partly due to the fact that the flyby coincided with the southern summer solstice, where the southern hemisphere was pointed towards the Sun and the northern hemisphere was completely concealed by darkness.

No missions have taken place to study Uranus’ system of moons since and none are currently planned. However, the possibility of sending the Cassini spacecraft to Uranus was evaluated during its mission extension planning phase in April of 2008. It was determined that it would take about twenty years for Cassini to get to the Uranian system after departing Saturn. However, this proposal and the ultimate fate of the mission remain undecided at this time.

All in all, Uranus’ moon Ariel is in good company. Like it’s fellow Uranians, its axial tilt is almost the exact same as Uranus’, it is composed of almost equal parts ice and rock, it is geologically active, and its orbit leads to an extreme seasonal cycle. However, Ariel stands alone when its to its brightness and its youthful surface. Unfortunately, this bright and youthful appearance has not made it an easier to observe.

Alas, as with all Uranian moons, exploration of this moon is still in its infancy and there is much we do not know about it. One can only hope another deep-space mission, like a modified Cassini flyby, takes place in the coming years and finishes the job started by Voyager 2!

We have many interesting articles on Ariel and Uranus’ moons here at Universe Today. Here’s one about Ariel’s 2006 transit of Uranus, its 2008 transit, and one which answers the all-important question How Many Moons Does Uranus Have?

For more information, check out NASA’s Solar System Exploration page on Ariel, and The Planetary Society’s Voyager 2 Ariel image catalog.

Sources:

 

Tonight’s the Night! Maps to Help You Spot Asteroid TB145

Map showing TB145's position for an observer in the north central U.S. at 15-minute intervals starting at 5:00 UT. Subtract 4 hours from UT for EDT, 5 hours for CDT, 6 for MDT and 7 for PDT. Stars are shown to magnitude +12 and north is up. Credit: Chris Marriott's SkyMap


This simulation by Tom Ruen shows the trajectory of 2015 TB145 across the sky, showing tracer spheres spaced at one hour intervals along its path.

Halloween fireballs, a Supermoon and now a near-Earth asteroid flyby. What a week! While 2015 TB145 won’t be visible in binoculars because of its relative faintness and glare from a nearby waning gibbous Moon, you should be able to see it in an 8-inch telescope or larger telescope without too much difficulty.

Determined amateurs might even catch it in instruments as small as 4.5 inches  especially tomorrow morning when the fleeing space mountain will brighten to around magnitude +10.

For western hemisphere observers, TB145 begins the evening in Orion’s Shield not far below the Hyades Cluster looking like a magnitude +11.5 star crawling northeast through the star field. By dawn on Halloween, it will top out around magnitude +10.2 as it zips through Taurus and Auriga traveling around 3-5° per hour depending on the time you look. For most of the night, TB145 will move swiftly enough to notice its motion in real time, resembling an Earth-orbiting satellite. Closest approach occurs around 17:00 UT (noon CDT) when it pass along bottom of the Big Dipper Bowl at around 10° hour. Amazing!

Map showing the asteroid's progress across the horns of Taurus from 9-10:45 UT October 31st. It passes about 1.5 northwest of the Crab Nebula around 5:30 UT. Credit: Chris Marriott's SkyMap
Map showing the asteroid’s progress across the horns of Taurus from 9-10:45 UT (4 – 5:45 a.m.) October 31st. It passes about 1° northwest of the Crab Nebula around 10:30 UT. Credit: Chris Marriott’s SkyMap

My hope is that these maps will help you spot and follow this zippy, aircraft carrier-sized boulder. Three of the four maps cover most of the time between 5:00 and 11:45 UT, equivalent to midnight CDT tonight to 6:45 a.m. tomorrow morning. I used the very latest orbital elements and hand plotted the positions (a tedious exercise but worth it!) at 15-minute intervals. For convenience, when you print them out, I’d suggest using a straight edge to draw a line connecting the position dots.

As we discussed in the previous Universe Today storyparallax comes into play when viewing any nearby Solar System object. Three of the maps show the asteroid’s position from the North Central U.S. One depicts the view from the South Central U.S. from 11-11:45 UT. Parallax is minor early on from midnight to 2 or 3 a.m. but becomes more significant near closest approach. This is based on comparisons I made between latitudes 47°-32° North.

By this time, TB145 will be around magnitude +10.4 and easier to see than at the start our run. The map covers the time from 11-11:4 5 UT (6 - 6:45 a.m. CDT). Credit: Chris Marriott's SkyMap
By this time, TB145 will be around magnitude +10.4 and easier to see than at the start our run. The map covers the time from 11-11:45 UT (6 – 6:45 a.m. CDT). Credit: Chris Marriott’s SkyMap

I apologize for the limited number of maps in this article but hope these and the do-it-yourself approach described in the earlier article will be enough to set you on TB145’s trail.

