Mercury and Venus an Awesome Duo at Dusk

You couldn't miss Mercury and Venus together last night January 9th 45 minutes after sunset in the southwestern sky. Very easy to see! They'll be even closer tonight. Credit: Bob King

As Universe Today’s Dave Dickinson described earlier this week not only has Venus returned to the evening sky, but Mercury has climbed up from the horizon to join it. Last night (Jan. 9th) the two planets were separated by just a hair more than one Moon diameter. The photo only hints at amazingly easy the pair was to see. Consider the duo a tasty hors d’oeuvres before the onset of night and the Comet Lovejoy show.

Tonight the duo will be at their closest and remain near one another for the next week or so. This is one of Mercury’s best apparitions of the year for northern hemisphere skywatchers and well worth donning your winter uniform of coat, boots, hat and thick gloves for a look. Just find a location with a decent view of the southwestern horizon and start looking about a half hour after sunset. Mercury and Venus will be about 10° or one fist held at arm’s length high above the horizon.

Through a telescope both Venus and Mercury are in gibbous phase with Venus more fully filled out. Both are also very small with Venus about 10 arc seconds and Mercury 6 seconds across. Source: Stellarium
Through a telescope both Venus and Mercury are in gibbous phase with Venus more fully filled out. Both are very small with Venus about 10 arc seconds in diameter and Mercury 6 seconds. Source: Stellarium

Venus will jump right out. Mercury’s a couple magnitudes fainter and lies to the right of the goddess planet.  By 45 minutes after sunset, Mercury gets even easier to see. Find your sunset time HERE so you can best plan your outing.

Mark your calendars for a cool conjunction of the 1-day-old lunar crescent, Mercury and Venus on January 21st. Source: Stellarium
Mark your calendars for a cool conjunction of the 1-day-old lunar crescent, Mercury and Venus on January 21st. Source: Stellarium

Because both planets are still fairly low in the sky and far away, they present only tiny, blurry gibbous disks in the telescope. Later this spring, Venus will climb higher and show its changing phases more clearly. Keep watch the coming week to catch the ever-shifting positions of Venus and Mercury in the evening sky as each follows the binding arc of its own orbit. The grand finale occurs on January 21st when a skinny crescent Moon joins the duo (Mercury now fading) for a triumphant trio. Has this been an exciting month or what?

New Mission: DSCOVR Satellite will Monitor the Solar Wind

Artist's concept of the DSCOVR satellite in orbit. Credit: NOAA

Solar wind – that is, the stream of charged electrons and protons that are released from the upper atmosphere of the Sun – is a constant in our Solar System and generally not a concern for us Earthlings. However, on occasion a solar wind shock wave or Coronal Mass Ejection can occur, disrupting satellites, electronics systems, and even sending harmful radiation to the surface.

Little wonder then why NASA and the National Oceanic and Atmospheric Administration (NOAA) have made a point of keeping satellites in orbit that can maintain real-time monitoring capabilities. The newest mission, the Deep Space Climate Observatory (DSCOVR) is expected to launch later this month.

A collaborative effort between NASA, the NOAA, and the US Air Force, the DSCOVR mission was originally proposed in 1998 as a way of providing near-continuous monitoring of Earth. However, the $100 million satellite has since been re-purposed as a solar observatory.

In this capacity, it will provide support to the National Weather Service’s Space Weather Prediction Center, which is charged with providing advanced warning forecasts of approaching geomagnetic storms for people here on Earth.

Illustration showing the DSCOVR satellite in orbit L1 orbit, located one million miles away from Earth. At this location, the satellite will be in the best position to monitor the constant stream of particles from the sun, known as solar wind, and provide warnings of approaching geomagnetic storms caused by solar wind about an hour before they reach Earth. Credit: NOAA
Illustration showing the DSCOVR satellite in L1 orbit, located 1.5 million km  (930,000 mi) away from Earth. Credit: NOAA

These storms, which are caused by large-scale fluctuations in solar wind, have the potential of disrupting radio signals and electronic systems, which means that everything from telecommunications, aviation, GPS systems, power grids, and every other major bit of infrastructure is vulnerable to them.

In fact, a report made by the National Research Council estimated that recovering from the most extreme geomagnetic storms could take up to a decade, and cost taxpayers in the vicinity of $1 to $2 trillion dollars. Add to the that the potential for radiation poisoning to human beings (at ground level and in orbit), as well as flora and fauna, and the need for alerts becomes clear.

Originally, the satellite was scheduled to be launched into space on Jan. 23rd from the Cape Canaveral Air Force Station, Florida. However, delays in the latest resupply mission to the International Space Station have apparently pushed the date of this launch back as well.

