Nova in Sagittarius Brighter Than Ever – Catch it with the Naked Eye!

Nova Sagittarii 2015 No. 2 photographed this morning when it was easily visible to the naked eye at magnitude +4.4. The nova has been on the upswing since its discovered less than a week ago. Credit: Bob King

Great news about that new nova in Sagittarius. It’s still climbing in brightness and now ranks as the brightest nova seen from mid-northern latitudes in nearly two years. Even from the northern states, where Sagittarius hangs low in the sky before dawn, the “new star” was easy to spy this morning at magnitude +4.4.

While not as rare as hen’s teeth, novae aren’t common and those visible without optical aid even less so. The last naked eye nova seen from outside the tropics was V339 Del (Nova Delphini), which peaked at +4.3 in August 2013. The new kid on the block could soon outshine it if this happy trend continues.

This view shows the sky facing south-southeast just before the start of dawn in mid-March from the central U.S. The nova's located squarely in the Teapot constellation. Source: Stellarium
This view shows the sky facing south-southeast shortly before the start of dawn in late March from the central U.S. The nova is centrally located within the Teapot. Source: Stellarium

Now bearing the official title of Nova Sagittarii 2015 No. 2, the nova was discovered on March 15 by amateur astronomer and nova hunter John Seach of Chatsworth Island, NSW, Australia. At the time it glowed at the naked eye limit of magnitude +6. Until this morning I wasn’t able to see it with the naked eye, but from a dark sky site, it’s there for the picking. So long as you know exactly where to look.

The chart and photo above will help guide you there. At the moment, the star’s about 15° high at dawn’s start, but it rises a little higher and becomes easier to see with each passing day. Find your sunrise time HERE and then subtract an hour and 45 minutes. That will bring you to the beginning of astronomical twilight, an ideal time to catch the nova at its highest in a dark sky.

Use this AAVSO chart to pinpoint the nova's location and also to help you estimate its brightness. Numbers shown are star magnitudes with the decimal points omitted. Credit: AAVSO
Use this AAVSO chart to pinpoint the nova’s location and also to help you estimate its brightness. Numbers shown are star magnitudes with the decimal points omitted. Credit: AAVSO

To see it with the naked eye, identify the star with binoculars first and then aim your gaze there. I hope you’ll be as pleasantly surprised as I was to see it. To check on the nova’s ups and downs, drop by the American Association Variable Star Observers (AAVSO) list of recent observations.

Seeing the nova without optical aid took me back to the time before the telescope when a “new star” in the sky would have been met with great concern. Changes in the heavens in that pre-telescopic era were generally considered bad omens. They were also thought to occur either in Earth’s atmosphere or within the Solar System. The universe has grown by countless light years since then. Nowadays we sweat the small stuff – unseen asteroids – which were unknown in that time.

AAVSO light curve showing the nova's brightening trend since discovery. Dates are at bottom, magnitudes at left. Credit: AAVSO
AAVSO light curve showing the nova’s brightening since discovery. Dates are along the bottom, magnitudes at left. If the trend continues, Nova Sgr #2 could outshine the 2013 nova in Delphinus very soon. Credit: AAVSO

Novae occur in binary star systems where a tiny but gravitationally powerful white dwarf star pulls gases from a close companion star. The material piles up in a thin layer on the dwarf’s hot surface, fuses and burns explosively to create the explosion we dub a nova. Spectra of the expanding debris envelope reveal the imprint of hydrogen gas and as well as ionized iron.

Nova illustration with an expanding cloud of debris surrounding central fireball emitting red hydrogen-alpha light.
Artist’s view of a nova with an expanding cloud of debris surrounding  the central fireball emitting red hydrogen-alpha light.

Shortly after discovery, the nova’s debris shell was expanding at the rate of ~1,740 miles per second (2,800 km/sec) or more than 6.2 million mph (10 million mph). It’s since slowed to about half that rate. Through a telescope the star glows pale yellow but watch for its color to deepen to yellow orange and even red. Right now, it’s still in the fireball phase, with the dwarf star hidden by an envelope of fiery hydrogen gas.

As novae evolve, they’ll often turn from white or yellow to red. Emission of deep red light from hydrogen atoms – called hydrogen alpha –  gives them their warm, red color. Hydrogen, the most common element in stars, gets excited through intense radiation or collisions with atoms (heat) and re-emits a ruby red light when it returns to its rest state. Astronomers see the light as bright red emission line in the star’s spectrum. Spectra of the nova show additional emission lines of hydrogen beta or H-beta (blue light emitted by hydrogen) and iron.

There are actually several reasons why novae rouge up over time, according to former AAVSO director Arne Henden:

“Energy from the explosion gets absorbed by the surrounding material in a nova and re-emitted as H-alpha,” said Henden. Not only that but as the explosion expands over time, the same amount of energy is spread over a larger area.

“The temperature drops,” said Henden, “causing the fireball to cool and turn redder on its own.” As the eruption expands and cools, materials blasted into the surrounding space condense into a shell of soot that absorbs that reddens the nova much the same way dusty air reddens the Sun.

Nova Sagittarii’s current pale yellow color results from seeing a mix of light –  blue from the explosion itself plus red from the expanding fireball. As for its distance from Earth, I haven’t heard, but given that the progenitor star was 15th magnitude or possibly fainter, we’re probably talking in the thousands of light years.

Wide view of the Sagittarius-Scorpius region with some of the brighter star clusters and nebulae labeled for binocular browsing. Credit: Bob King
Wide view of the Sagittarius-Scorpius region with some of the brighter star clusters and nebulae labeled for binocular browsing. Credit: Bob King

In an earlier article on the nova’s discovery I mentioned taking a look at Saturn as long as you made the effort the get up early. Here’s a photo of the Sagittarius region you can use to help you further your dawn binocular explorations. The entire region is rich with star clusters and nebula, many of which were cataloged long ago by French astronomer Charles Messier, hence the “M” numbers.

Amazing Views of Today’s Total Solar Eclipse From Earth… and Space

Credit:

There’s an old Robert Heinlein saying that goes “climate is what you expect, weather is what you get,” And the weather certainly kept folks guessing right up until the start of today’s eclipse. And though much of the UK and tracks along the Faroe Islands were clouded out, folks who made the trek up to Svalbard were treated to a fine view of totality, while observers across Europe caught stages of the eclipse through its partial phases. Many more managed to capture glimpses of the eclipse thanks to our good friends over at Slooh and the Virtual Telescope project.

