A Radio Telescope on the Moon Could Help Us Understand the First 50 Million Years of the Universe

Artist's illustration of a radio telescope inside a crater on the Moon. Credit: NASA/JPL-Caltech

In the coming decade, multiple space agencies and commercial space providers are determined to return astronauts to the Moon and build the necessary infrastructure for long-duration stays there. This includes the Lunar Gateway and the Artemis Base Camp, a collaborative effort led by NASA with support from the ESA, CSA, and JAXA, and the Russo-Chinese International Lunar Research Station (ILRS). In addition, several agencies are exploring the possibility of building a radio observatory on the far side of the Moon, where it could operate entirely free of radio interference.

For years, researchers have advocated for such an observatory because of the research that such an observatory would enable. This includes the ability to study the Universe during the early “Cosmic Dark Ages,” even before the first stars and galaxies formed (about 50 million years after the Big Bang). While there have been many predictions about what kind of science a lunar-based radio observatory could perform, a new research study from Tel Aviv University has predicted (for the first time) what groundbreaking results this observatory could actually obtain.

Continue reading “A Radio Telescope on the Moon Could Help Us Understand the First 50 Million Years of the Universe”

Why String Theory Requires Extra Dimensions

String theory found its origins in an attempt to understand the nascent experiments revealing the strong nuclear force. Eventually another theory, one based on particles called quarks and force carriers called gluons, would supplant it, but in the deep mathematical bones of the young string theory physicists would find curious structures, half-glimpsed ghosts, that would point to something more. Something deeper.

Continue reading “Why String Theory Requires Extra Dimensions”

The Holographic Secret of Black Holes

This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. This thin disc of rotating material consists of the leftovers of a Sun-like star which was ripped apart by the tidal forces of the black hole. Shocks in the colliding debris as well as heat generated in accretion led to a burst of light, resembling a supernova explosion. Credit: ESO, ESA/Hubble, M. Kornmesser

As weird as it might sound, black holes appear to be holograms.

Continue reading “The Holographic Secret of Black Holes”

Weather in the Solar System Can Teach Us About Weather on Exoplanets

Image credit: Envato.

The way astronomers study planets in our own solar system is surprisingly similar to the way they study exoplanets, despite the latter being orders of magnitude more distant. The key is spectroscopy – examining the wavelengths of light that reach a telescope from a planet’s atmosphere. Different molecules allow different wavelengths to pass through, creating unique patterns in the spectrum and giving scientists clues about the composition of an atmosphere.

Of course, for planets nearby, we can get more details by visiting them – but this is expensive and difficult – we haven’t visited Uranus since Voyager 2 in 1986, for example, so for all intents and purposes, studying Uranus today is done the same way as studying an exoplanet: with a telescope.

A recent review of planetary atmospheres, in our solar system and elsewhere, reveals the incredible complexity and diversity of weather in our solar system, and what we might expect to find around other stars – but also what we don’t yet understand about our near neighbours: there’s plenty of unknowns.

So let’s take a weather-watcher’s tour of the solar system:

Continue reading “Weather in the Solar System Can Teach Us About Weather on Exoplanets”

Betelgeuse Versus the Asteroid… What Happened?

Betelgeuse observed by ALMA (image credit: ALMA (ESO/NAOJ/NRAO)/E. O’Gorman/P. Kervella) overlayed with an artist's impression of a moving asteroid.

A rare occultation of the bright star Betelgeuse by asteroid 319 Leona turned up mixed results.

In science and astronomy, sometimes a negative or subtle result can be as interesting as a positive one. That’s just what occultation-chasers where confronted with this past Monday evening on the night of December 11th/12th, when asteroid 319 Leona occulted (passed in front of) the +0.5 magnitude star Betelgeuse.

Continue reading “Betelgeuse Versus the Asteroid… What Happened?”

Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More

Astronomers have used JWST to study the environments around 30 young protostars and found a vast collection of icy organic molecules. A recent survey identified methane, sulfur dioxide, ethanol, formaldehyde, formic acid, and many more. Image Credit: NASA/ESA/STScI

In the quest to understand how and where life might arise in the galaxy, astronomers search for its building blocks. Complex Organic Molecules (COMs) are some of those blocks, and they include things like formaldehyde and acetic acid, among many others. The JWST has found some of these COMs around young protostars. What does this tell astronomers?

Continue reading “Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More”

JWST Delivers A Fantastic New Image Of Supernova Remnant Cassiopeia A

Like a shiny, round ornament ready to be placed in the perfect spot on a holiday tree, supernova remnant Cassiopeia A (Cas A) gleams in a new image from the NASA/CSA/ESA James Webb Space Telescope. Image Credit: NASA/CSA/ESA

Astronomy is all about light. Sensing the tiniest amounts of it, filtering it, splitting it into its component wavelengths, and making sense of it, especially from objects a great distance away. The James Webb Space Telescope is especially adept at this, as this new image of supernova remnant (SNR) Cassiopeia A exemplifies so well.

Continue reading “JWST Delivers A Fantastic New Image Of Supernova Remnant Cassiopeia A”

The Positions of Stars on an Ancient Navigation Device Tell us When it was Made

Astrolabes serve two purposes. First, they are useful as an astronomical tool, especially for finding a ship’s latitude. But second, they are works of art in themselves. Besides having to be precise, many are beautiful. They are even seeing a resurgence in popularity as collectors lap up even those made by modern manufacturing processes because of their aesthetic appeal. Now, a new paper adds to their uses – a self-referential ability to mark what year they were made by the patterns of the stars they reference.

Continue reading “The Positions of Stars on an Ancient Navigation Device Tell us When it was Made”

What Would a Modern “Golden Record” Include?

Voyager's Golden Record. Credit: NASA/JPL
Voyager's Golden Record. Credit: NASA/JPL

Now that several decades have passed since the launch of Voyager 1 and Voyager 2 in 1977, we look back on that time with a hazy sense of history and what the event meant for humanity’s ongoing odyssey. While the Voyager spacecraft were sober scientific missions, they also carried with them a hint of the deeper yearnings that lie inside humanity’s heart: the Golden Records.

Continue reading “What Would a Modern “Golden Record” Include?”