According to a source who spoke to SpaceNews, the delay of the ISS resupply mission caused scheduling pressure, as both launches are being serviced by SpaceX from Cape Canaveral. However, the same source indicated that there are no technical problems with the satellite or the Falcon 9 that will be carrying it into orbit. It is now expected to be launched on Jan. 29th at the latest.

Credit: NOAA
SpaceX will be providing the launch service for DSCOVR, which is now expected to be launched by the end of Jan aboard a Falcon 9 rocket (pictured here). Credit: NOAA

Once deployed, DSCOVR will eventually take over from NASA’s aging Advanced Composition Explorer (ACE) satellite, which has been in providing solar wind alerts since 1997 and is expected to remain in operation until 2024. Like ACE, the DSCOVER will orbit Earth at Lagrange 1 Point (L1), the neutral gravity point between the Earth and sun approximately 1.5 million km (930,000 mi) from Earth.

From this position, DSCOVR will be able to provide advanced warning, roughly 15 to 60 minutes before a solar wind shockwave or CME reaches Earth. This information will be essential to emergency preparedness efforts, and the data provided will also help improve predictions as to where a geomagnetic storm will impact the most.

These sorts of warnings are essential to maintaining the safety and integrity of infrastructure, but also the health and well-being of people here on Earth. Given our dependence on high-tech navigation systems, electricity, the internet, and telecommunications, a massive geomagnetic storm is not something we want to get caught off guard by!

And be sure to check out this video of the DSCOVR mission, courtesy of the NOAA:

Further Reading: NOAA

How NASA Is Saving Fuel On Its Outer Solar System Missions

Saturn. Image Credit: NASA/JPL/SSI
Saturn. Image Credit: NASA/JPL/SSI

While Saturn is far away from us, scientists have just found a way to make the journey there easier. A new technique pinpointed the position of the ringed gas giant to within just two miles (four kilometers).

It’s an impressive technological feat that will improve spacecraft navigation and also help us better understand the orbits of the outer planets, the Jet Propulsion Laboratory (JPL) said.

It’s remarkable how much there is to learn about Saturn’s position given that the ancients discovered it, and it’s easily visible with the naked eye. That said, the new measurements with the Cassini  spacecraft and the Very Long Baseline Array radio telescope array are 50 times more precise than previous measurements with telescopes on the ground.

“This work is a great step toward tying together our understanding of the orbits of the outer planets of our solar system and those of the inner planets,” stated study leader Dayton Jones of JPL.

Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.
Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute/Gordan Ugarkovic

What’s even more interesting is scientists have been using the better information as it comes in. Cassini began using the improved method in 2013 to improve its precision when it fires its engines.

This, in the long term, leads to fuel savings — allowing the spacecraft a better chance of surviving through the end of its latest mission extension, which currently is 2017. (It’s been orbiting Saturn since 2004.)

The technique is so successful that NASA plans to use the same method for the Juno spacecraft, which is en route to Jupiter for a 2016 arrival.

Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach. (NASA/JPL-Caltech)
Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach. (NASA/JPL-Caltech)

Scientists are excited about Cassini’s mission right now because it is allowing them to observe the planet and its moons as it reaches the summer solstice of its 29-year orbit.

This could, for example, provide information on how the climate of the moon Titan changes — particularly with regard to its atmosphere and ethane/methane-riddled seas, both believed to be huge influencers for the moon’s temperature.

Beyond the practical applications, the improved measurements of Saturn and Cassini’s position are also giving scientists more insight into Albert Einstein’s theory of general relatively, JPL stated. They are taking the same techniques and applying them to observing quasars — black-hole powered galaxies — when Saturn passes in front of them from the viewpoint of Earth.

Source: Jet Propulsion Laboratory

Disorderly Conduct: Andromeda’s Mature Stars Exhibit Surprising Behavior, Says Study

The Andromeda Galaxy will collide with the Milky Way in the future. Credit: Adam Evans
The Andromeda Galaxy. Credit: Adam Evans

To a distant observer, our own Milky Way and the Andromeda galaxy would probably look very similar. Although Andromeda is longer, more massive, and more luminous than the Milky Way, both galaxies are vast spirals composed of hundreds of millions of stars. But new research presented at this week’s AAS conference in Seattle suggests that there are other differences as well – namely, in the movement and behavior of certain stellar age groups. This observation is the first of its kind, and raises new questions about the factors that contribute to the formation of spiral galaxies like our own.

Armed with data from both the Hubble Space Telescope and the Keck Observatory in Hawaii, a group of astronomers from UC Santa Cruz resolved 10,000 tiny points of light in the Andromeda galaxy into individual stars and used their spectra to calculate the stars’ ages and velocities – a feat never before accomplished for a galaxy outside of our own.