Here’s a quick sampling of images that have come our way thus far… we’ll be dropping in more as they become available from far flung corners of the globe and beyond:

Totality! Captured from the (thankfully sunny) Svalbard Islands. Credit and Copyright: Tony Hoffman.
Totality! Captured from the (thankfully sunny) Svalbard Islands. Credit and Copyright: Tony Hoffman.
Credit and copyright: @johnmason1971
Practicing solar eclipse observing safety… Credit and copyright: @johnmason1971

Though the live feed from the International Space Station was unavailable as the astros flirted with the Moon’s umbra, the crew did manage to get some quick shots of the eclipse from low Earth orbit:

They caught it! The eclipse captured from the International Space Station courtesy of @astrosamantha.
They caught it! The eclipse captured from the International Space Station courtesy of @astrosamantha.
The umbra touches down at the start of the total solar eclipse as seen from the ISS. Credit: @Astrosamantha
The umbra touches down at the start of the total solar eclipse as seen from the ISS. Credit: @Astrosamantha

And while the fake “eclipse seen from SPACE!!!” image made its predictable rounds, ESA’s solar observing Proba-2 spaccraft caught the eclipse from space for real:

No word yet if anyone caught the ‘money shot’ of the International Space Station transiting the Sun during the eclipse as seen from southern Spain.

UPDATE: Scratch that… Theirry Legault did indeed capture the ISS transiting the partially eclipsed Sun:

Awesome!

Totality from a balloon (!) over Svalbard. Courtesy and Credit: zero2infinity.
Totality from a balloon (!) over Svalbard. The team also has an exciting indiegogo project and hopes to make a film of the eclipse. Courtesy and Credit: @flyabloon/zero2infinity.

And while many observers and events were clouded out, many still noted the drop in ambient light levels.

Credit and Copyright:
Credit and Copyright: TheMagster3.

The Sun was relatively blank during the eclipse, with one lone sunspot group currently turned Earthward saving us from spotlessness.

Credit and copyright: @DavidBflower
Credit and copyright: @DavidBflower

As of this writing, more eclipse pics are still pouring in. Watch this space, as many eclipse chasers —especially those who traveled to distant Svalbard to witness totality in person — are still making their way in from the field and are no doubt hunting for stable internet connections as we speak.

Credit and copyright: @Whereisyvette
Awaiting clear skies on the roof of the Anton Pannekoek Institute for Astronomy at the University of Amsterdam in the Netherlands. Credit and copyright: @Whereisyvette

And as always, the big question after every eclipse is: when’s the next one? Well, the next total solar occurs over Southeast Asia on March 9th, 2016, and the very next solar eclipse is a partial over South Africa on Sept 13 2015. And North America gets to see another total lunar eclipse in the ongoing tetrad in just two weeks on April 4th, 2015… and we’re well inside two years away now from the total solar eclipse spanning the continental united States on August 21st 2017!

Credit and copyright
An Iphone capture of the eclipse. Credit and copyright: @zubenelganubi

Let the first of two eclipse seasons for 2015 begin!

Read Dave Dickinson’s eclipse-fueled scifi tales Shadowfall and Exeligmos.

Update: although it was cloudy, Marco Langbroek did indeed catch the drop in light levels over the Netherlands:

And check out this amazing Vine of the dark umbra of the Moon crossing the North Atlantic courtesy of Meteosat-9:

Wowsa!

And sometimes, the simplest shots are the easiest to get out over social media immediately, be it at a rocket launch or during a solar eclipse:

A back of the camera shot of the eclipse as seen from northern Scotland. Credit: Edwin Quail.
A back of the camera shot of the eclipse as seen from northern Scotland. Credit: Edwin Quail.

There also been no word as of yet how Germany’s solar power grid fared during the eclipse, though it will be interesting to see what possible data was generated during the partial phases for future planning.

Partial phases of the solar eclipse today as seen from the United Kingdom. Credit and copyright: Sarah and Simon Fisher.
Partial phases of the solar eclipse today as seen from the United Kingdom. Credit and copyright: Sarah and Simon Fisher.

It was truly inspiring to see how many folks captured images and filled our feeds this morning with pictures of today’s eclipse.

The partial eclipse peeks out from behind the clouds over the Greek Embassy . Credit and copyright: clausdm @cldm_ish
The partial eclipse peeks out from behind the clouds over the Greek Embassy . Credit and copyright: clausdm @cldm_ish

Can’t wait til 2017? NASA’s New Horizons spacecraft is set give us a total solar eclipse from the edge of the solar system this July when it flies through the shadows of Pluto and its giant moon, Charon:

An artist's concept of New Horizons in the shadow on Pluto. Credit: NASA/JPL.
An artist’s concept of New Horizons in the shadow on Pluto. Credit: NASA/JPL.

Hey, maybe if we colonize Pluto by 2017 AD, we could witness said eclipses… in person, once every 6 days:

“Pluto One,” anyone?

Parallax in action: the view from Lahore Pakistan vs Slooh's view shortly before totality. Credit:  Roshaan. Lahore Astronomical Society, Pakistan.
Parallax in action: the view from Lahore Pakistan vs Slooh’s view shortly before totality. Credit: Roshaan.
Lahore Astronomical Society, Pakistan.
A 6% partial solar eclipse as seen from Israel. Credit and copyright: Gadi Eidelheit.
A 6% partial solar eclipse as seen from Israel. Credit and copyright: Gadi Eidelheit.
The March 20, 2015 solar eclipse taken from Malta with a PST solar telescope  in H-alpha. Credit and copyright: Leonard Mercer.
The March 20, 2015 solar eclipse taken from Malta with a PST solar telescope in H-alpha. Credit and copyright: Leonard Mercer.

Green and Red Auroras Light Up St. Patrick’s Day Dawn

Just in time for St. Patrick's Day - a
A spectacular green and red aurora photographed early this morning March 17, 2015, from Donnelly Creek, Alaska. Credit: Sebastian Saarloos

A strong G3 geomagetic storm surged across the planet this morning producing a spectacular display of the northern lights. Some of you may who may have risen to see the new nova were no doubt as surprised as the NOAA space weather folks, whose overnight forecast did not include an alert for even a minor storm.