The view from the southern U.S. (about 32 latitude). Compared to the northern U.S., the asteroid's path lies about 5 arc minutes to the north. Credit: Chris Marriott's SkyMap
The view from the southern U.S. (about 32° latitude) from 11-11:45 UT. Compared to the northern U.S., the asteroid’s path lies about 5 arc minutes further to the north. Credit: Chris Marriott’s SkyMap

As always when trying to spot asteroids on the move, pick a time and camp out at that spot with your telescope five minutes before the expected arrival time. Take the time to casually memorize the star patterns, so when the interloper arrives, you’ll pick it out straightaway. Again, depending on your location both east-west and north-south of the paths charted, TB145 may arrive a couple minutes earlier or later, but once you spot it, hold on tight. You’ll be going on a most exciting ride!

Map showing TB145's approximate path starting at 4 hours UT on Oct. 31 (11 p.m. CDT Oct. 30). This view faces east. Tick marks show its hourly position. This map provides context for the detailed maps above. Credit: Chris Marriott's SkyMap
Map showing TB145’s approximate path starting at 4 hours UT on Oct. 31 (11 p.m. CDT Oct. 30). This view faces east. Tick marks show its hourly position. This map provides context for the detailed maps above. Credit: Chris Marriott’s SkyMap

We’d love to hear from you whether or not you were successful seeing it. If the weather’s uncooperative or you don’t have a telescope,  Gianluca Masi’s got your back. He’ll webcast the flyby live on his Virtual Telescope site starting at 7 p.m. CDT (0:00 UT) tonight Oct. 30-31.


Now let’s see the flyby of Earth from the asteroid’s point of view, also by Tom Ruen. Enjoy!

Images from Enceladus ‘Plume Dive’ Courtesy of Cassini

Image credit:

Oh, to hitch a ride aboard NASA’s Cassini spacecraft this week. The Saturn orbiting sentinel recently completed an amazing series of passes near the enigmatic ice-covered moon Enceladus, including a daredevil dive only 49 km (31 miles) above the southern pole of the moon and through an ice geyser. Images of the dramatic flyby were released by the Cassini team earlier this morning, revealing the moon in stunning detail. 

Image credit
Enceladus vs the rings of Saturn. Image credit: NASA/JPL Caltech/Space Science Institute

“Cassini’s stunning images are providing us a quick look at Enceladus from this ultra-close flyby, but some of the most exciting science is yet to come,” says NASA mission project scientist Linda Spilker in today’s NASA/JPL press release.

Launched in 1997 from Cape Canaveral Florida in a dramatic night shot, Cassini arrived at the Saturnian system in 2004, and has delivered on some amazing planetary science ever since.

Discovered in 1789 by William Herschel, we got our very first views of Enceladus via the Voyager 1 spacecraft at 202,000 kilometers distant in 1980. Cassini has flown by the moon 21 times over the past decade, and ice geysers were seen sprouting from the surface of the moon by Cassini on subsequent flybys. one final flyby of Enceladus is planned for this coming December.

Image credit:
Ice geysers ahead, in this Oct 28th view from Cassini. Image credit: NASA/JPL Caltech/Space Science Institute

 

Mission planners are getting more daring with the spacecraft as its mission nears completion in 2017. The idea of reaching out and ‘tasting’ an icy plume emanating from Enceladus has been an enticing one,  though a fast-moving good-sized ice pellet could spell disaster for the spacecraft.

NASA successfully established contact with the spacecraft on Wednesday night October 28th after the closest approach for the flyby at 11:22 AM EDT/ 15:22 UT (Universal Time) earlier in the day. Cassini is reported to be in good health, and we should see further images along with science data returns in the weeks to come.

Image credit:
A closeup view of the icy terrain of the southern polar region of Enceladus from this weeks’ flyby. Image credit: NASA/JPL Caltech/Space Science Institute

A second, more distant flyby of Enceladus was completed by Cassini earlier this month as it passed 1,142 miles (1,839 kilometers) from the northern pole of Enceladus on October 14th, 2015 on its E-20 flyby.

But beyond just pretty post-cards from the outer solar system, Cassini’s successive passes by the mysterious moon will characterize just what might be occurring far down below.

Why Enceladus? Well, ever since ice geysers were spotted gushing from the fractured surface of the moon, it’s been on NASA’s short list of possible abodes for life in the solar system. Other contenders include Mars, Jupiter’s moon Europa, and Saturn’s giant moon, Titan. If the story of life on Earth is any indication, you need a place where an abundant level of chemical processes are occurring, and a subsurface ocean under the crust of Enceladus heated by tidal flexing may just fit the bill.

We’ll be adding further images and info to this post as more data comes in over the weekend, plus Cassini mission highlights, a look at the mission and final objectives and the last days of Cassini and more…

Stay tuned!

The end of Cassini in 2017 as it burns up in the atmosphere of Saturn will be a bittersweet affair, as our outer solar system eyes around the ringed planet fall silent. Cassini represents the most distant spacecraft inserted into orbit around a planet, and ESA’s Huygens lander on Titan marked the most remote landing on another world as well. Will we one day see a Titan Blimp or Ocean Explorer, or perhaps a dedicated life-finding mission to Enceladus?  Final mission objectives for NASA’s Cassini spacecraft include a final flyby of Saturn’s large moon Titan, which will set the course for its final death plunge into the atmosphere of Saturn on September 15th, 2017.

A high-resolution capture of Enceladus released this weekend by the Cassini team. The spacecraft was about 60,000 miles (96,000 kilometers) out when this image was taken. You can see the stark contract of the moon's fractured cantlope terrain, versus craters in the opposite hemisphere imaged criedt: NASA/JPL-CalTech/Space Science Institute
A high-resolution capture of Enceladus released this weekend by the Cassini team. The spacecraft was about 60,000 miles (96,000 kilometers) out when this image was taken. You can see the stark contract of the moon’s fractured cantaloupe terrain, versus craters in the opposite hemisphere imaged. Credit: NASA/JPL-CalTech/Space Science Institute

Want to see Enceladus for yourself? The moon orbits Saturn once every 1.4 days, reaching a maximum elongation of 13″ from the ring tips of Saturn and a maximum brightness of magnitude +11.7. Enceladus is one of six major moons of Saturn visible in a backyard telescope, and one of 62 moons of the ring planet known overall. The other five moons within reach of an amateur telescope are: Titan, Mimas, Dione, Rhea, and Tethys, and the fainter moon Hyperion shining at magnitude +15 might just be within reach of skill observers with large light bucket instruments.

Enjoy the amazing views of Enceladus, courtesy of Cassini!

Saturn’s Moon Dione

Ringside With Dione
Saturn's moon Dione, with Saturn's rings visible in the background. Credit: NASA/JPL

Thanks to the Cassini mission, a great deal has been learned about Saturn’s system of moons (aka. the Cronian system) in the past decade. Thanks to the presence of an orbiter in the system, astronomers and space exploration enthusiasts have been treated to a seemingly endless stream of images and data, which in turn has enabled us to learn many interesting things about these moons’ appearances, surface features, composition, and history of formation.

This is certainly true of Saturn’s bright moon of Dione. In addition to being the 15th largest moon in the Solar System, and more massive than all known moons smaller than itself combined, it has much in common with other Cronian satellites – like Tethys, Iapetus and Rhea. This includes being mainly composed of ice, having a synchronous rotation with Saturn, and an unusual coloration between its leading and trailing hemispheres.

Discovery and Naming:

Dione was first observed by Italian astronomer Giovanni Domenico Cassini on in 1684 using a large aerial telescope he set up on the grounds of the Paris Observatory. Along with the moons of Iapetus, Rhea and Tethys – which he had discovered in 1671, 1672 and 1684, respectively – he named these moons Sidera Lodoicea (“Stars of Louis”, after his patron, King Louis XIV of France).

These names, however, did not catch on outside of France. By the end of the 17th century, astronomers instead fell into the habit of naming Saturn’s then-known moons as Titan and Saturn I through V, in order of their observed distance from the planet. Being the second most-distant (behind Tethys) Dione came to be known as Saturn II for over a century.

An engraving of the Paris Observatory during Cassini's time. Credit: Public Domain
An engraving of the Paris Observatory during Cassini’s time. Credit: Public Domain

The modern names were suggested in 1847 by John Herschel (the son of famed astronomer William Herschel), who suggested all the moons of Saturn be named after Titans – the sons and daughters of Cronos in the Greek mythology (the equivalent of the Roman Saturn).

In his 1847 publication, Results of Astronomical Observations made at the Cape of Good Hope, he suggested the name Dione, an ancient oracular Titaness who was the wife of Zeus and the mother of Aphrodite. Dione is featured in Homer’s The Iliad, and geological features – such as craters and cliffs – take their names from people and places in Virgil’s Aeneid.

Size, Mass and Orbit:

With a mean radius of 561.4 ± 0.4 km and a mass of about 1.0954 × 1021 kg, Dione is equivalent in size to 0.088 Earths and 0.000328 times as massive. It orbits Saturn at an average distance (semi-major axis) of 377,396 km, with a minor eccentricity of 0.0022 – ranging from 376,566 km at periapsis and 378,226 km at apoapsis.

Dione’s semi-major axis is about 2% less than that of the Moon. However, reflecting Saturn’s greater mass, Dione’s orbital period is one tenth that of the Moon (2.736915 days compared to 28). Dione is currently in a 1:2 mean-motion orbital resonance with Saturn’s moon Enceladus, completing one orbit of Saturn for every two orbits completed by Enceladus.

Size comparison between Earth, the Moon, and Saturn's moon Dione. Credit: NASA/JPL/Space Science Institute
Size comparison between Earth, the Moon, and Saturn’s moon Dione. Credit: NASA/JPL/Space Science Institute

This resonance maintains Enceladus’s orbital eccentricity (0.0047) and provides tidal flexing that powers Enceladus’ extensive geological activity (which in turn powers its cryovolcanic jets). Dione has two co-orbital (aka. trojan) moons: Helene and Polydeuces. They are located within Dione’s Lagrangian points, 60 degrees ahead of and behind it, respectively.

Composition and Surface Features:

With a mean density of 1.478 ± 0.003 g/cm³, Dione is composed mainly of water, with a small remainder likely consisting of a silicate rock core. Though somewhat smaller and denser than Rhea, Dione is otherwise very similar in terms of its varied terrain, albedo features, and the different between its leading and trailing hemisphere.

Overall, scientists recognize five classes of geological features on Dione – Chasmata (chasms), dorsa (ridges), fossae (long, narrow depressions), craters, and catenae (crater chains). Craters are the most common feature, as with many Cronian moons, and can be distinguished in terms of heavily cratered terrain, moderately cratered plains, and lightly cratered plains.

The heavily cratered terrain has numerous craters greater than 100 km (62 mi) in diameter, whereas the plains areas tend to have craters less than 30 km (19 mi) in diameter (with some areas being more heavily cratered than others).

This global map of Dione, a moon of Saturn, shows dark red in the trailing hemisphere, which is due to radiation and charged particles from Saturn's intense magnetic environment. Credit: NASA/JPL/Space Science Institute
Global map of Dione, showing dark red in the trailing hemisphere (left), which is due to radiation and charged particles from Saturn’s. Credit: NASA/JPL/Space Science Institute

Much of the heavily cratered terrain is located on the trailing hemisphere, with the less cratered plains areas present on the leading hemisphere. This is the opposite of what many scientists expected, and suggests that during the period of Heavy Bombardment, Dione was tidally locked to Saturn in the opposite orientation.

Because Dione is relatively small, it is theorized that an impact large enough to cause a 35 km crater would have been sufficient to spin the satellite in the opposite direction. Because there are many craters larger than 35 km (22 mi), Dione could have been repeatedly spun during its early history. The pattern of cratering since then and the leading hemisphere’s bright albedo suggests that Dione has remained in its current orientation for several billion years.

Dione is also known for its differently colored leading and trailing hemispheres, which are similar to Tethys and Rhea. Whereas its leading hemisphere is bright, its trailing hemisphere is darker and redder in appearance. This is due to the leading hemisphere picking up material from Saturn’s E-Ring, which is fed by Enceladus’ cryovolcanic emissions.

Meanwhile, the trailing hemisphere interacts with radiation from Saturn’s magnetosphere, which causes organic elements contained within its surface ice to become dark and redder in appearance.

Dione's trailing hemisphere, showing the patches of "whispy terrain". Credit: NASA/JPL
Dione’s trailing hemisphere, pictured by the Cassini orbiter, which shows its patches of “wispy terrain”. Credit: NASA/JPL

Another prominent feature is Dione’s “wispy terrain“, which covers its trailing hemisphere and is composed entirely of high albedo material that is also thin enough as to not obscure the surface features beneath. The origin of these features are unknown, but an earlier hypothesis suggested that that Dione was geologically active shortly after its formation, a process which has since ceased.

During this time of geological activity, endogenic resurfacing could have pushed material from the interior to the surface, with streaks forming from eruptions along cracks that fell back to the surface as snow or ash. Later, after the internal activity and resurfacing ceased, cratering continued primarily on the leading hemisphere and wiped out the streak patterns there.

This hypothesis was proven wrong by the Cassini probe flyby of December 13th, 2004, which produced close-up images. These revealed that the ‘wisps’ were, in fact, not ice deposits at all, but rather bright ice cliffs created by tectonic fractures (chasmata). During this flyby, Cassini also captured oblique images of the cliffs which showed that some of them are several hundred meters high.

Atmosphere:

Dione also has a very thin atmosphere of oxygen ions (O+²), which was first detected by the Cassini space probe in 2010. This atmosphere is so thin that scientists prefer to call it an exosphere rather than a tenuous atmosphere. The density of molecular oxygen ions determined from the Cassini plasma spectrometer data ranges from 0.01 to 0.09 per cm3 .

Crescent Dione from Cassini, October 11, 2005. The crater near the limb at top is Alcander, with larger crater Prytanis adjacent to its left. At lower right, several of the Palatine Chasmata fractures are visible, one of which can be seen bisecting the smaller craters Euryalus (right) and Nisus. NASA / Jet Propulsion Laboratory / Space Science Institute
Dione viewed by Cassini on October 11th, 2005, showing the Alcander crater (top) and the larger Prytanis crater to its left. Credit: NASA/JPL/SSI

Unfortunately, the prevalence of water molecules in the background (from Saturn’s E-Ring) obscured detection of water ice on the surface, so the source of oxygen remains unknown. However, photolysis is a possible cause (similar to what happens on Europa), where charged particles from Saturn’s radiation belt interact with water ice on the surface to create hydrogen and oxygen, the hydrogen being lost to space and the oxygen retained.

Exploration:

Dione was first imaged by the Voyager 1 and 2 space probes as they passed by Saturn on their way to the Outer Solar System in 1980 and 1981, respectively. Since that time, the only probe to conduct a flyby or close-up imaging of Dione has been the Cassini orbiter, which conducted five flybys of the moon between 2005 and 2015.

The first close flyby took place on October 11th, 2005, at a distance of 500 km (310 mi), followed by another on April 7th, 2010, (again at a distance of 500 km). A third flyby was performed on December 12th, 2011, and was the closest, at an distance of 99 km (62 mi). The fourth and fifth flybys took place on June 16th and August 17th, 2015, at a distance of 516 km (321 mi) and 474 km (295 mi), respectively.

In addition to obtaining images of Cassini’s cratered and differently-colored surface, the Cassini mission was also responsible for detecting the moon’s tenuous atmosphere (exosphere). Beyond that, Cassini also provided scientists with new evidence that Dione could be more geologically active than previously predicted.

Based on models constructed by NASA scientists, it is now believed that Dione’s core experiences tidal heating, which increases the closer it gets to Saturn. Because of this, scientists also believe that Dione may also have a liquid water ocean at its core-mantle boundary, thus joining moons like Enceladus, Europa and others in being potential environments where extra-terrestrial life could exist.

This, as well as Dione’s geological history and the nature of its surface (which could be what gives rise to its atmosphere) make Dione a suitable target for future research. Though no missions to study the moon are currently being planned, any mission to the Saturn system in the coming years would likely include a flyby or two!

We have many great articles on Dione and Saturn’s moons here at Universe Today. Here is one about Cassini’s first flyby, its closest flyby, it’s possible geological activity, its canyons, and its wispy terrain.

Universe Today also has an interview with Dr. Kevin Grazier, a member of the Cassini-Huygens mission.

A Halloween Season ‘Taurid Meteor Swarm’ on Tap for 2015?

Image credit: NASA

Asteroid 2015 TB145 isn’t the only cosmic visitor paying our planet a trick-or-treat visit over the coming week. With any luck, the Northern Taurid meteor shower may put on a fine once a decade show heading into early November.

About once a decade, the Northern Taurid meteor stream puts on a good showing. Along with its related shower the Southern Taurids, both are active though late October into early November.

The motion of the radiant of the Northern Taurid meteors from mid-October through mid-November. Image credit: Stellarium
The motion of the radiant of the Northern Taurid meteors from mid-October through mid-November. The shower typically peaks around November 12th annually. Image credit: Stellarium

Specifics for 2015

This year sees the Moon reaching Full on Tuesday October 27th, just a few days before Halloween. The Taurid fireballs, however, have a few things going for them that most other showers don’t. First is implied in the name: the Northern Taurids, though typically exhibiting a low zenithal hourly rate of around 5 to 10, are, well, fireballs, and thus the light-polluting Moon won’t pose much of a problem. Secondly, the Taurid meteor stream is approaching the Earth almost directly from behind, meaning that unlike a majority of meteor showers, the Taurids are just as strong in the early evening as the post midnight early morning hours.  As a matter of fact, we saw a brilliant Taurid just last night from light-polluted West Palm Beach in Florida, just opposite to the Full Moon and a partially cloudy sky.

A 2014 Taurid. Image credit and copyright: Brian who is called Brian
A 2014 Taurid. Image credit and copyright: Brian who is called Brian

In stark contrast to the swift-moving Orionids from earlier this month, expect the Taurid fireballs to trace a brilliant and leisurely slow path across the night sky, moving at a stately 28 kilometre per second (we say stately, as the October Orionids smash into our atmosphere at over twice that speed!)

Ever since the 2005 event, the Northern Taurids seemed to have earned the name as “The Halloween Fireballs” in the meme factory that is the internet. It’s certainly fitting that Halloween should have its very own pseudo-apocalyptic shower. The last good return for the Northern Taurids was 2005-2008, and 2015 may see an upswing in activity as well.

Obviously, something interesting has to be occurring on Comet 2P Encke—the source of the two Taurid meteor streams—to shed the pea-sized versus dust-sized material seen in the Southern and Northern Taurids. With the shortest orbital period 3.3 years of all periodic comets known, the Taurid meteor stream—like Encke itself—follows a shallow path nearly parallel to the ecliptic plane.

Discovered in 1822 by astronomer Johann Encke, Comet 2P Encke has been observed through many perihelion passages over the last few centuries, and passes close to Earth once 33 years, as it last did in 2013.

What constitutes a ‘meteor swarm?’ As with many terms in meteoritics, no hard-and-fast definition of a true ‘meteor swarm’ exists. A meteor storm is generally quoted as having a zenithal hourly rate greater than 1000. Expect activity to be broad over the next few weeks, and the Taurid fireballs always have the capacity to produce the kind of brilliant events captured by security cams and dashboard video cameras that go viral across ye ole Internet.

Watching for fireballs is a thrilling pursuit. These may often leave persistent glowing meteor trails in their wake.  We caught the 1998 Leonids from the dark sky deserts of Kuwait, and can attest to the persistence of glowing fireball trails from this intense storm, sometimes for minutes. Again, the 2015 Taurids aren’t expected to reach that level of intensity, though the ratio of fireballs to faint meteors will be enhanced.

The path of the stream isn’t fully understood, and that is where volunteer observations can come in handy. The International Meteor Organization is always looking for reports from skilled observers, as is the American Meteor Society (AMS).

Image Credit:
The light curve of the suspected Taurid that hit the Moon on Nov 7th. Image Credit: NASA

There’s even been evidence for a recorded meteorite strike related to the northern Taurid fireballs back in 2015 on the dark limb of the Moon as well, a rare event indeed.

After a slow summer, Fall meteor shower activity is definitely heating up. And though 2015 is an off year for the November Leonids, we’re now almost midway between the 1998-99 outbursts, and the possibility of another grand meteor storm in the early 2030s. And another obscure wildcard shower known as the Alpha Monocerotids may put on a surprise showing in November 2015 as well…

Bright Meteor 4th November 2013 from Richard Fleet on Vimeo.

More to come on that. Keep watching the skies, and don’t forget to tweet those Northern Taurid fireball sightings and images to #Meteorwatch!

-Got an image of a Northern Taurid fireball? Send ‘em in to Universe Today for our Flickr forum… we may just feature your pic in an after action round up!

Saturn’s “Yin-Yang” Moon Iapetus

The dark and light side of Iapetus. Credit: NASA/JPL/Space Science Institute

Thanks to the Cassini mission, a great many things have been learned about the Saturn system in recent years. In addition to information on Saturn’s atmosphere, rotation and its beautiful and extensive ring system, many revelations have been made about Saturn’s system of moons. For example, very little was known about the obscure moon of Iapetus – sometimes nicknamed Saturn’s “yin-yang” moon – before Cassini‘s arrival.

In addition to its mysterious, equatorial ridge, this moon also has a two-tone appearance that has historically made direct observation quite difficult. Due to its distance from Saturn, close-up observation with space probes has also been quite difficult too until very recently. However, what we have learned in the past few years about Iapetus has taught us that it is a world of stark contrasts, and not just in terms of its appearance.

Discovery and Naming:

Iapetus was discovered by Giovanni Domenico Cassini in April 1671. Along with Rhea, Tethys and Dione, Iapetus was one of four moons Cassini discovered between 1671 and 1672 – which together he named Sidera Lodoicea (“Stars of Louis“, after his patron, Louis XIV). After the discovery, astronomers fell into the habit of referring to them using Roman numerals, with Iapetus being Saturn V.

The name Iapetus was suggested by John Herschel, the son of William Herschel, in his 1847 treatise Results of Astronomical Observations made at the Cape of Good Hope. Like all of Saturn’s moons, the name Iapetus was taken from the Titans of Greek mythology – the sons and daughters of Cronus (the Greek equivalent of the Roman Saturn). Iapetus was the son of Uranus and Gaia and the father of Atlas, Prometheus, Epimetheus and Menoetius.

An engraving of the Paris Observatory during Cassini's time. Credit: Public Domain
An engraving of the Paris Observatory during Cassini’s time. Credit: Wikipedia Commons

Geological features on Iapetus are named after characters and places from the French epic poem The Song of Roland. Examples of names used include the craters Charlemagne and Baligant, and the northern and southern bright regions, Roncevaux Terra and Sargassio Terra. The one exception is Cassini Regio the dark region of Iapetus, named after the region’s discoverer, Giovanni Cassini.

Size, Mass and Orbit:

With a mean radius of 734.5 ± 2.8 km and a mass of about 1.806 × 1021 kg, Iapetus is 0.1155 times the size of Earth and 0.00030 times as massive. It orbits its parent planet at an average distance (semi major axis) of 3,560,820 km. With a noticeable eccentricity of 0.0286125, its orbit ranges in distance from 3,458,936 km at periapsis and 3,662,704 km at apoapsis.

With an average orbital speed of 3.26 km/s, Iapetus takes 79.32 days to complete an single orbit of Saturn. Despite being Saturn’s third-largest moon, Iapetus orbits much farther from Saturn than its next closest major satellite (Titan). It has also the most inclined orbital plane of any of the regular satellites – 17.28° to the ecliptic, 15.47° to Saturn’s equator, and 8.13° to the Laplace plane. Only the irregular outer satellites like Phoebe have more inclined orbits.

Size comparison of Earth, the Moon, and Iapetus. Credit: NASA/JPL/Tom Reding
Size comparison of Earth, the Moon, and Iapetus. Credit: NASA/JPL-Caltech/SSI/LPI/Tom Reding

Composition and Surface Features:

Like many of Saturn’s moons – particularly Tethys, Mimas and Rhea – Iapetus has a low density (1.088 ± 0.013 g/cm³) which indicates that it is composed primary of water ice and only about 20% rock. But unlike most of Saturn’s larger moons, its overall shape is neither spherical or ellipsoid, instead consisting of flattened poles and a bulging waistline.

Its large and unusually high equatorial ridge (see below) also contributes to its disproportionate shape. Because of this, Iapetus is the largest known moon to not have achieved hydrostatic equilibrium. Though rounded in appearance, its bulging appearance disqualifies it from being classified as spherical.

As is common with Cronian moons, Iapetus’ surface shows considerable signs of cratering. Recent images taken by the Cassini spacecraft have revealed multiple large impact basins, with at least five measuring over 350 km in diameter. The largest, Turgis, has a diameter of 580 km, with an extremely steep rim and a scarp about 15 km in height. It has also been concluded that Iapetus’ surface supports long-runout landslides (aka. sturzstroms), which could be due to ice sliding.

As already noted, another interesting feature on Iapetus is its famous equatorial ridge, which measures 1300 km in length, 20 km wide, 13 km high, and runs along the center of the Cassini Regio dark region. Though indications had been made as to the existence of a mountain chain in this region earlier, the ridge was observed directly for the first time when the Cassini spacecraft took its first images of Iapetus on December 31st, 2004.

But perhaps Iapetus’ best known feature is its two-tone coloration. This was first observed by Giovanni Cassini in the 17th century, who noted that he could only view Iapetus when it was on the west side of Saturn and never on the east. At the time, he correctly concluded that Iapetus was tidally-locked with Saturn, and that one side was darker than the other. This conclusion was later backed up by observations using ground-based telescopes.

The dark region is named Cassini Regio, and the bright region is divided into Roncevaux Terra – which lies north of the equator – and Saragossa Terra, which is south of it. Today, it is understood that dark regions are carbonaceous, and likely contain organic compounds similar to the substances found in primitive meteorites or on the surfaces of comets – i.e. frozen cyano-compounds like hydrogen cyanide polymers.

The pattern of coloration is analogous to a spherical yin-yang symbol, hence the nickname “Saturn’s yin-yang moon.” The difference in coloration between the two Iapetian hemispheres is quite extreme. While the leading hemisphere is dark, with an albedo of 0.03–0.05 (and has a slight reddish-brown coloring), most of the trailing hemisphere and poles are almost as bright as Europa (albedo 0.5–0.6).

Enhanced-color map (27.6 MB). The leading hemisphere is at the right. NASA/JPL-Caltech/Space Science Institute/Lunar and Planetary Institute
Enhanced-color map of Iapetus, using data collected by the Cassini probe.  The leading hemisphere is at the right. Credit: NASA/JPL-Caltech/SSI/LPI

Thus, the apparent magnitude of the trailing hemisphere is around 10.2, whereas that of the leading hemisphere is around 11.9. Theories as to its cause generally agree that the original dark material must have come from outside Iapetus, but that subsequent darkening is caused by the sublimation of ice from the warmer areas of Iapetus’s surface, causing volatile compounds to sublimate out and retreat to colder regions.

Because of its slow rotation of 79 days, Iapetus experiences enough of a temperature difference to facilitate this. Near the equator, heat absorption by the dark material results in a daytime temperatures in Cassini Regio of 129 K (-144.15 °C/-227.5 °F)  compared to 113 K (-160.15 °C/-256.3 °F) in the bright regions. The difference in temperature means that ice sublimates from Cassini Regio, then deposits in the colder bright areas and especially at the even colder poles.

Over geologic time scales, this would further darken Cassini Regio and brighten the rest of Iapetus, creating a runaway thermal feedback process of ever greater contrast in albedo, ending with all exposed ice being lost from Cassini Regio. This model is the generally accepted one because it explains the distribution of light and dark areas, the absence of shades of grey, and the thinness of the dark material covering Cassini Regio.

Three different false-color views of Saturn's moon Iapetus show the boundary of the global "color dichotomy" on the hemisphere of this moon facing away from Saturn. Credit: NASA/JPL/Space Science Institute
Three different false-color views of Saturn’s moon Iapetus, showing the boundary of the global “color dichotomy”. Credit: NASA/JPL/Space Science Institute

However, it is acknowledged that a separate process would be required to get this process thermal feedback started. It is therefore theorized that initially, dark material came from elsewhere, most likely some of Saturn’s small, retrograde moons. Material from these moons could have been blasted off either by micrometeoroids or a large impact.

This material would then have been darkened from exposure to sunlight, then swept up by the leading hemisphere of Iapetus. Once this process created a modest contrast in albedo (and hence, temperature) on Iapetus’ surface, the thermal feedback process would have come into play and exaggerated it further.

The greatest source of this material is believed to be Phoebe, the largest of Saturn’s outer moons. The discovery of a tenuous disk of material in the plane of (and just inside of) Phoebe’s orbit, which was announced on October 6th, 2009, supports this theory.

Exploration:

The first robotic spacecraft to explore Iapetus were the Voyager 1 and Voyager 2 probes, which passed through the Saturn system on their way to the outer Solar System in 1980 and 1981. Data from these missions provided scientists with the first indications of Iapetus’ mountains, which were thereafter informally referred to as the “Voyager Mountains”.

Saturn's moon Iapetus. Image credit: NASA/JPL/Space Science Institute.
Saturn’s moon Iapetus, captured by the Cassini space probe on New Year’s Eve 2004. Credit: NASA/JPL/Space Science Institute.

Only the Cassini orbiter has ever explored Saturn’s moon of Iapetus, which captured multiple images of the moon from moderate distances since 2004. For instance, on New Year’s Eve 2004, Cassini passed Iapetus at a distance of 122,647 kilometers (76,209 miles) and captured the four visible light images that were put together to form the view of its equatorial ridge jutting out to the side (shown above).

However, its great distance from Saturn makes close observation difficult. As a result, Cassini made only one targeted close flyby, which took place on September 10th, 2007 at a minimum range of 1227 km. It was during this flyby that data was obtained which indicated that thermal segregation is likely the primary force responsible for Iapetus’ dark hemisphere. No future missions are planned at this time.

Iapetus is a world of contrasts, and not just in terms of its color. In addition, it is a very small moon that still managed to be massive enough to achieve hydrostatic equilibrium. And despite being one of Saturn’s larger moons, it orbits at a distance usually reserved for smaller, irregular moons.

Coupled with the fact that scientists are still not sure why it has its unusual walnut-shape, Iapetus is likely to be a target for any research missions headed to study the Cronian moons in the coming years.

We have many great articles on Iapetus and Saturn’s moons here at Universe Today. Here is one about its famous ridge, its two-tone coloring, the ice avalanches it periodically experiences, and whether or not it consumed one of Saturn’s rings.

For more information, check out NASA’s View of the Solar System page on Iapetus, and the Cassini Solstice Mission’s page.

Bio-Mimicry and Space Exploration

A close-up of the spiral pattern in a sunflower. (Image Credit: Vishwas Krishna, unaltered, CC2.0)
Sunflowers doing what they do best: capturing sunlight. (Image Credit: OiMax, image unaltered, CC2.0)

“Those who are inspired by a model other than Nature, a mistress above all masters, are laboring in vain.

-Leonardo DaVinci

What DaVinci was talking about, though it wasn’t called it at the time, was biomimicry. Biomimicry is the practice of using designs from the natural world to solve technological and engineering problems. Were he alive today, there’s no doubt that Mr. DaVinci would be a big proponent of biomimicry.

Nature is more fascinating the deeper you look into it. When we look deeply into nature, we’re peering into a laboratory that is over 3 billion years old, where solutions to problems have been implemented, tested, and revised over the course of evolution. That’s why biomimicry is so elegant: on Earth, nature has had more than 3 billion years to solve problems, the same kinds of problems we need to solve to advance in space exploration.

The more powerful our technology gets, the deeper we can see into nature. As greater detail is revealed, more tantalizing solutions to engineering problems present themselves. Scientists who look to nature for solutions to engineering and design problems are reaping the rewards, and are making headway in several areas related to space exploration.

Continue reading “Bio-Mimicry and Space Exploration”