Led by Puragra Guhathakurta, a professor of astrophysics, and Claire Dorman, a graduate student, the researchers found that in Andromeda, the behavior of older stars is surprisingly more frazzled than that of their younger counterparts; that is, they have a much wider range of velocities around the galactic center. Meanwhile, in the Milky Way, stars of all ages seem to coexist far more peacefully, moving along at the same speed in a consistent, ordered pack.

The astronomers believe that this asymmetry causes Andromeda to look more distinct from our own galaxy than previously thought. “If you could look at [Andromeda’s] disk edge on, the stars in the well-ordered, coherent population would lie in a very thin plane, whereas the stars in the disordered population would form a much puffier layer,” said Dorman.

What could account for such disorderly conduct among Andromeda’s older generation? It is possible that these more mature stars could have been disturbed long ago, during episodes of the kind of “galactic cannibalism” that is thought to go on among most spiral galaxies. Indeed, trails of stars in its outer halo suggest that Andromeda has collided with and consumed a number of smaller galaxies over the course of its lifetime; however, these effects cannot completely account for the jumbled flow of Andromeda’s most elderly stars.

A few examples of merging galaxies. NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), K. Noll (STScI), and J. Westphal (Caltech)
A few examples of galactic cannibalism. NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), K. Noll (STScI), and J. Westphal (Caltech)

Astronomers believe that a second explanation could fill in the blanks – one that owes to events occurring far earlier in history, during the birth of the galaxy itself. After all, if Andromeda originated from a lumpy, irregular gas cloud, its oldest stars would naturally appear fairly disordered. Over time, the parent gas would have settled down, giving rise to ever more organized generations of stars.

Guhathakurta, Dorman, and the rest of the team hope that their work will encourage other scientists to create simulations that will better constrain these possibilities. To them, understanding Andromeda is a vital key to learning more about our own galaxy. Guhathakurta explained, “In the Andromeda galaxy we have the unique combination of a global yet detailed view of a galaxy similar to our own. We have lots of detail in our own Milky Way, but not the global, external perspective.”

Now, thanks to this new research, scientists can cite our own galaxy’s comparative orderliness as strong evidence that we live in a quieter, less cannibalistic neighborhood than most other spiral galaxies in the Universe. “Even the most well ordered Andromeda stars are not as well ordered as the stars in the Milky Way’s disk,” said Dorman.

At least until 4 billion years from now, when the Milky Way and Andromeda collide.

We may as well enjoy the A+ for conduct while we can.

New 3-D-Printed Models of Eta Carinae Reveal Hidden Features

A collection of 3-D-printed models of a new supercomputer simulation tracking the interacting winds of Eta Carinae. In the foreground, the interaction region (left) is seen three months after the stars' closest approach, when newly identified spine-like protrusions form along a cavity created in the primary star's wind. Credit: NASA's Goddard Space Flight Center

In the constellation of Carina, lies the most luminous and mysterious star system within 10,000 light-years. The two massive stars, better known as Eta Carinae, erupted twice in the 19th Century for reasons astronomers still don’t understand, and are now approaching the point where one might soon detonate as a supernova.

Astronomers from the 225th meeting of the American Astronomical Society weighed in on this supermassive showoff earlier today. New findings include 3-D printed models that reveal never-before-seen features of the stars’ interactions.

But first, let’s better orient ourselves with this elusive system. The brighter, primary star has about 90 times the mass of the Sun and outshines it five million times. The properties of the smaller, companion star are still hotly contested. Both stars produce powerful gaseous outflows called stellar winds. Although these winds enshroud the stars, blocking all efforts to directly observe them, the gas is hot and dense enough to emit observable X-rays.

The X-ray emission, however, dramatically changes when the stars reach their point of closest approach, or periastron. As the stars approach one another, their X-ray output gradually brightens, reaching a maximum when the stars are as close as Mars is to the Sun. But just past periastron, the X-rays drop suddenly as the companion star quickly moves around the primary star.

Now, a research team has developed a 3-D simulation, looking at 11 years worth of data and three periastron passages, from multiple NASA satellites and ground-based telescopes.

According to the team’s model, the winds from each star have different properties. The primary star’s winds are extremely slow, blowing out at one million miles per hour, while the hotter companion star’s winds are much faster, clocking in at a speed six times greater. The primary star’s winds are also extremely dense, carrying away the equivalent mass of our Sun every thousand years, while the companion’s wind carries off 100 times less material.

But the research team didn’t stop there. “Using a commercial 3-D printer … we have found a way to 3-D print the output from our computer simulations of Eta Car,” said Thomas Madura, also from NASA Goddard Space Flight Center. “And as far as we are aware these are the world’s first 3-D prints of a supercomputer simulation of a complex astrophysical system.”