So what happened? Let’s just say the Sun isn’t always as predictable as we’d like. An interplanetary shock wave in the form of a sudden increase in the solar wind speed from 250 miles per second to 375 mph (400-600 km/sec) began blasting Earth shortly before midnight. It appears the combined effects of earlier coronal mass ejections (CMEs) and an outpouring of high-speed solar particles from a gaping hole in the Sun’s magnetic canopy crashed through Earth’s magnetic defenses.

Particle-wise, all hell broke loose. You can start looking for more as soon as it gets dark tonight.

A powerful X2.2-class flare from sunspot region 2297 glows fiery yellow in this photo taken by NASA’s Solar Dynamics Observatory on March 11, 2015. Credit: NASA
A powerful X2.2-class flare from sunspot region 2297 glows intensely in this photo taken in short wavelength ultraviolet light by NASA’s Solar Dynamics Observatory on March 11, 2015. Credit: NASA Goddard SDO

We know that recent flares from sunspot group 2297 have sent more than a few billows of solar particles our way called CMEs or coronal mass ejections. Weekend forecasts called for minor storms but little materialized. Only when we thought it was safe to go back to bed did the aurora pounce. Reading the magnetospheric tea leaves, better known as the Kp index, a measure of magnetic activity high overhead in Earth’s ionosphere, quiet conditions gave way to auroral abandon starting around 1 a.m (CDT) today.

A wall of colorful red and green aurora met the eye and camera of Jim Schaff of Duluth this morning around 3 a.m. CDT. Credit: Jim Schaff
A wall of colorful red and green aurora met the eye and camera of Jim Schaff of Duluth this morning around 3 a.m. CDT. Credit: Jim Schaff

Like a spring grassfire the northern lights took off from there and burned till dawn, peaking between 2 and 4 a.m. Most of us are usually asleep during those deep hours of the night, but I’m hoping those who arose to see the nova or catch the lunar crescent at dawn may have been as surprised and delighted as I was to see auroras.

Like paw prints made by a cat, pale green auroral rays mark the northern sky around 5:45 a.m this morning March 17. Credit: Bob King
Like paw prints made by a cat, pale green auroral rays mark the northern sky around 5:45 a.m this morning March 17. Credit: Bob King

More are in the offing. The latest space weather forecast calls for continued severe storms (G3 or higher) to continue through tonight. G1 or minor storms are normally only visible as arcs or low rays across the north from the northern tier of states, but if tonight’s forecast holds, a fair portion of the U.S. should see auroras. Keep an eye peeled for bright, moving glow and arcs across the northern sky.

The awesome 30-minute aurora forecast map updates the shrinking and expanding of Earth's northern auroral oval due to changes in the solar wind from CMEs, flares and the like. This view is from this morning around 4:55 a.m. Red indicates intense aurora. Credit: NOAA
The awesome 30-minute aurora forecast map updates the shrinking and expanding of Earth’s northern auroral oval due to changes in the solar wind from CMEs, flares and the like. This view is from this morning around 4:55 a.m. Red indicates intense aurora. Credit: NOAA

There are lots of tools available you can use yourself to know if auroras are lurking about. First, check the NOAA 3-day space weather forecast. There you’ll see a list of times along with a Kp index number indicating magnetic activity. Number “1-4” means no storm and little likelihood you’ll see an aurora. “5”  indicates a minor storm; the higher the number the more severe the storm and more widespread the northern lights will be.

Curtains of aurora still pushed through the growing light of dawn. Credit: Bob King
Curtains of aurora still pushed through the growing light of dawn (blue sky at top). Credit: Bob King

There’s also a nice visual representation of the numbers on the Planetary K-index site, where magnetic activity is updated every 3 hours.  The dashed line on the bar chart represents 0 UT or 7 p.m. CDT. One of my favorites and the ultimate visual feast of an aurora indicator is NOAA’s Aurora 30-minute Forecast. Here you get a birds-eye representation of the current aurora based on satellite data. When the permanent auroral oval expands southward and intensifies, put on your coat and head out for a look. For education and entertainment, click on the gray arrow below the graphic and you’ll see a whole day’s worth of activity play out before your eyes. Totes cool.

ACE plot from a June 2013 aurora. Note the steep drop in the Bz. Credit: NOAA
ACE plot from a June 2013 aurora. Note the steep drop in the Bz. ACE  orbits around the L1 Lagrange point about a million miles ahead of Earth in the direction of the Sun. There it studies the incoming particle streams from the Sun hours before they reach Earth. Credit: NOAA

I’m also in big believer in the the Advanced Composition Explorer (ACE) Bz plot. Bz is the direction of the embedded solar magnetic field that gift-wraps the streams of high-speed particles sent our way by the Sun. Like a magnet, it has a south pole and a north pole. When the south pole of the field sweeps by – what scientists call a negative Bz – the blast is more likely to link up with Earth’s magnetic field and spark auroras. When you see the Bz “head south” to -5 or lower, there’s a chance for auroras.

Now that you’re armed with information, cross your fingers all the indicators will point in the right direction for the aurora to continue tonight. And yes, Happy St. Patrick’s Day!

Skiing stop to take in the northern lights near Fairbanks Monday night. Credit: John Chumack
Skywatchers stop to take in the northern lights near Fairbanks Monday night. Credit: John Chumack

UPDATE: The storm continues and is now rated G4 or severe as of 10 a.m. CDT. Lucky for you if you live somewhere where it’s dark right now.

Slender Moonspotting, Occultations, Daytime Planets and More

Credit and copyright:

One of nature’s grandest ‘occultations’ of all is coming right up this Friday, as the Moon passes in front of the Sun for viewers in the high Arctic for a total solar eclipse. And although 99.999+% percent of humanity will miss totality, everyone can trace the fascinating path of the Moon as it moves back into the evening sky this weekend.

As of this writing, it looks like the fickle March weather is going to keep us guessing right up to eclipse day. Fear not, as the good folks over at the Virtual Telescope Project promise to bring us views of the eclipse live.  Not only does this eclipse fall on the same day as the start of astronomical spring in the northern hemisphere known as the vernal (northward) equinox, but it also marks the start of lunation 1141.

Ever try hunting for the slender crescent Moon in the dawn or dusk sky? The sport of thin Moon-spotting on the days surrounding the New Moon can push visual skills to the very limit. Binoculars are your friend in this endeavor, as you sweep back and forth attempting to see the slim fingernail of a Moon against the low contrast background sky.  Thursday morning March 19th provides a great chance for North American observers to spy an extremely thin Moon about 24 hours prior to Friday’s eclipse.