The printed model can be separated into two sections: the dense wind from the primary star and the more tenuous wind from the companion star. Slicing the model in half therefore reveals the cavity carved by the companion star’s wind into the primary star’s wind.

“As a result of doing this 3-D printing work, we actually discovered these finger-like protrusions that extend radially out of the spiral wind-wind collision region,” said Madura. “These are features that we didn’t even really know existed” prior to this. They’re likely the result of physical instabilities that arise when the fast wind collides with the slower wind, which is essentially a wall of gas.

Both of the massive stars of Eta Carinae might one day end their lives in supernova explosions. “For stars, mass determines their destiny. But for massive stars, mass loss determines their destiny,” said Michael Corcoran from the NASA Goddard Space Flight Center.

Although the stars continue to lose mass at high rates, there is no evidence to suggest an imminent demise of either star.

The Dark Energy Survey Begins to Reveal Previously Unknown Trans-Neptunian Objects

An artist's concept of a trans-Neptunian object(TNOs). The distant sun is reduced to a bright star at a distance of over 3 billion miles. The Dark Energy Survey (DES) has now released discovery of more TNOs. (Illustration Credit: NASA)

Sometimes when you stare at something long enough, you begin to see things. This is not the case with optical sensors and telescopes. Sure, there is noise from electronics, but it’s random and traceable. Stargazing with a telescope and camera is ideal for staring at the same patches of real estate for very long and repeated periods. This is the method used by the Dark Energy Survey (DES), and with less than one percent of the target area surveyed, astronomers are already discovering previously unknown objects in the outer Solar System.

The Dark Energy Survey is a five year collaborative effort that is observing Supernovae to better understand the structures and expansion of the universe. But in the meantime, transient objects much nearer to home are passing through the fields of view. Trans-Neptunian Objects (TNOs), small icy worlds beyond the planet Neptune, are being discovered. A new scientific paper, released as part of this year’s American Astronomical Society gathering in Seattle, Washington, discusses these newly discovered TNOs. The lead authors are two undergraduate students from Carleton College of Northfield, Minnesota, participating in a University of Michigan program.

The Palomar Sky Survey (POSS-1, POSS-2), the Sloan Digital Sky Survey, and every other sky survey have mapped not just the static, nearly unchanging night sky, but also transient events such as passing asteroids, comets, or novae events. The Dark Energy Survey is looking at the night sky for structures and expansion of the Universe. As part of the five year survey, DES is observing ten select 3 square degree fields for Type 1a supernovae on a weekly basis. As the survey proceeds, they are getting more than anticipated. The survey is revealing more trans-Neptunian objects. Once again, deep sky surveys are revealing more about our local environment – objects in the farther reaches of our Solar System.

DES is an optical imaging survey in search of Supernovae that can be used as weather vanes to measure the expansion of the universe. This expansion is dependent on the interaction of matter and the more elusive exotic materials of our Universe – Dark Energy and Dark Matter. The five year survey is necessary to achieve a level of temporal detail and a sufficient number of supernovae events from which to draw conclusions.

In the mean time, the young researchers of Carleton College – Ross Jennings and Zhilu Zhang – are discovering the transients inside our Solar System. Led by Professor David Gerdes of the University of Michigan, the researchers started with a list of nearly 100,000 observations of individual transients. Differencing software and trajectory analysis helped identify those objects that were trans-Neptunian rather than asteroids of the inner Solar System.

While asteroids residing in the inner solar system will pass quickly through such small fields, trans-Neptunian objects (TNOs) orbit the Sun much more slowly. For example, Pluto, at an approximate distance of 40 A.U. from the Sun, along with the object Eris, presently the largest of the TNOs, has an apparent motion of about 27 arc seconds per day – although for a half year, the Earth’s orbital motion slows and retrogrades Pluto’s apparent motion. The 27 arc seconds is approximately 1/60th the width of a full Moon. So, from one night to the next, TNOs can travel as much as 100 pixels across the field of view of the DES survey detectors since each pixel has a width of 0.27 arc seconds.

Composite Dark Energy Camera image of one of the sky regions that the collaboration will use to study supernovae, exploding stars that will help uncover the nature of dark energy. The outlines of each of the 62 charge-coupled devices can be seen. This picture spans 2 degrees across on the sky and contains 520 megapixels. (Credit: Fermilab)
Composite Dark Energy Camera image of one of the sky regions that the collaboration will use to study supernovae, exploding stars that will help uncover the nature of dark energy. The outlines of each of the 62 charge-coupled devices can be seen. This picture spans 2 degrees across on the sky and contains 520 megapixels. (Credit: Fermilab)

The scientific sensor array, DECam, is located at Cerro Tololo Inter-American Observatory (CTIO) in Chile utilizing the 4-meter (13 feet) diameter Victor M. Blanco Telescope. It is an array of 62 2048×4096 pixel back-illuminated CCDs totaling 520 megapixels, and altogether the camera weighs 20 tons.

A simple plot of the orbit of one of sixteen TNOs discovered by DES observatrions. (Credit: Dark Energy Detectives)
A simple plot of the orbit of one of sixteen TNOs discovered by DES observations. (Credit: Dark Energy Detectives)

With a little over 2 years of observations, the young astronomers stated, “Our analysis revealed sixteen previously unknown outer solar system objects, including one Neptune Trojan, several objects in mean motion resonances with Neptune, and a distant scattered disk object whose 1200-year orbital period is among the 50 longest known.”

Object 2013 TV158 is one of the objects discovered by Carleton College and University of Michigan team. Observed more than a dozen times over 10 months, the animated gif shows two image frames from August, 2014 taken two hours apart. 2013 TV158 takes 1200 years to orbit the Sun and is likely a few hundred kilometers across (about the size of the Grand Canyon. (Credit: Dark Energy Detectives)
Object 2013 TV158 is one of the objects discovered by the Carleton College and University of Michigan team. Observed more than a dozen times over 10 months, the animated gif shows two image frames from August 2014 taken two hours apart. 2013 TV158 takes 1200 years to orbit the Sun and is likely a few hundred kilometers across – about the size of the Grand Canyon. (Credit: Dark Energy Detectives)

“So far we’ve examined less than one percent of the area that DES will eventually cover,” says Dr. Gerdes. “No other survey has searched for TNOs with this combination of area and depth. We could discover something really unusual.”

Illustration of colour distribution of the trans-Neptunian objects. The horizontal axis represents the difference in intensity between visual (green & yellow) and blue of the object while the vertical is the difference between visual and red. The distribution indicates how TNOs share a common origin and physical makeup as well as common weathering in space. Yellow objects serve as reference: Neptune's moon Triton, Saturn's moon Phoebe, centaur Pholus, and the planet Mars. The objects color represents the hue of the object. The size of the objects are relative where the larger objects are more accurate estimates and smaller objects are simply based on absolute magnitude. (Credit: Wikimedia, Eurocommuter)
Illustration of color distribution of the trans-Neptunian objects. The horizontal axis represents the difference in intensity between visual (green & yellow) and blue of the object, while the vertical axis is the difference between visual and red. The distribution indicates how TNOs share a common origin and physical makeup, as well as common weathering in space. Yellow objects serve as reference: Neptune’s moon Triton, Saturn’s moon Phoebe, centaur Pholus, and the planet Mars. The object’s color represents the hue of the object. The size of the objects are relative – the larger objects are more accurate estimates, while smaller objects are simply based on absolute magnitude. (Credit: Wikimedia, Eurocommuter)

What does it all mean? It is further confirmation that the outer Solar System is chock-full of rocky-icy small bodies. There are other examples of recent discoveries, such as the search for a TNO for the New Horizons mission. As New Horizons has been approaching Pluto, the team turned to the Hubble space telescope to find a TNO to flyby after the dwarf planet. Hubble made short shrift of the work, finding three that the probe could reach. However, the demand for Hubble time does not allow long term searches for TNOs. A survey such as DES will serve to uncover many thousands of more objects in the outer Solar System. As Dr. Michael Brown of Caltech has stated, there is a fair likelihood that a Mars or Earth-sized object will be discovered beyond Neptune in the Oort Cloud.

References:
Observation of new trans-Neptunian Objects in the Dark Energy Survey Supernova Fields
Undergraduate Researchers Discover New Trans-Neptunian Objects
Dark Sky Detectives

For more details on the Dark Energy Survey: DES Website

Glorious Star Factories Shine In Astounding Amateur Shots

A colorful photo of the "Tulip Nebula" taken by Julian Hancock.

We often publish photos from professional observatories, but it’s important to note that amateurs can also do a great job taking pictures of the sky with modest equipment and photo processing software.

On Universe Today’s Flickr pool, we’re proud to showcase the work of all the fans of the cosmos. Included here are some of the best shots of galaxies and nebulas that we’ve seen uploaded to the site in recent days.

The Milky Way shines over Termas de Chillán in this photo taken by "Miss Andrea" on Flickr.
The Milky Way shines over Termas de Chillán in this photo taken by “Miss Andrea” on Flickr.
The center of the Heart Nebula captured by David Wills on Flickr.
The center of the Heart Nebula captured by David Wills on Flickr.
Simeis 147, the "Spaghetti Nebula", shines in hydrogen alpha in this image captured by Rick Stevenson on Flickr.
Simeis 147, the “Spaghetti Nebula”, shines in hydrogen alpha in this image captured by Rick Stevenson on Flickr.
The Tarantula Nebula imaged in Ha, OIII and SII by Alan Tough on Flickr.
The Tarantula Nebula imaged in Ha, OIII and SII by Alan Tough on Flickr.