Credit:
Projected locales for the first sightings of the slim crescent Moon on the evening of March 20th. Credit: Created by author.

Unfortunately, most of North America misses the eclipse, though folks on the extreme east coast of Newfoundland might see a partially eclipsed sunrise if the day dawns clear.

The Moon will first be picked up in the evening sky post-eclipse this weekend. On Friday evening, folks in the southern United States might just be able to spy a 15 hour old Moon with optical assistance if skies are clear.

As the Moon fattens, expect to see it at its most photogenic as Ashen light or Earthshine illuminates its nighttime side. What you’re seeing is sunlight from the Earth being reflected back in a reverse (waning gibbous) phase as seen from the earthward side of the Moon. The prominence of Earthshine can vary depending on the amount of cloud and snow cover currently turned moonward, though of course, if it’s cloudy from your location, you won’t see a thing…

Credit
The universe smiles back: A skewed emoticon grouping of Venus, Mars and the Moon plus Earthshine on February 20th. Photo by author.

Watch that Moon over the coming weeks, as it has a date with destiny.

The Moon occults (passes in front of) two planets and one bright star in the coming week. First up is an occultation of Uranus on March 21st at around 11:00 UT/7:00 AM EDT. Sure, this one is for the most part purely academic and unobservable, as it occurs over central Africa in the daytime and is only 15 degrees east of the Sun. Still, if you can pick up the Moon on the evenings of March 20th or March 21st, you might just be able to spy nearby Uranus shining at +6th magnitude nearby before it heads towards solar conjunction on April 6th.

Credit:
The visibility footprint of the March 21st occultation of Mars by the Moon. Credit: Occult 4.1.

Next, the Moon occults Mars on March 21st at 22:00 UT/6:00 PM EDT for the southern Pacific coast of South America. North America will see an extremely close photogenic pairing of Luna and the Red Planet. This is one of seven occultations of a naked eye planet by the Moon for 2015, and the first of two for Mars for the year, the next falling on December 6th.

Credit
The Moon pairs with Venus on the evening of March 22nd. Credit: Stellarium.

Next up, the Moon has a tryst with brilliant Venus, passing 2.8 degrees from the Cytherean world on March 22nd. Can you spy -4th magnitude Venus near the two day old Moon before sunset? This is the stuff that has inspired astronomically-themed flags and skewed emoticon ‘smiley face conjunctions’ of yore, including the close pairing of Mars, Venus and the Moon seen worldwide last month.

Credit:
The occultation of Aldebaran by the Moon on March 25th. Credit: Occult 4.1.

Next up, the 30% illuminated Moon occults the bright star Aldebaran for Alaskan viewers at dusk on March 25th. This is the third occultation of the star by the Moon in the ongoing cycle, and to date, no one has, to our knowledge, successfully caught an occultation of Aldebaran in 2015… could this streak be broken next week?

Credit:
The daytime Moon paired with Jupiter on March 30th. Credit: Starry Night Education software.

And speaking of daytime planet-spotting, Jupiter will sit only five degrees south of the waxing gibbous Moon on the evening of March 30th. Can you spy the giant planet near the daytime Moon in the afternoon sky using binocs? And finally, watch that Moon, as it heads for the third total lunar eclipse of the last 12 months visible from the Americas and the Pacific region on the morning of April 4th

More to come!

New Binocular Nova Discovered in Sagittarius

This view shows the sky facing south-southeast just before the start of dawn in mid-March from the central U.S. The nova's located squarely in the Teapot constellation. Source: Stellarium

Looks like the Sagittarius Teapot’s got a new whistle. On March 15, John Seach of Chatsworth Island, NSW, Australia discovered a probable nova in the heart of the constellation using a DSLR camera and fast 50mm lens. Checks revealed no bright asteroid or variable star at the location. At the time, the new object glowed at the naked eye limit of magnitude +6, but a more recent observation by Japanese amateur Koichi Itagaki puts the star at magnitude +5.3, indicating it’s still on the rise. 

A 5th magnitude nova’s not too difficult to spot with the naked eye from a dark sky, and binoculars will show it with ease. Make a morning of it by setting up your telescope for a look at Saturn and the nearby double star Graffias (Beta Scorpii), one of the prettiest, low-power doubles in the summer sky.

Close-in map of Sagittarius showing the nova's location (R.A. 18h36m57s Decl. -28°55'42") and neighboring stars with their magnitudes. For clarity, the decimal points are omitted from the magnitudes, which are from the Tycho catalog. Source: Stellarium
Close-in map of Sagittarius showing the nova’s location (R.A. 18h36m57s Decl. -28°55’42”) and neighboring stars with their magnitudes. For clarity, the decimal points are omitted from the magnitudes, which are from the Tycho catalog. Source: Stellarium

Nova means “new”, but novae aren’t fresh stars coming to life but an explosion occurring on the surface of an otherwise faint star no one’s taken notice of – until the blast causes it to brighten 50,000 to 100,000 times. A nova occurs in a close binary star system, where a small but extremely dense and massive (for its size) white dwarf siphons hydrogen gas from its closely orbiting companion. After swirling about in a disk around the dwarf, it’s funneled down to the star’s 150,000 F° surface where gravity compacts and heats the gas until detonates in a titanic thermonuclear explosion. Suddenly, a faint star that wasn’t on anyone’s radar vaults a dozen magnitudes to become a standout “new star”.

Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf pulls material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA
Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf pulls material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA

Regular nova observers may wonder why so many novae are discovered in the Sagittarius-Scorpius Milky Way region. There are so many more stars in the dense star clouds of the Milky Way, compared to say the Big Dipper or Canis Minor, that the odds go up of seeing a relatively rare event like a stellar explosion is likely to happen there than where the stars are scattered thinly. Given this galactic facts of life, that means most of will have to set our alarms to spot this nova. Sagittarius doesn’t rise high enough for a good view until the start of morning twilight. For the central U.S., that’s around 5:45-6 a.m.