 

Gallery: Some Of Kepler’s Strange New Worlds Outside The Solar System

Artist's conception of the Kepler 16 system, where the planet Kepler 16-b orbits two stars, much like Tatooine from Star Wars. Credit: NASA/JPL-Caltech/R. Hurt

With the latest Kepler space telescope exoplanet finding announced yesterday, the mighty planet hunter has now found 1,000 confirmed worlds — with about 3,000 more planetary candidates just waiting for confirmation.

The NASA observatory has found exoplanets of many sizes — smaller than Mercury, the size of our Moon, the size of Jupiter or larger, and in a couple of cases, Earth-sized worlds in the habitable regions of their stars. Below is a gallery of some of the observatory’s notable finds.

An artist's conception of a planet in a star cluster. Credit: Michael Bachofner
An artist’s conception of a planet in a star cluster. Credit: Michael Bachofner
An artist's conception of one of the newly released exo-worlds, a planet orbiting an ancient planetary nebula. Credit: David A. Aguilar/CfA.
An artist’s conception of one of the newly released exo-worlds, a planet orbiting an ancient planetary nebula. Credit: David A. Aguilar/CfA.
Meet Kepler-22b, an exoplanet with an Earth-like radius in the habitable zone of its host star. Unfortunately its mass remains unknown. Image Credit: NASA
Meet Kepler-22b, an exoplanet with an Earth-like radius in the habitable zone of its host star. Unfortunately its mass remains unknown. Image Credit: NASA
NASA's Kepler mission has discovered a new planetary system that is home to the smallest planet yet found around a star like our sun, approximately 210 light-years away in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech
NASA’s Kepler mission has discovered a new planetary system that is home to the smallest planet yet found around a star like our sun, approximately 210 light-years away in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech
Artist's Concept of Kepler-20e, one of two Earth-sized planets found by the Kepler spacecraft. Credit: NASA/Ames/JPL-Caltech
Artist’s Concept of Kepler-20e, one of two Earth-sized planets found by the Kepler spacecraft. Credit: NASA/Ames/JPL-Caltech
Kepler-37b, a moon-sized exoplanet. Credit: NASA/Ames/JPL-Caltech
Kepler-37b, a moon-sized exoplanet. Credit: NASA/Ames/JPL-Caltech
Artist's conception of the Kepler-35 system where a Saturn-sized planet orbits its two stars. Credit: © Mark A. Garlick / space-art.co.uk
Artist’s conception of the Kepler-35 system where a Saturn-sized planet orbits its two stars. Credit: © Mark A. Garlick / space-art.co.uk
The "invisible" world Kepler-19c, seen in the foreground of this artist's conception, was discovered solely through its gravitational influence on the companion world Kepler-19b - the dot crossing the star's face. Kepler-19b is slightly more than twice the diameter of Earth, and is probably a "mini-Neptune." Nothing is known about Kepler-19c, other than that it exists. Credit: David A. Aguilar (CfA)
The “invisible” world Kepler-19c, seen in the foreground of this artist’s conception, was discovered solely through its gravitational influence on the companion world Kepler-19b – the dot crossing the star’s face. Kepler-19b is slightly more than twice the diameter of Earth, and is probably a “mini-Neptune.” Nothing is known about Kepler-19c, other than that it exists. Credit: David A. Aguilar (CfA)
Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)
Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

Japan’s Akatsuki Spacecraft to Make Second Attempt to Enter Orbit of Venus in December 2015

Artist’s impression of the Venus Climate Orbiter (aka. “Akatsuki”) by Akihiro Ikeshita. Image Credit: JAXA

Back in 2010, the Japanese Aerospace Exploration Agency (JAXA) launched the The Venus Climate Orbiter “Akatsuki” with the intention of learning more about the planet’s weather and surface conditions. Unfortunately, due to engine trouble, the probe failed to make it into the planet’s orbit.

Since that time, it has remained in a heliocentric orbit, some 134 million kilometers from Venus, conducting scientific studies on the solar wind. However, JAXA is going to make one more attempt to slip the probe into Venus’ orbit before its fuel runs out.

Since 2010, JAXA has been working to keep Akatsuki functioning so that they could give the spacecraft another try at entering Venus’ orbit.