A now-you-see-it-now-you-don't animation showing the nova field before and after discovery. Credit: Ernesto Guido and Nick Howes
A now-you-see-it-now-you-don’t animation showing the nova field before and after discovery. Credit: Ernesto Guido and Nick Howes

Find a location with a clear view to the southeast and get oriented at the start of morning twilight or about 100 minutes before sunrise. Using the maps, locate Sagittarius below and to the east (left) of Scorpius. Once you’ve arrived, point your binoculars into the Teapot and star-hop to the nova’s location. I’ve included visual magnitudes of neighboring stars to help you estimate the nova’s brightness and track its changes in the coming days and weeks.

Whether it continues to brighten or soon begins to fade is anyone’s guess at this point. That only makes going out and seeing it yourself that much more enticing.

New photo of Nova Sagittarii. Note the pink color from hydrogen alpha emission. Credit: Erneso Guido and Nick Howes
New photo of Nova Sagittarii. Note the “warm” color from hydrogen alpha emission. Credit: Erneso Guido and Nick Howes

UPDATE: A spectrum of the object was obtained with the Liverpool Telescope March 16 confirming that the “new star” is indeed a nova. Gas has been clocked moving away from the system at more than 6.2 million mph (10 million kph)!

Happy Pi Day! Find Pi in the Sky

A lovely lemon angel meringue pie in honor of Pi Day. Who knew math could make you hungry? Credit: Bob King

Happy Pi Day! Pi is one of the few mathematical constants that immediately conjures up thoughts of food. Pies in particular. My wife Linda, inspired by this important day, prepared a lemon angel meringue pie I can’t wait to taste. 

The parts of a circle – the encompassing circumference, the radius and diameter, equal to 2x the radius. Pi is the ratio between the circumference and diameter of a circle.
The parts of a circle – the encompassing circumference, the radius and diameter, equal to 2x the radius. Pi is the ratio between the circumference and diameter of a circle.

Exactly what is pi? It’s the ratio of the circumference of a circle to its diameter or the number you get when you divide the circumference of any circle by its diameter. It starts with 3.1415 and goes on forever in a never-repeating pattern. Mathematicians call it an infinite decimal. Unlike 3.57 or 7.5, which have a finite number of numbers after the decimal point, pi continues on into infinity. Divide C by D and you’ll never get to the end.

Not that math geeks with computers haven’t tried. By October 2011 two Japanese guys calculated 10 trillion digits of pi, a world record. Nice work, but still far from infinity.

Pi Day happens every March 14 because the calendar date 3/14 is the same as pi’s first three digits. But this year’s pi celebration is an exceptional one. When you add on the last two digits of the year you get 3.1415. As you might guess, this date alignment happens just once a century.

Let’s go further. When the clocks strikes  9:26:53 a.m. and 9:26:53 p.m. today we can add an additional five digits to make 3.141592653. If you find yourself in a bar or pub this evening, see if you can convince the crowd to celebrate the world of mathematics with a toast to the moment.

Help yourself to six slices of Orion pi if you're out tonight. The brighter stars in constellations are named for the letters of the Greek alphabet with Alpha typically denoting the brightest. Most of the stars in Orion's shield are of similar brightness and neatly lined up, so each received the "pi" designation with an individual number. Created with Stellarium
Help yourself to six slices of Orion pi if you’re out tonight. The brighter stars in constellations are named for the letters of the Greek alphabet with Alpha typically denoting the brightest. Most of the stars in Orion’s shield are of similar brightness and neatly lined up, so each received the “pi” designation with an individual number. Created with Stellarium

If you’re not out sipping suds but find yourself instead at the telescope, consider celebrating the special moment with a hefty helping of Orion’s “pi stars” and the very attractive double star Pi Bootis. After proper names, the brighter stars in the constellations are labeled with Greek letters, meaning most groups have a “pi star”.

Pi Bootis is a striking, close double star that looks like pair of headlights approaching from interstellar space. The brighter star is magnitude 5 with a mag. 5.8 companion star just 5.5 arc seconds due east. Even a small telescope will split this beauty so long as you use a magnification around 60x or higher.

Pi Bootis, a beautiful double star comes up in the east around 11 p.m. local time. You'll find the magnitude 4.5 star not far below brilliant Arcturus, the brightest star in Bootes. Created with Stellarium
Pi Bootis, a beautiful double star comes up in the east around 11 p.m. local time. You’ll find the magnitude 4.5 star not far below brilliant Arcturus, the brightest star in Bootes. Created with Stellarium

Pi shows up in more places than your oven or neighborhood greasy spoon. Anything involving circles, spheres and ellipses feature pi front and center which is why astronomy and architecture require healthy servings of pi for sustenance. Galileo, Copernicus and Kepler used pi in their calculations of the sizes, distances from Earth, and orbits of the planets. It pops up in statistics, mechanics, cosmology and even in Einstein’s Theory of Relativity equations.

Coincidentally it’s also the wild-haired Einstein’s birthday today. Happy E=mc² Day, too!

Will the March 20th Total Solar Eclipse Impact Europe’s Solar Energy Grid?

The first eclipse of 2015 is coming right up on Friday, March 20th, and may provide a unique challenge for solar energy production across Europe.

Sure, we’ve been skeptical about many of the websites touting a ‘blackout’ and Y2K-like doom pertaining to the March 20th total solar eclipse as of late. And while it’s true that comets and eclipses really do bring out the ‘End of the World of the Week’ -types across ye ole web, there’s actually a fascinating story of science at the core of next week’s eclipse and the challenge it poses to energy production.

But first, a brief recap of the eclipse itself. Dubbed the “Equinox Eclipse,” totality only occurs over a swath of the North Atlantic and passes over distant Faroe and Svalbard Islands. Germany and central Europe can expect an approximately 80% partially obscured Sun at the eclipse’s maximum.

Credit
The magnitude of the March 20th solar eclipse across Europe. Credit: Michael Zeiler/GreatAmericanEclipse.com

We wrote a full guide with the specifics for observing this eclipse yesterday. But is there a cause for concern when it comes to energy production?

A power grid is a huge balancing act.  As power production decreases from one source, other sources must be brought online to compensate. This is a major challenge — especially in terms of solar energy production.

Residential solar panels in Germany. Credit: Wikimedia Commons/ Sideka Solartechnik.
Residential solar panels in Germany. Credit: Wikimedia Commons/ Sideka Solartechnik.

Germany currently stands at the forefront of solar energy technology, representing a whopping quarter of all solar energy capacity installed worldwide. Germany now relies of solar power for almost 7% of its annual electricity production, and during the sunniest hours, has used solar panels to satisfy up to 50% of the country’s power demand.

We recently caught up with Barry Fischer to discuss the issue. Fischer is the Head Writer at Opower, a software company that uses data to help electric and gas utilities improve their customer experience. Based on Opower’s partnerships with nearly 100 utilities worldwide, the company has amassed  the world’s largest energy dataset of its kind which documents energy consumption patterns across more than 55 million households around the globe.

A study published last week by Opower highlights data from the partial solar eclipse last October over the western United States. There’s little historical precedent for the impact that an eclipse could have on the solar energy grid. For example, during the August 11th, 1999 total solar eclipse which crossed directly over Europe, less than 0.1% of utility electricity was generated using solar power.

Credit:
Looking at the drop in power production during the October 2014 solar eclipse. Credit: Opower.

What they found was intriguing. Although the 2014 partial solar eclipse only obscured 30 to 50% of the Sun, solar electric production dropped over an afternoon span of nearly three hours before returning to a normal pattern.

Examining data from 5,000 solar-powered homes in the western United States, Opower found that during the eclipse those homes sent 41% less electricity back to the grid than normal. Along with a nearly 1,000 megawatt decline in utility-scale solar power production, these drop-offs were compensated for by grid operators ramping up traditional thermal power plants that were most likely fueled by natural gas.

No serious problems were experienced during the October 23rd, 2014 partial solar eclipse in terms of solar electricity production in the southwestern United States, though it is interesting to note that the impact of the eclipse on solar energy production could be readily detected and measured.

Credit
The projected effect of the March 20th eclipse on solar power production. Credit: Opower.

How does the drop and surge in solar power output anticipated for the March 20th eclipse differ from, say, the kind presented by the onset of night, or a cloudy day? “The impact of an eclipse can register broadly – and unusually rapidly – across an entire region,” Fischer told Universe Today. On a small scale, one area many be cloudy, while on a larger regional scale, other areas of clear or partly sunny skies can compensate. An eclipse — even a partial one — is fundamentally different, because the sudden onset and the conclusion are relatively uniform over a large region.

The March 20th event offers an unprecedented chance to study the effects of an eclipse on large-scale solar production up close. A study (in German) by the University of Applied Sciences in Berlin suggests that solar power production will fall at a rate 2.7 times faster than usual as the eclipse progresses over a span of 75 minutes. This is the equivalent of switching off one medium-sized power plant per minute.

The anticipated slingshot might be just as challenging, as  18 gigawatts of power comes back online at the conclusion of the eclipse in just over an hour. And as opposed to the 2014 eclipse over the U.S. which ended towards sunset, the key rebound period for the March 20th eclipse will be around local noon and during a peak production time.

Fischer also noted that “the second half of the partial solar eclipse will also pose a notable challenge” for the grid, as it is flooded with solar power production 3.5 times faster than normal. This phenomenon could also serve as a great model for what could occur daily on a grid that’s increasingly solar power reliant in the future, as energy production ramps up daily at sunrise. Such a reality may be only 15 years away, as Germany projects installed solar capacity to top 66 gigawatts by 2030.

Credit:
The Crescent Dunes Solar Energy Project outside of Tonopah, Nevada. Credit:  Wikimedia Commons/Amble. Licensed under a CC BY-SA 4.0 license.

What’s the anticipated impact projected for a future eclipse such as, say, the 2017 and 2024 total solar eclipses over the U.S.?

This eclipse may serve as a great dry run for modeling what could occur as reliance on solar energy production grows.

Such is the modern technical society we live in. It’s fascinating to think that eclipses aren’t only a marvelous celestial spectacle, but their effects on power production may actually serve as a model for the smart grids of tomorrow.

 

 

 

NASA Unravels Mysteries of Magnetic Reconnection with Nighttime Blastoff of MMS Satellite Quartet – Watch Live

A United Launch Alliance Atlas V 421 rocket is poised for blastoff at Cape Canaveral Air Force Station's Space Launch Complex-41 in preparation for launch of NASA's Magnetospheric Multiscale (MMS) science mission on March 12, 2015. Credit: Ken Kremer- kenkremer.com

KENNEDY SPACE CENTER, FL – A state of the art quartet of identical science satellites aimed at unraveling the mysteries of the process known as magnetic reconnection is slated for a spectacular nighttime blastoff tonight, March 12, atop a United Launch Alliance Atlas V rocket on Cape Canaveral, Florida.

The $1.1 Billion Magnetospheric Multiscale (MMS) mission is comprised of four formation flying and identically instrumented observatories whose objective is providing the first three-dimensional views of a fundamental process in nature known as magnetic reconnection.

Magnetic reconnection is a little understood natural process whereby magnetic fields around Earth connect and disconnect while explosively releasing vast amounts of energy. It occurs throughout the universe.

Liftoff is slated for 10:44 p.m. EDT Thursday March 12 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida.

The launch window extends for 30 minutes. You can watch the MMS launch live on NASA TV, below, starting at 8 p.m.



Broadcast live streaming video on Ustream

Spectators ringing the Florida space coast region and ranging well beyond should be treated to a magnificent fireworks display and skyward streak of perhaps several minutes – weather and clouds permitting.

Currently the weather forecast is 70 percent “GO” for favorable conditions at launch time. The primary concerns for a safe and successful launch are for cumulus clouds and thick clouds.

In the event of a 24 hour delay for any reason the weather forecast is 60 percent “GO.”

Technicians work on NASA’s 20-foot-tall Magnetospheric Multiscale (MMS) mated quartet of stacked observatories in the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
Technicians work on NASA’s 20-foot-tall Magnetospheric Multiscale (MMS) mated quartet of stacked observatories in the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

The 195 foot tall rocket and encapsulated MMS satellite payload were rolled out to Space Launch Complex-41 on Wednesday March 10 at 10 a.m. on the Mobile Launch Platform (MLP) about 1800 feet from the Vertical Integration Facility or VIF to the Cape Canaveral pad.

The two stage Atlas V rocket will deliver the MMS constellation to a highly elliptical orbit.

The venerable rocket with a 100% success rate will launch in the Atlas V 421 configuration with a 4-meter diameter Extra Extended Payload Fairing along with two Aerojet Rocketdyne solid rocket motors attached to the Atlas booster first stage.

A United Launch Alliance Atlas V 421 rocket is poised for blastoff at Cape Canaveral Air Force Station's Space Launch Complex-41 in preparation for launch of NASA's Magnetospheric Multiscale (MMS) science mission on March 12, 2015.  Credit: Ken Kremer- kenkremer.com
A United Launch Alliance Atlas V 421 rocket is poised for blastoff at Cape Canaveral Air Force Station’s Space Launch Complex-41 in preparation for launch of NASA’s Magnetospheric Multiscale (MMS) science mission on March 12, 2015. Credit: Ken Kremer- kenkremer.com

The Atlas first stage is powered by the RD AMROSS RD-180 engine and the Centaur upper stage is powered by the Aerojet Rocketdyne RL10A engine producing 22,300 lb of thrust.

The first stage is 12.5 ft in diameter and fueled with liquid propellants. The RD-180 burns RP-1 highly purified kerosene and liquid oxygen and delivers 860,200 lb of sea level thrust.

This is ULA’s 4th launch in 2015, the 53nd Atlas V mission and the fourth Atlas V 421 launch.

“This is the perfect time for this mission,” said Jim Burch, principal investigator of the MMS instrument suite science team at Southwest Research Institute (SwRI) in San Antonio, Texas.

“MMS is a crucial next step in advancing the science of magnetic reconnection. Studying magnetic reconnection near Earth will unlock the ability to understand how this process works throughout the entire universe.”

After a six month check out phase the probes will start science operation in September.

Unlike previous missions to observe the evidence of magnetic reconnection events, MMS will have sufficient resolution to measure the characteristics of ongoing reconnection events as they occur.

The four probes were built in-house by NASA at the agency’s Goddard Space Flight Center in Greenbelt, Maryland where I visited them during an inspection tour by NASA Administrator Charles Bolden.

I asked Bolden to explain the goals of MMS during a one-on-one interview.

“MMS will help us study the phenomena known as magnetic reconnection and help us understand how energy from the sun – magnetic and otherwise – affects our own life here on Earth,” Bolden told Universe Today.

“MMS will study what effects that process … and how the magnetosphere protects Earth.”

MMS measurements should lead to significant improvements in models for yielding better predictions of space weather and thereby the resulting impacts for life here on Earth as well as for humans aboard the ISS and robotic satellite explorers in orbit and the heavens beyond.

The best place to study magnetic reconnection is ‘in situ’ in Earth’s magnetosphere. This will lead to better predictions of space weather phenomena.

Magnetic reconnection is also believed to help trigger the spectacular aurora known as the Northern or Southern lights.

NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

MMS is a Solar Terrestrial Probes Program, or STP, mission within NASA’s Heliophysics Division

Watch for Ken’s ongoing MMS coverage and he’ll be onsite at the Kennedy Space Center in the days leading up to the launch on March 12.

Stay tuned here for Ken’s continuing MMS, Earth and planetary science and human spaceflight news.

Ken Kremer

A Complete Guide to the March 20th Total Solar Eclipse

Credit

The first of two eclipse seasons for the year is upon us this month, and kicks off with the only total solar eclipse for 2015 on Friday, March 20th.

And what a bizarre eclipse it is. Not only does this eclipse begin just 15 hours prior to the March equinox marking the beginning of astronomical spring in the northern hemisphere, but the shadow of totality also beats path through the high Arctic and ends over the North Pole.

Credit:
An animation of the March 20th eclipse. Credit: NASA/GSFC/AT Sinclair.

Already, umbraphiles — those who chase eclipses — are converging on the two small tracts of terra firma where the umbra of the Moon makes landfall: the Faroe and Svalbard islands. All of Europe, the northern swath of the African continent, north-central Asia and the Middle East will see a partial solar eclipse, and the eclipse will be deeper percentage-wise the farther north you are .

2015 features four eclipses in all: two total lunars and two solars, with one total solar and one partial solar eclipse. Four is the minimum number of eclipses that can occur in a calendar year, and although North America misses out on the solar eclipse action this time ’round, most of the continent gets a front row seat to the two final total lunar eclipses of the ongoing tetrad on April 4th and September 28th.

How rare is a total solar eclipse on the vernal equinox? Well, the last total solar eclipse on the March equinox occurred back in 1662 on March 20th. There was also a hybrid eclipse — an eclipse which was annular along a portion of the track, and total along another — on March 20th, 1681. But you won’t have to wait that long for the next, as another eclipse falls on the northward equinox on March 20th, 2034.

Credit
The path of the March 20th eclipse across Europe, including start times for the partial phases, and the path of totality, click to enlarge. For more maps showing the percentage of occlusion, elevation, and more, click here. Credit: Michael Zeiler/GreatAmercianEclipse.com.

Note that in the 21st century, the March equinox falls on March 20th, and will start occasionally falling on March 19th in 2044. We’re also in that wacky time of year where North America has shifted back to ye ‘ole Daylight Saving (or Summer) Time, while Europe makes the change after the eclipse on March 29th. It really can wreak havoc with those cross-time zone plans, we know…

The March 20th eclipse also occurs only a day after lunar perigee, which falls on March 19th at 19:39 UT. This is also one of the closer lunar perigees for 2015 at 357,583 kilometres distant, though the maximum duration of totality for this eclipse is only 2 minutes and 47 seconds just northeast of the Faroe Islands.

Credit:
Views from selected locales in Europe and Africa. Credit: Stellarium.

This eclipse is number 61 of 71 in solar saros series 120, which runs from 933 to 2754 AD. It’s also the second to last total in the series, with the final total solar eclipse for the saros cycle occurring one saros later on March 30th, 2033.

And speaking of obscure eclipse terminology, check out this neat compendium we came across in research. What’s an Exeligmos? How many Heptons are in a Gregoriana?

The 462 kilometre wide path of the eclipse touches down south of Greenland at 9:13 UT at sunrise, before racing across the North Atlantic towards the pole and departing the Earth at 10:21 UT. The sedate partial phases for the eclipse worldwide start at 7:40 UT, and run out to 11:51 UT.

What would it look like to sit at the North Pole and watch a total solar eclipse on the first day of Spring? It would be a remarkable sight, as the disk of the Sun skims just above the horizon for the first time since the September 2014 equinox. Does this eclipse occur at sunrise or sunset as seen from the pole? It would be a rare spectacle indeed!

Credit
An equinoctal eclipse as simulated from the North Pole. Credit: Stellarium.

Alas, this unique view from the pole will more than likely go undocumented. A similar eclipse was caught in 2003 from the Antarctic, and a few intrepid eclipse chasers, including author David Levy did manage to make the journey down under to witness totality from the polar continent.

Credit
Practicing eclipse safety in Africa. Credit: Michael Zeiler/GreatAmericanEclipse.com

Safety is paramount when observing the Sun and a solar eclipse. Eye protection is mandatory during all partial phases across Europe, northern Asia, North Africa and the Middle East. A proper solar filter mask constructed of Baader safety film is easy to construct, and should fit snugly over the front aperture of a telescope. No. 14 welder’s goggles are also dense enough to look at the Sun, as are safety glasses specifically designed for eclipse viewing. Observing the Sun via projection or by using a pinhole projector is safe and easy to do.

Credit
A solar filtered scope ready to go in Tucson, Arizona. Credit: photo by author.

Weather is always the big variable in the days leading up to any eclipse. Unfortunately, March in the North Atlantic typically hosts stormy skies, and the low elevation of the eclipse in the sky may hamper observations as well. From the Faroe Islands, the Sun sits 18 degrees above the horizon during totality, while from the Svalbard Islands it’s even lower at 12 degrees in elevation. Much of Svalbard is also mountainous, making for sunless pockets of terrain that will be masked in shadow on eclipse day. Mean cloud amounts for both locales run in the 70% range, and the Eclipser website hosts a great in-depth climatology discussion for this and every eclipse.

Credit
The view of totality and the planets as seen from the Faroe Islands. Credit: Starry Night.

But don’t despair: you only need a clear view of the Sun to witness an eclipse!

Solar activity is also another big variable. Witnesses to the October 23rd, 2014 partial solar eclipse over the U.S. southwest will recall that we had a massive and very photogenic sunspot turned Earthward at the time. The Sun has been remarkably calm as of late, though active sunspot region 2297 is developing nicely. It will have rotated to the solar limb come eclipse day, and we should have a good grasp on what solar activity during the eclipse will look like come early next week.

And speaking of which: could an auroral display be in the cards for those brief few minutes of totality? It’s not out of the question, assuming the Sun cooperates.  Of course, the pearly white corona of the Sun still gives off a considerable amount of light during totality, equal to about half the brightness of a Full Moon. Still, witnessing two of nature’s grandest spectacles — a total solar eclipse and the aurora borealis — simultaneously would be an unforgettable sight, and to our knowledge, has never been documented!

We also put together some simulations of the eclipse as seen from Earth and space:

Note that an area of southern Spain may witness a transit of the International Space Station during the partial phase of the eclipse. This projection is tentative, as the orbit of the ISS evolves over time. Be sure to check CALSky for accurate predictions in the days leading up to the eclipse.

Credit
The ISS transits the Sun during the eclipse around 9:05 UT as seen from southern Spain. Credit: Starry Night.

Can’t make it to the eclipse? Live in the wrong hemisphere? There are already a few planned webcasts for the March 20th eclipse:

Astronomia Practica plans to post photos in near real time of the eclipse from northern Scotland.

-Slooh has plans to broadcast the eclipse from the Faroe Islands.

-And here’s another webcast from the Faroe Islands and the path of totality courtesy of Kringvarp Føroya:

-Here’s another broadcast planned of the partial stages of the eclipse as seen from the UK.

-And our friends over at the Virtual Telescope Project also plans on webcasting the solar eclipse:

… and speaking of which, there’s also an exciting new Kickstarter project entitled Chasing Shadows which is headed to the Arctic to follow veteran eclipse chaser Geoff Sims (@beyond_beneath of Twitter):

And stay tuned, as North America and the Pacific region will witness another total lunar eclipse on April 4th 2015. And we’ve only got one more total solar eclipse across Southeast Asia in 2016 before the total solar eclipse of August 21st 2017 spanning the U.S.

Let the first eclipse season of 2015 begin!

Next… how will the solar eclipse affect the European solar grid? Expect an article on just that soon!

If You Could See in Radio These Are the Crazy Shapes You’d See in the Sky

"Color" radio image of galactic cluster Abell 2256. Credit: Owen et al., NRAO/AUI/NSF.

Even though it’s said that the average human eye can discern from seven to ten million different values and hues of colors, in reality our eyes are sensitive to only a very small section of the entire electromagnetic spectrum, corresponding to wavelengths in the range of 400 to 700 nanometers. Above and below those ranges lie enormously diverse segments of the EM spectrum, from minuscule yet powerful gamma rays to incredibly long, low-frequency radio waves.

Astronomers observe the Universe in all wavelengths because many objects and phenomena can only be detected in EM ranges other than visible light (which itself can easily be blocked by clouds of dense gas and dust.) But if we could see in radio waves the same way we do in visible light waves – that is with longer wavelengths being perceived as “red” and shorter wavelengths seen as “violet,” with all the blues, greens, and yellows in between – our world would look quite different… especially the night sky, which would be filled with fantastic shapes like those seen above!

View of the VLA in New Mexico. Image courtesy of NRAO/AUI.
View of the VLA in New Mexico. Image courtesy of NRAO/AUI.

Created from observations made at the Very Large Array in New Mexico, the image above shows a cluster of over 500 colliding galaxies located 800 million light-years away called Abell 2256. An intriguing target of study across the entire electromagnetic spectrum, here Abell 2256 (A2256 for short) has had its radio emissions mapped to the corresponding colors our eyes can see.

Within an area about the same width as the full Moon a space battle between magical cosmic creatures seems to be taking place! (In reality A2256 spans about 4 million light-years.)

See a visible-light image of A2256 by amateur astronomer Rick Johnson here.

The VLA radio observations will help researchers determine what’s happening within A2256, where multiple groups of galaxy clusters are interacting.

“The image reveals details of the interactions between the two merging clusters and suggests that previously unexpected physical processes are at work in such encounters,” said Frazer Owen of the National Radio Astronomy Observatory (NRAO).

Radio image of the night sky. (Credit: Max Planck Institute for Radio Astronomy, generated by Glyn Haslam.)
Radio image of the night sky. (Credit: Max Planck Institute for Radio Astronomy, generated by Glyn Haslam.)

Learn more about NRAO and radio astronomy here, and you can get an idea of what our view of the Milky Way would look like in radio wavelengths on the Square Kilometer Array’s website.

Source: NRAO