After a thorough examination of all the possibilities for the failure, JAXA determined that the probe’s main engine burned out as it attempted to decelerate on approach to the planet. They claim this was likely due to a malfunctioning valve in the spacecraft’s fuel pressure system caused by salt deposits jamming the valve between the helium pressurization tank and the fuel tank. This resulted in high temperatures that damaged the engine’s combustion chamber throat and nozzle.

A radar view of Venus taken by the Magellan spacecraft, with some gaps filled in by the Pioneer Venus orbiter. Credit: NASA/JPL
A radar view of Venus taken by the Magellan spacecraft, with some gaps filled in by the Pioneer Venus orbiter. Credit: NASA/JPL

JAXA adjusted the spacecraft’s orbit so that it would establish a heliocentric orbit, with the hopes that it would be able to swing by Venus again in the future. Initially, the plan was to make another orbit insertion attempt by the end 2016 when the spacecraft’s orbit would bring it back to Venus. But because the spacecraft’s speed has slowed more than expected, JAXA determined if they slowly decelerated Akatsuki even more, Venus would “catch up with it” even sooner. A quicker return to Venus would also be advantageous in terms of the lifespan of the spacecraft and its equipment.

But this second chance will likely be the final chance, depending on how much damage there is to the engines and other systems. The reasons for making this final attempt are quite obvious. In addition to providing vital information on Venus’ meteorological phenomena and surface conditions, the successful orbital insertion of Akatsuki would also be the first time that Japan deployed a satellite around a planet other than Earth.

If all goes well, Akatsuki will enter orbit around Venus at a distance of roughly 300,000 to 400,000 km from the surface, using the probe’s 12 smaller engines since the main engine remains non-functional. The original mission called for the probe to establish an elliptical orbit that would place it 300 to 80,000 km away from Venus’ surface.

This wide variation in distance was intended to provide the chance to study the planet’s meteorological phenomena and its surface in detail, while still being able to observe atmospheric particles escaping into space.

Artist's impression of Venus Express entering orbit in 2006. Credit: ESA - AOES Medialab
Artist’s impression of Venus Express entering orbit in 2006. Image Credit: ESA – AOES Medialab

At a distance of 400,000 km, the image quality and opportunities to capture them are expected to be diminished. However, JAXA is still confident that it will be able to accomplish most of the mission’s scientific goals.

In its original form, these goals included obtaining meteorological information on Venus using four cameras that capture images in the ultraviolet and infrared wavelengths. These would be responsible for globally mapping clouds and peering beneath the veil of the planet’s thick atmosphere.

Lightning would be detected with a high-speed imager, and radio-science monitors would observe the vertical structure of the atmosphere. In so doing, JAXA hopes to confirm the existence of surface volcanoes and lighting, both of which were first detected by the ESA’s Venus Express spacecraft. One of the original aims of Akatsuki was to complement the Venus Express mission. But Venus Express has now completed its mission, running out of gas and plunging into the planet’s atmosphere.

But most of all, it is hoped that Akatsuki can provide observational data on the greatest mystery of Venus, which has to do with its surface storms.

Artists impression of lightning storms on Venus. Credit: ESA
Artists impression of lightning storms on Venus. Credit: ESA

Previous observations of the planet have shown that winds that can reach up to 100 m/s (360 km/h or ~225 mph) circle the planet every four to five Earth days. This means that Venus experiences winds that are up to 60 times faster than the speed at which the planet turns, a phenomena known as “Super-rotation”.

Here on Earth, the fastest winds are only capable of reaching between 10 and 20 percent of the planet’s rotation. As such, our current meteorological understanding does not account for these super-high speed winds, and it is hoped that more information on the atmosphere will provide some clues as to how this can happen.

Between the extremely thick clouds, sulfuric rain storms, lightning, and high-speed winds, Venus’ atmosphere is certainly very interesting! Add to the fact that the volcanic, pockmarked surface cannot be surveyed without the help of sophisticated radar or IR imaging, and you begin to understand why JAXA is eager to get their probe into orbit while they still can.

And be sure to check out this video, courtesy of JAXA, detailing the Venus Climate Orbiter mission:

Further Reading: JAXA

Hearing the Early Universe’s Scream: Sloan Survey Announces New Findings

A still photo from an animated flythrough of the universe using SDSS data. This image shows our Milky Way Galaxy. The galaxy shape is an artist’s conception, and each of the small white dots is one of the hundreds of thousands of stars as seen by the SDSS. Image credit: Dana Berry / SkyWorks Digital, Inc. and Jonathan Bird (Vanderbilt University)

Imagine a single mission that would allow you to explore the Milky Way and beyond, investigating cosmic chemistry, hunting planets, mapping galactic structure, probing dark energy and analyzing the expansion of the wider Universe. Enter the Sloan Digital Sky Survey, a massive scientific collaboration that enables one thousand astronomers from 51 institutions around the world to do just that.

At Tuesday’s AAS briefing in Seattle, researchers announced the public release of data collected by the project’s latest incarnation, SDSS-III. This data release, termed “DR12,” represents the survey’s largest and most detailed collection of measurements yet: 2,000 nights’ worth of brand-new information about nearly 500 million stars and galaxies.

One component of SDSS is exploring dark energy by “listening” for acoustic oscillation signals from the the acceleration of the early Universe, and the team also shared a new animated “fly-through” of the Universe that was created using SDSS data.

The SDSS-III collaboration is based at the powerful 2.5-meter Sloan Foundation Telescope at the Apache Point Observatory in New Mexico. The project itself consists of four component surveys: BOSS, APOGEE, MARVELS, and SEGUE. Each of these surveys applies different trappings to the parent telescope in order to accomplish its own, unique goal.

BOSS (the Baryon Oscillation Spectroscopic Survey) visualizes the way that sound waves produced by interacting matter in the early Universe are reflected in the large-scale structure of our cosmos. These ancient imprints, which date back to the first 500,000 years after the Big Bang, are especially evident in high-redshift objects like luminous-red galaxies and quasars. Three-dimensional models created from BOSS observations will allow astronomers to track the expansion of the Universe over a span of 9 billion years, a feat that, later this year, will pave the way for rigorous assessment of current theories regarding dark energy.

At the press briefing, Daniel Eistenstein from the Harvard-Smithsonian Center for Astrophysics explained how BOSS requires huge volumes of data and that so far 1.4 million galaxies have been mapped. He indicated the data analyzed so far strongly confirm dark energy’s existence.

This tweet from the SDSS twitter account uses a bit of humor to explain how BOSS works:

APOGEE (the Apache Point Observatory Galactic Evolution Experiment) employs a sophisticated, near-infrared spectrograph to pierce through thick dust and gather light from 100,000 distant red giants. By analyzing the spectral lines that appear in this light, scientists can identify the signatures of 15 different chemical elements that make up the faraway stars – observations that will help researchers piece together the stellar history of our galaxy.

MARVELS (the Multi-Object APO Radial Velocity Exoplanet Large-Area Survey) identifies minuscule wobbles in the orbits of stars, movements that betray the gravitational influence of orbiting planets. The technology itself is unprecedented. “MARVELS is the first large-scale survey to measure these tiny motions for dozens of stars simultaneously,” explained the project’s principal investigator Jian Ge, “which means we can probe and characterize the full population of giant planets in ways that weren’t possible before.”

At the press briefing, Ge said that MARVELS observed 5,500 stars repeatedly, looking for giant exoplanets around these stars. So far, the data has revealed 51 giant planet candidates as well as 38 brown dwarf candidates. Ge added that more will be found with better data processing.

A still photo from an animated flythrough of the universe using SDSS data. This image shows a small part of the large-scale structure of the universe as seen by the SDSS -- just a few of many millions of galaxies. The galaxies are shown in their proper positions from SDSS data. Image credit: Dana Berry / SkyWorks Digital, Inc.
A still photo from an animated flythrough of the universe using SDSS data. This image shows a small part of the large-scale structure of the universe as seen by the SDSS — just a few of many millions of galaxies. The galaxies are shown in their proper positions from SDSS data. Image credit: Dana Berry / SkyWorks Digital, Inc.

SEGUE (the Sloan Extension for Galactic Understanding and Exploration) rounds out the quartet by analyzing visible light from 250,000 stars in the outer reaches of our galaxy. Coincidentally, this survey’s observations “segue” nicely into work being done by other projects within SDSS-III. Constance Rockosi, leader of the SDSS-III domain of SEGUE, recaps the importance of her project’s observations of our outer galaxy: “In combination with the much more detailed view of the inner galaxy from APOGEE, we’re getting a truly holistic picture of the Milky Way.”

One of the most exceptional attributes of SDSS-III is its universality; that is, every byte of juicy information contained in DR12 will be made freely available to professionals, amateurs, and lay public alike. This philosophy enables interested parties from all walks of life to contribute to the advancement of astronomy in whatever capacity they are able.

As momentous as the release of DR12 is for today’s astronomers, however, there is still much more work to be done. “Crossing the DR12 finish line is a huge accomplishment by hundreds of people,” said Daniel Eisenstein, director of the SDSS-III collaboration, “But it’s a big universe out there, so there is plenty more to observe.”

DR12 includes observations made by SDSS-III between July 2008 and June 2014. The project’s successor, SDSS-IV, began its run in July 2014 and will continue observing for six more years.

Here is the video animation of the fly-through of the Universe: