Unusual Distributions of Organics Found in Titan’s Atmosphere

The ALMA array, as it looks now completed and standing on a Chilean high plateau at 5000 meters (16,400 ft) altitude. The first observations with ALMA of Titan have added to the Saturn moon's list of mysteries. {Credit: ALMA (ESO/NAOJ/NRAO) / L. Calçada (ESO)}

A new mystery of Titan has been uncovered by astronomers using their latest asset in the high altitude desert of Chile. Using the now fully deployed Atacama Large Millimeter Array (ALMA) telescope in Chile, astronomers moved from observing comets to Titan. A single 3 minute observation revealed organic molecules that are askew in the atmosphere of Titan. The molecules in question should be smoothly distributed across the atmosphere, but they are not.

The Cassini/Huygens spacecraft at the Saturn system has been revealing the oddities of Titan to us, with its lakes and rain clouds of methane, and an atmosphere thicker than Earth’s. But the new observations by ALMA of Titan underscore how much more can be learned about Titan and also how incredible the ALMA array is.

ALMA first obserations of the atmospher of Saturn's moon Titan. The image shows the distribution of the organic molecule HNC. Red to White representing low to high concenrations. The offset locations of the molecules relative to the poles suprised the researchers lead by NASA/GSFC astrochemist M. Cordiner.(Credit: NRAO/AUI/NSF; M. Cordiner (NASA) et at.)
ALMA’s first observations of the atmosphere of Saturn’s moon Titan. The image shows the distribution of the organic molecule HNC. Red to White representing low to high concentrations. The offset locations of the molecules relative to the poles surprised the researchers led by NASA/GSFC astrochemist M. Cordiner. (Credit: NRAO/AUI/NSF; M. Cordiner (NASA) et at.)

The ALMA astronomers called it a “brief 3 minute snapshot of Titan.” They found zones of organic molecules offset from the Titan polar regions. The molecules observed were hydrogen isocyanide (HNC) and cyanoacetylene (HC3N). It is a complete surprise to the astrochemist Martin Cordiner from NASA Goddard Space Flight Center in Greenbelt, Maryland. Cordiner is the lead author of the work published in the latest release of Astrophysical Journal Letters.

The NASA Goddard press release states, “At the highest altitudes, the gas pockets appeared to be shifted away from the poles. These off-pole locations are unexpected because the fast-moving winds in Titan’s middle atmosphere move in an east–west direction, forming zones similar to Jupiter’s bands, though much less pronounced. Within each zone, the atmospheric gases should, for the most part, be thoroughly mixed.”

When one hears there is a strange, skewed combination of organic compounds somewhere, the first thing to come to mind is life. However, the astrochemists in this study are not concluding that they found a signature of life. There are, in fact, other explanations that involve simpler forces of nature. The Sun and Saturn’s magnetic field deliver light and energized particles to Titan’s atmosphere. This energy causes the formation of complex organics in the Titan atmosphere. But how these two molecules – HNC and HC3N – came to have a skewed distribution is, as the astrochemists said, “very intriguing.” Cordiner stated, “This is an unexpected and potentially groundbreaking discovery… a fascinating new problem.”

The press release from the National Radio Astronomy Observatory states, “studying this complex chemistry may provide insights into the properties of Earth’s very early atmosphere.” Additionally, the new observations add to understanding Titan – a second data point (after Earth) for understanding organics of exo-planets, which may number in the hundreds of billions beyond our solar system within our Milky Way galaxy. Astronomers need more data points in order to sift through the many exo-planets that will be observed and harbor organic compounds. With Titan and Earth, astronomers will have points of comparison to determine what is happening on distant exo-planets, whether it’s life or not.

High in the atmosphere of Titan, large patches of two trace gases glow near the north pole, on the dusk side of the moon, and near the south pole, on the dawn side. Brighter colors indicate stronger signals from the two gases, HNC (left) and HC3N (right); red hues indicate less pronounced signals. Image (Credit: NRAO/AUI/NSF)
High in the atmosphere of Titan, large patches of two trace gases glow near the north pole, on the dusk side of the moon, and near the south pole, on the dawn side. Brighter colors indicate stronger signals from the two gases, HNC (left) and HC3N (right); red hues indicate less pronounced signals.
(Image Credit: NRAO/AUI/NSF)

The report of this new and brief observation also underscores the new astronomical asset in the altitudes of Chile. ALMA represents the state of the art of millimeter and sub-millimeter astronomy. This field of astronomy holds a lot of promise. Back around 1980, at the Kitt Peak National Observatory in Arizona, alongside the great visible light telescopes, there was an oddity, a millimeter wavelength dish. That dish was the beginning of radio astronomy in the 1 – 10 millimeter wavelength range. Millimeter astronomy is only about 35 years old. These wavelengths stand at the edge of the far infrared and include many light emissions and absorptions from cold objects which often include molecules and particularly organics. The ALMA array has 10 times more resolving power than the Hubble space telescope.

The Earth’s atmosphere stands in the way of observing the Universe in these wavelengths. By no coincidence our eyes evolved to see in the visible light spectrum. It is a very narrow band, and it means that there is a great, wide world of light waves to explore with different detectors than just our eyes.

The diagram shows the electromagnetic spectrum, the absorption of light by the Earth's atmosphere and illustrates the astronomical assets that focus on specific wavelengths of light. ALMA at the Chilean site and with modern solid state electronics is able to overcome the limitations placed by the Earth's atmosphere. (Credit: Wikimedia, T.Reyes)
The diagram shows the electromagnetic spectrum, the absorption of light by the Earth’s atmosphere, and illustrates the astronomical assets that focus on specific wavelengths of light. ALMA at the Chilean site, with modern solid state electronics, is able to overcome the limitations placed by the Earth’s atmosphere. (Credit: Wikimedia, T.Reyes)

In the millimeter range of wavelengths, water, oxygen, and nitrogen are big absorbers. Some wavelengths in the millimeter range are completely absorbed. So there are windows in this range. ALMA is designed to look at those wavelengths that are accessible from the ground. The Chajnantor plateau in the Atacama desert at 5000 meters (16,400 ft) provides the driest, clearest location in the world for millimeter astronomy outside of the high altitude regions of the Antarctic.

At high altitude and over this particular desert, there is very little atmospheric water. ALMA consists of 66 12 meter (39 ft) and 7 meter (23 ft) dishes. However, it wasn’t just finding a good location that made ALMA. The 35 year history of millimeter-wavelength astronomy has been a catch up game. Detecting these wavelengths required very sensitive detectors – low noise in the electronics. The steady improvement in solid-state electronics from the late 70s to today and the development of cryostats to maintain low temperatures have made the new observations of Titan possible. These are observations that Cassini at 1000 kilometers from Titan could not do but ALMA at 1.25 billion kilometers (775 million miles) away could.

The 130 ton German Antenna Dish Transporter, nicknamed Otto. The ALMA transporter vehicle carefully carries the state-of-the-art antenna, with a diameter of 12 metres and a weight of about 100 tons, on the 28 km journey to the Array Operations Site, which is at an altitude of 5000 m. The antenna is designed to withstand the harsh conditions at the high site, where the extremely dry and rarefied air is ideal for ALMA’s observations of the universe at millimetre- and sub-millimetre-wavelengths. (Credit: ESO)
The 130 ton German Antenna Dish Transporter, nicknamed Otto. The ALMA transporter vehicle carefully carries the state-of-the-art antenna, with a diameter of 12 metres and a weight of about 100 tons, on the 28 km journey to the Array Operations Site, which is at an altitude of 5000 m. The antenna is designed to withstand the harsh conditions at the high site, where the extremely dry and rarefied air is ideal for ALMA’s observations of the universe at millimetre- and sub-millimetre-wavelengths. (Credit: ESO)

The ALMA telescope array was developed by a consortium of countries led by the United States’ National Science Foundation (NSF) and countries of the European Union though ESO (European Organisation for Astronomical Research in the Southern Hemisphere). The first concepts were proposed in 1999. Japan joined the consortium in 2001.

The prototype ALMA telescope was tested at the site of the VLA in New Mexico in 2003. That prototype now stands on Kitt Peak having replaced the original millimeter wavelength dish that started this branch of astronomy in the 1980s. The first dishes arrived in 2007 followed the next year by the huge transporters for moving each dish into place at such high altitude. The German-made transporter required a cabin with an oxygen supply so that the drivers could work in the rarefied air at 5000 meters. The transporter was featured on an episode of the program Monster Moves. By 2011, test observations were taking place, and by 2013 the first science program was undertaken. This year, the full array was in place and the second science program spawned the Titan observations. Many will follow. ALMA, which can operate 24 hours per day, will remain the most powerful instrument in its class for about 10 years when another array in Africa will come on line.

References:

NASA Goddard Press Release

NRAO Press Release

ALMA Observatory Website

Alma Measurements Of The Hnc And Hc3N Distributions In Titan’s Atmosphere“, M. A. Cordiner, et al., Astrophysical Journal Letters

Two Comet Groups Discovered Around Beta Pictoris

This artist’s impression shows exocomets orbiting the star Beta Pictoris. Credit: ESO/L. Cacada

Between the years 2003 and 2011, the High Accuracy Radial velocity Planet Searcher – better known as HARPS – made more than a thousand observations of nearby star, Beta Pictoris. On board the ESO 3.6-metre telescope at the La Silla Observatory in Chile, the sensitive instrument normally combs the sky nightly in search of exoplanets, but lately it has contributed to another astounding discovery… exocomets!

Located about 63 light-years from the Sun, Beta Pictoris is a youthful star, estimated to be only around 20 million years old. Keeping it company in space is a vast disc of material. This swarm of gas and dust is the beginnings of an active planetary system and was likely created by the destruction of comets and collisions of rocky bodies like asteroids. Now a French team using HARPS has been able to create the most complete catalog of comets to date from this system. Researchers have found no less than five hundred comets belonging to Beta Pictoris and they divide in two unique branches of exocomets. Split into both old and new, these two active flows behave much like our own cometary groups… They have either made many trips around the parent star or are the product of a recent breakup of one or more objects.

Flavien Kiefer (IAP/CNRS/UPMC), lead author of the new study, sets the scene: “Beta Pictoris is a very exciting target! The detailed observations of its exocomets give us clues to help understand what processes occur in this kind of young planetary system.”

Beta Pictoris is located about 60 light-years away towards the constellation of Pictor (the Painter's Easel) and is one of the best-known examples of a star surrounded by a dusty debris disc. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star, all indirect, but tell-tale signs that strongly suggested the presence of a massive planet. Observations done with the NACO instrument on ESO’s Very Large Telescope in 2003, 2008 and 2009, have proven the presence of a planet around Beta Pictoris. It is located at a distance between 8 and 15 times the Earth-Sun separation — or Astronomical Units — which is about the distance Saturn is from the Sun. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This image, based on data from the Digitized Sky Survey 2, shows a region of approximately 1.7 x 2.3 degrees around Beta Pictoris.  Credit: ESO/Sky Survey II
Beta Pictoris is located about 60 light-years away towards the constellation of Pictor (the Painter’s Easel) and is one of the best-known examples of a star surrounded by a dusty debris disc. Earlier observations showed a warp of the disc, a secondary inclined disc, and comets falling onto the star, all indirect, but tell-tale signs that strongly suggested the presence of a massive planet. Observations done with the NACO instrument on ESO’s Very Large Telescope in 2003, 2008, and 2009, have proven the presence of a planet around Beta Pictoris. It is located at a distance between 8 and 15 times the Earth-Sun separation — or Astronomical Units — which is about the distance Saturn is from the Sun. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This image, based on data from the Digitized Sky Survey 2, shows a region of approximately 1.7 x 2.3 degrees around Beta Pictoris. Credit: ESO/Sky Survey II

Just like discovering planets through the transit method, astronomers believe exocomets can cause a disturbance in the amount of light we can see from a given star. When these icy travelers exhaust themselves, their gas and dust tails could absorb a portion of the star light passing through them. For nearly three decades scientists had been aware of minute changes in the light from Beta Pictoris, but attributing it to comets was next to impossible to prove. Their tiny light was simply overpowered by the light of the star and could not be imaged from Earth.

Enter HARPS…

Using more than a thousand observations taken by this sensitive equipment, astronomers chose a sample of 493 exocomets unrelated to each other, but sharing in the Beta Pictoris system. Of these, some were dutifully followed for hours at several different times. The size and speed of the gas clouds produced were carefully measured. Researchers were even able to document the orbital properties of some of these exocomets – the size and shape of their passage paths in relation to the parent star allowing scientists to infer their distances.

Knowing that comets exist around other stars is very exciting – and knowing that solar systems around other stars work much like our own is downright rewarding. Through this study, we’re able to take a unique look at what might be several hundreds of exocomets connected to a solitary exo-planet system. What the research has revealed is two distinct branches of the comet family tree. One of these is old comets – their orbit dictated by a single, massive planet. The other half of the family fork belongs to comets that might have arisen from the destruction of a larger object.

The older group behaves in a predictable manner. These exocomets have differing orbital patterns, and their gas and dust production is greatly reduced. If they follow the same rules as the ones in our solar system, it’s typical behavior for a comet which has exhausted its volatiles during multiple trips around the parent star and is also being controlled by the system’s massive planet. This is exciting because it confirms the planet’s presence and distance!

“Moreover, the orbits of these comets (eccentricity and orientation) are exactly as predicted for comets trapped in orbital resonance with a massive planet.” says the science team. “The properties of the comets of the first family show that this planet in resonance must be at about 700 million kilometres from the star – close to where the planet Beta Pictoris b was discovered.”

The second group also behaves in a predictable manner. These exocomets have nearly identical orbits and their emissions are active and radical. Observations of this cometary type tell us they more than likely originated from the destruction of a larger body and the rubble is caught in a orbit which allows the fragments to graze Beta Pictoris. According to the research team: “This makes them similar to the comets of the Kreutz family in the Solar System, or the fragments of Comet Shoemaker-Levy 9, which impacted Jupiter in July 1994.”

Flavien Kiefer concludes: “For the first time a statistical study has determined the physics and orbits for a large number of exocomets. This work provides a remarkable look at the mechanisms that were at work in the Solar System just after its formation 4.5 billion years ago.”

Original Story Source: “Two Families of Comets Found Around Nearby Star – Biggest census ever of exocomets around Beta Pictoris” – ESO Science News Release

X-Ray Telescope Cracks Open Archives, Comes Up With Gassy Black Hole Gem

Six images that combine Chandra data with those from other telescopes. Credit: X-ray: NASA/CXC/SAO, Optical: NASA/STScI, Radio: NSF/NRAO/VLA).

What a gem! This huge black hole in the middle of Hercules A is making gas around it super-heated to millions of degrees, making it shine brightly in X-Rays. The Chandra X-Ray Telescope captured the scene and in a new data release this week, telescope officials cracked open the archives to give us gems such as this.

The release comes as a part of American Archives Month, where every year Chandra officials go through the archives and pull out old Chandra data, combining it with the work of other telescopes to get as much information as possible about the objects being studied.

Chandra is one of three NASA “Great Observatories” still active, with the other two being the Hubble Space Telescope and the Spitzer Space Telescope. It’s been in operation now for more than 15 years.

You can see the six new pictures below. To read more about each of these objects, head on over to this link.

Six photos released from the Chandra X-Ray Observatory's archive in October 2014. Credit: NASA/CXC/SAO
Six photos released from the Chandra X-Ray Observatory’s archive in October 2014. Credit: NASA/CXC/SAO

How to Take Great Photographs of the October 23rd Partial Solar Eclipse and More

The Partially eclipsed Sun rising over the Vehicle Assembly Building on the Florida Space Coast on November 3rd, 2013.

Get those solar viewers out… the final eclipse of 2014 occurs this Thursday on October 23rd, and most of North America has a front row seat. Though this solar eclipse will be an exclusively partial one as the Moon takes a ‘bite’ out the disk of the Sun, such an event is always fascinating to witness. And for viewers across the central U.S. and Canada, it will also provide the chance to photograph the setting crescent Sun along with foreground objects.

Michael Zieler
A map showing the eclipse prospects over the CONUS. (click to enlarge). Credit: Michael Zeiler @EclipseMaps, www.thegreatamericaneclipse.com.

The shadow or ‘antumbra’ of the Moon just misses northern limb of the Earth on October 23rd, resulting in a solar eclipse that reaches a maximum of 81% partial as seen from the high Canadian Arctic. The eclipse would be annular in any event had the Moon’s shadow touched down on Earth’s surface, as the Moon just passed apogee on October 18th. The penumbral cone of the Moon’s shadow touches down at 19:38 UT in the Bering Sea just west of the International Date Line before racing eastward across North America to depart the Earth over southern Texas at 23:52 UT.

NASA/GSFC
An animated .gif of this week’s partial solar eclipse.  Credit: NASA/GSFC/A.T. Sinclair.

The farther northwest you are, the greater the eclipse: For example, Anchorage and Seattle will see 54.8% and 54.5% of the Sun obscured by the Moon, while Mexico City and Phoenix, Arizona will see 4.8% and 33% of the Sun’s disk obscured.

A key region will be the zone of longitude running a few hundred miles east and to the west of Ontario, the Great Lakes and the Mississippi River, which will see the Sun setting during greatest eclipse.

Stellarium
Simulated views of the October 23rd partial solar eclipse from around North America. Created using Stellarium.

Successful sunset viewing of the eclipse will call for a clear, uncluttered western horizon. As of 48+ hours out, the current weather prospects call for clear skies across most of the U.S. on Thursday, with the exception of the U.S. northwest… but you only need a gap in the clouds to observe an eclipse!

NOAA
Predicted cloud cover for the CONUS hours prior to the start of the Oct 23 partial solar eclipse. Credit: NWS/NOAA.

It’s also worth noting that massive sunspot region AR 2192 is currently turned Earthward and will make for a very active and photogenic Sun during Thursday’s eclipse.

SDO/HMI
Sunspot activity leading up to this week’s eclipse. Credit: NASA/SDO/HMI

Proper safety precautions must be taken while observing the Sun through all stages of a partial solar eclipse. Don’t end up like 19th century psychologist Gustav Fechner, who blinded himself staring at the Sun! With the recent interest in the event, we’ve been fielding lots of questions on eclipse imaging, which presents safety challenges of its own.

blogger-image-845084267
An homemade solar optical filter using Baader film. Credit: Eric Teske/Stellar Neophyte.

Imaging the Sun with a solar filter is pretty straightforward. Glass solar filters for telescopes fitting over the full aperture of the instrument can be had from Orion for about $100 USD, and we’ve made inexpensive filter masks out of Baader AstroSolar Safety Film for everything from binoculars to DLSR cameras to telescopes. Make sure these fit snugly in place, and inspect them for pin holes prior to use. Also, be sure to cover or remove any finderscopes as well. And throw away those old screw-on eyepiece filters sold by some department store scope manufacturers in the 60s and 70s, as they can overheat and crack!

Catching the eclipsed Sun with a silhouetted foreground requires more practice. We’ve had great luck using a DSLR and a neutral density filter to take the f-stop and glare down while preserving the foreground view. Remember, though, an ND filter is for photographic use only… never stare at the Sun through one! Likewise, you’ll need to physically block off your camera’s viewfinder to resist the same temptation of looking while aiming. Shooting several quick frames at 1/1000th of a second or faster will help get the ISO/f-stop settings for the local illumination just right. Even 1% sunlight is surprisingly bright, as we noticed observing the May 10th 1994 annular eclipse from the shores of Lake Erie.

You’ll also need a lens with a focal length of 200mm or better to have the Sun appear larger than a dot in your images. Several key landmarks, such as the Saint Louis Arch and the Sears Tower in Chicago lie along the key sunset zone Thursday and  would make great potential foreground shots… our top pick would be the 1978 World’s Fair Sunsphere Tower in Knoxville, Tennessee for a photo with a true visual double entendre. Scout out the geometry of such a shot the evening beforehand, and remember that you’ll need a good amount of distance (half a mile or more) for a building or foreground object to appear equal in size to the Sun.

And don’t miss the spectacle going on around you during an eclipse as well. Projecting the disk of the Sun using a pinhole camera or binoculars onto a piece of paper makes for a great shot. Hundreds of crescents may litter the ground, caused by natural “pinhole projectors” such as gaps in leaves or latticework. And photographs of everyday folks wearing eclipse glasses standing enthralled by the ongoing event can be just as captivating as the eclipse itself.

Photo by author
Imaging a partial solar eclipse via a homemade shoebox binocular projector. Photo by author.

Up for a challenge? Another unique opportunity awaits eclipse viewers in the northwest, as the International Space Station will cross the disk of the Sun around ~21:08 UT during the eclipse. You’ll need to run video to catch such a speedy (about a second in duration) event, but it would make for a great capture! Be sure to check CALSky for predictions of ISS solar and lunar transits within 48 hours of the event.

ISS path
The path of the ISS over the US during the partial eclipse. Credit: Orbitron.

Robotic eyes in low Earth orbit will be watching the eclipse as well. JAXA’s Hinode and ESA’s Proba-2 routinely observe the Sun and will catch fleeting eclipses on successive passes on Thursday… in the case of Hinode, it may score a direct “hit” with an annular eclipse seen from space around 21:03 UT:

And don’t forget, we’re now less than three years out from the next total solar eclipse to (finally!) grace the United States from coast to coast on August 21st, 2017. This week’s partial solar eclipse offers a great test run to hone your photographic technique!

-Send those eclipse pics in to Universe Today’s Flickr forum.

How to Safely Enjoy the October 23 Partial Solar Eclipse

The partially eclipsed sun sets over Island Lake north of Duluth, Minn. on May 20, 2012. Credit: Jim Schaff

2014 – a year rich in eclipses. The Moon dutifully slid into Earth’s shadow in April and October gifting us with two total lunars. Now it’s the Sun’s turn. This Thursday October 23 skywatchers across much of the North America and Mexico will witness a partial solar eclipse. From the eastern U.S. the eclipse will reach maximum around the time of sunset, making for dramatic picture-taking opportunities. Further west, the entire eclipse will occur with the sun up in the afternoon sky. Either way, you can’t go wrong.

During a solar eclipse, the orbiting Moon passes between the Sun and Earth completely blocking the Sun from view as shown here. In Thursday's partial eclipse, the moon will pass a little north of a line connecting the three orbs, leaving a piece of the sun uncovered for a partial eclipse. Credit: Wikipedia
During a solar eclipse, the orbiting Moon passes between the Sun and Earth completely blocking the Sun from view as shown here. In Thursday’s eclipse, the moon will pass a little north of a line connecting the three orbs, leaving a portion of the sun uncovered. To view a partial solar eclipse, a safe solar filter is necessary. Credit: Wikipedia

Solar eclipses occur at New Moon when the Moon passes between the Sun and the Earth and blocks the Sun from view. During a total solar eclipse, the Sun, Earth and Moon are exactly aligned and the Moon completely hides the brilliant solar disk. Partial eclipses occur when the Moon passes slight north or south of the line connecting the three bodies, leaving a slice of the Sun uncovered. For that reason, a safe solar filter is required to protect your eyes at all times. We’ll delve into that in a minute, but first let’s look at the particulars of this eclipse.

Map showing times and percentage of the sun covered during Thursday's partial solar eclipse. Times are Pacific Daylight - add 1 hour for MDT, 2 hours for CDT and 3 hours for EDT. Credit: NASA, F. Espenak with additions by the author
Map showing times and percentage of the sun covered during Thursday’s partial solar eclipse. Times are Pacific Daylight – add 1 hour for MDT, 2 hours for CDT and 3 hours for EDT. Interpolate between the lines to find your approximate viewing time. The arc marked A shows where the eclipse begins at sunset; B = Maximum eclipse at sunset and C = Eclipse ends at sunset. Credit: NASA, F. Espenak,with additions by Bob King

Nowhere will this eclipse be total. At best, polar bears and musk oxen in Canada’s Nunavut Territory near Prince of Wales Island will see 81% of the sun covered at sunset at maximum eclipse. Most of the rest of us will witness about half the Sun covered with the northern U.S. getting around 65% and the southern states  closer to 40%.  In Minneapolis, Minn. for instance, the eclipse begins at 4:23 p.m. CDT, reaches a maximum of 62% at 5:35 p.m. and continues on till sunset at 6:14 p.m. For times, coverage and other local circumstances for your town, click over to  U.S. cities and cities in Canada and Mexico.

Safe solar filters for looking at the sun come in several different varieties. Read down to learn more about each kind. Photo: Bob King
Safe solar filters come in several varieties ranging from plastic glasses to a #14 welder’s glass for visual observation and snug-fitting optical filters that fit over the end of a telescope. Credit: Bob King

There are several ways to observe a partial eclipse safely, but they all start with this credo: Never look directly at the Sun. Dangerous ultraviolet and infrared light focused on your retinas will damage your vision for life. Nothing’s worth that risk. Happily, filters and indirect viewing methods are available. Eclipse glasses fitted with mylar or polymer lenses are a great choice. I’ve used them all but my favorite’s still the classic #14 welder’s glass because it slips in the pocket easily and takes a beating. Make sure it’s a #14, not a #13 or lower.

You can mount binoculars on a tripod, cover one lens with a lenscap and project the sun's image safely onto a sheet of white cardboard. Credit: Bob King
You can mount binoculars on a tripod, cover one lens with a lenscap and project the sun’s image safely onto a sheet of white cardboard. Credit: Bob King

Telescopes should be outfitted with an optical mylar or aluminized glass solar filter that fits snugly over the top end of the tube. A welder’s glass gives a green solar image, mylar a blue one and black polymer a pale orange. Filters work by only allowing a fraction of the Sun’s light to reach the eye. At the end of this article I’ve listed several sites that sell a variety of safe solar filters for naked eye and telescopic use.


Easy guide to building a pinhole projector for solar eclipse viewing

Indirect methods for safe viewing include projecting the Sun’s image through a small telescope or pair of binoculars onto a sheet of white paper or cardboard. You can also build a pinhole projector shown in the video above. A box and piece of aluminum foil are all you need.

Tiny gaps along the length of this palm frond created a series of solar crescents during the July 1991 eclipse. Credit: Bob King
Tiny gaps along the length of this palm frond created a series of solar crescents during the July 1991 eclipse. Credit: Bob King

If for some reason you aren’t able to get a solar filter, all is not lost. The tiny spaces between leaves on a tree act like pinhole projectors and will cast hundreds of images of the Sun on the ground below during the eclipse. To see the effect even better, bring along a white sheet or blanket and spread it out beneath the tree. You can even cross your hands over one another at a right angle to create a pattern of small “holes” that will reveal the changing shape of the Sun as the eclipse proceeds.

The white crescents show how much of the Sun will be visible from a variety of locations at maximum eclipse. The farther north you go, the deeper the eclipse. Credit: Jay Anderson
The white crescents show how much of the Sun will be visible from a variety of locations at maximum eclipse. The farther north you go, the deeper the eclipse. Credit: Jay Anderson

Now that you’re rockin’ to go, here are some other cool things to look for during the eclipse:

* Sunspots appear black when viewed through a filtered telescope, but they’re no match for the opaque-black  Moon silhouetted against the Sun. Compare their unequal degrees of darkness. With a little luck, the giant sunspot region 2192  will provide a striking contrast with the moon plus add interest to the eclipse. This region only recently rotated onto the Sun’s front side and will be squarely in view on Thursday.

* The moon may look smooth and round to the eye, but its circumference is bumpy with crater rims and mountain peaks. Watch for these tiny teeth to bite into the solar disk as the eclipse progresses.

* From locations where half or more the Sun’s disk is covered, look around to see if you can tell the light has changed. Does it seem somehow “grayer” than normal? Is the blueness of the sky affected?

As I learned from comet discoverer and author David Levy many years ago, every eclipse involves the alignment of four bodies: Sun, Earth, Moon and you. We wish you good weather and a wonderful eclipse, but if clouds show up, you can still watch it via live stream on SLOOH.

Not only will the sun be eclipsed this afternoon but the planet Venus shines just 1.1 degrees to its north. Venus is very close to superior conjunction which occurs early Saturday. In the photo, the planet is in the background well behind the Sun. Don’t count on seeing Venus – too much glare! This photo was taken from space by NASA’s Solar and Heliospheric Observatory this afternoon using a coronagraph to block the Sun from view. Credit: NASA/ESA
UPDATE: Not only will the sun be eclipsed Thursday afternoon but the planet Venus will shine just 1.1 degrees to its north. Venus is just two days from superior conjunction. In the photo, the planet is in the background well behind the Sun. Don’t count on seeing it – too close and too much dangerous glare! This photo was taken from space by NASA’s Solar and Heliospheric Observatory early Thursday Oct. 23 using a coronagraph to shade the Sun. Credit: NASA/ESA

Solar filter suppliers – for a #14 welder’s glass, check your local phone book for a welding supply shop:

* Thousand Oaks Optical — Large variety of solar filters for telescopes and cameras. Sheets of black polymer available if you want to make your own.
* Rainbow Symphony — Eclipse glasses and solar viewers as well as filters for binoculars and telescopes. The basic glasses cost less than a buck apiece, but you’ll need to buy a minimum of 25 pairs.
* Opt Corp — Offers high-quality Baader mylar optical filter material to make your own.
* Orion Telescopes — Glass and mylar filters for telescopes and binoculars.
* Amazon.com – Filters for naked eye use

Opportunity Rover Spots Comet Siding Spring from the Surface of Mars!

Is this an image of Comet Siding Spring? It's the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.

It looks like NASA’s hard-working Opportunity Rover nabbed our very first pictures of a comet seen from another world!  A study of raw images taken by the rover turned up a very promising fuzzy object. Only three night sky pictures were posted today, but two clearly show a fuzzy spot near the center of the field. Stars show as points of light and there are what appear to be a smattering of cosmic ray hits, but in the photo above, the brightest object is slightly elongated (trailed during the exposure?) and cometary in appearance. 

Here’s another photo:

A second picture from Opportunity possibly showing the comet. Click for original. Credit: NASA/JPL-Caltech
A second picture from Opportunity possibly showing the comet. Click for original. Credit: NASA/JPL-Caltech

Looking back over earlier photos of the sky taken on Sol 3212 show only stars and no fuzzy blobs. The pictures were taken around 4:13 a.m. local time with the Sun 25 degrees below the horizon. Opportunity can photograph diffuse objects as dim as the Andromeda Galaxy at magnitude +3.5 and stars down to magnitude +6 or +7. That’s similar to what we see on Earth on very dark night. Since the comet glowed far brighter at around magnitude -5 by some estimates, it would be a relatively easy catch for the rover panoramic camera.

Curiousity Navcam photo of the sky on October 19, 2014. Credit: NASA/JPL-Caltech
Curiousity Navcam photo of the sky on October 19, 2014, shows the silhouetted rim of Gale Crater and lots of noise. Credit: NASA/JPL-Caltech

NASA has also posted images taken by the Curiosity Rover but for the life of me I can’t find any sign of the Comet Siding Spring. Maybe it’ll pop out after the noise is removed. We’ll keep you posted.

Another Curiosity photo of the sky. If you look closely you'll see stars among the noise. Click for original Credit: NASA/JPL-Caltech
Another Curiosity photo of the sky. If you look closely you’ll see stars among the noise. Click for original Credit: NASA/JPL-Caltech

 

A Compendium of Universe Today Comet Siding Spring Articles: January 2013 – October 2014

Comet C/2013 A1 Siding Spring passed between the Small Magellanic Cloud (left) and the rich globular cluster NGC 130 on August 29, 2014. Credit: Rolando Ligustri

We present here a compendium of Universe Today articles on comet Siding Spring. Altogether 18 Universe Today stories and counting have represented our on-going coverage of a once in a lifetime event. The articles beginning in February 2013, just days after its discovery, lead to the comet’s penultimate event – the flyby of Mars, October 19, 2014. While comet Siding Spring will reach perihelion just 6 days later, October 25, 2014, it will hardly have sensed the true power and impact that our Sun can have on a comet.

Siding Spring’s Oort Cloud cousin, Comet ISON in November 2013 encountered the Sun at a mere 1.86 million km. The intensity of the Sun’s glare was 12,600 times greater than what Siding Spring will experience in a few days. Comet ISON did not survive its passage around the Sun but Comet Siding Spring will soon turn back and begin a very long journey to its place of origin, the Oort Cloud far beyond Pluto.

An animation of comet Siding Springs passage through the inner Solar System. The scale size of its place of origin would dwarf the orbits of the Solar System to little more than a small dot. (Illustration Credit: Near-Earth Object (NEO) office, NASA/JPL)
An animation of comet Siding Springs passage through the inner Solar System. The scale size of its place of origin would dwarf the orbits of the Solar System to little more than a small dot. (Illustration Credit: Near-Earth Object (NEO) office, NASA/JPL)

The closest approach for comet Siding Spring with the Sun – perihelion is at a distance of 1.39875 Astronomical Units (1 AU being the distance between the Earth and Sun), still 209 million km (130 million miles). The exact period of the comet is not exactly known but it is measured in millions of years. In my childhood astronomy book, it stated that comet Halley, when it is at its furthest distance from the Sun, is moving no faster than a galloping horse. This has also been all that comet Siding Spring could muster for millions of years – the slightest of movement in the direction of the Sun.

It is only in the last 3 years, out all the millions spent on its journey, that it has felt the heat of the Sun and been in proximity to the  planetary bodies of our Solar System. This is story of all long period comets. A video camera on Siding Spring would have recorded the emergence and evolution of one primate out of several, one that left the trees to stand on two legs, whose brain grew in size and complexity and has achieved all the technological wonders (and horrors) we know of today.

Now with its close encounter with Mars, the planet’s gravity will bend the trajectory of the comet and reduce its orbital period to approximately one million years. No one will be waiting up late for its next return to the inner Solar System.

It is also unknown what force in the depths of the Oort cloud nudged the comet into its encounter with Mars and the Sun. Like the millions of other Oort cloud objects, Siding Spring has spent its existence – 4.5 Billion years, in the darkness of deep space, with its parent star, the Sun, nothing more than a point of light, the brightest star in its sky. The gravitational force that nudged it may have been a passing star, another cometary body or possibly a larger trans-Neptunian object the size of Pluto and even as large as Mars or the Earth.

The forces of nature on Earth cause a constant turning over geological features. Our oceans and atmosphere are constantly recycling water and gases. The comets that we receive from the Oort Cloud are objects as old as our Solar System. Yet it is the close encounter with Mars that has raised the specter of an otherwise small ordinary comet. All these comets from deep space are fascinating gems nearly unaltered for 1/3rd of the time span of the known Universe.

Universe Today’s Siding Spring Compendium

2014/10/17: Here’s A Look At Comet Siding Spring Two Days Before Its Encounter With Mars

2014/10/17: Weekly Space Hangout Oct 17 2014

2014/10/15: Comet A1 Siding Spring vs Mars Views In Space And Time

2014/10/10: How To See Comet Siding Spring As It Encounters Mars

2014/10/08: Comet Siding Spring Close Call For Mars Wake Up Call For Earth

2014/09/19: How NASA’s Next Mars Spacecraft Will Greet The Red Planet On Sunday

2014/09/09: Tales Tails Of Three Comets

2014/09/05: Maven Mars Orbiter Ideally Poised To Uniquely Map Comet Siding Spring Composition Exclusive Interview With Principal Investigator Bruce Jakosky

2014/08/30: Caterpillar Comet Poses For Pictures En Route To Mars

2014/07/26: NASA Preps For Nail Biting Comet Flyby Of Mars

2014/05/08: Interesting Prospects For Comet A1 Siding Spring Versus The Martian Atmosphere

2014/03/27: Mars Bound Comet Siding Spring Sprouts Multiple Jets

2014/01/29: Neowise Spots Mars Crossing Comet

2014/01/02: Comets Prospects For 2014 A Look Into The Crystal Ball

2013/04/12: New Calculations Effectively Rule Out Comet Impacting Mars In 2014

2013/03/28: NASA Scientists Discuss Potential Comet Impact On Mars

2013/03/05: Update On The Comet That Might Hit Mars

2013/02/26: Is A Comet On A Collision Course With Mars

Balloon launcher Zero2Infinity Sets Its Sights to the Stars

Zero2Infinity announced on October 15, their plans to begin micro-satellite launches to low-earth orbit by 2017. (Credit: OIIOO)

Clearly, the sky is not the limit for balloon launcher Zero2Infinity. Based in Barcelona, Spain, the company announced this week their plans to launch payloads to orbit using a balloon launch system. The Rockoon is a portmanteau, as Lewis Carroll would have said: the blend of the words rocket and balloon.

The launch system announced by the company is called Bloostar. The Rockoon system begins with a balloon launch to stratospheric altitudes followed by the igniting of a 3 stage rocket to achieve orbit. The Rockoon concept is not new. Dr. James Van Allen with support from the US Navy developed and launched the first Rockoons in 1949. Those were just sounding rockets, Bloostar will take payloads to low-earth orbit and potentially beyond.

The Zero2Infinity Bloostar launch vehicle. Three stages will use a set of liquid fuel engines clustered as concentric toroids. (Photo Credit: 0II00)
The Zero2Infinity Bloostar launch vehicle. Three stages will use a set of liquid fuel engines clustered as concentric toroids. (Photo Credit: 0II00)

The advantage of rocket launch from a balloon is that it takes the Earth’s atmosphere out as a factor in design and as a impediment to reaching orbit. The first phase of the Bloostar system takes out 99% of the Earth’s atmosphere by reaching an altitude of over 20 km (>65,000 feet). Aerodynamics is not a factor so the stages are built out rather than up. The stages of the Bloostar design are a set of concentric rings which are sequentially expended as it ascends to orbit.

Zero2Infinity is developing a liquid fuel engine that they emphasize is environmentally friendly. The first stage firing of Bloostar will last 160 seconds, reach 250 km of altitude and an inertial speed of 3.7 km/s. This is about half the velocity necessary for reach a stable low earth orbit. The second stage will fire for 230 seconds and achieve an altitude of 530 km with velocity of 5.4 km/s. The 3rd and final stage motor will fire at least twice with a coast period to achieve the final orbit. Zero2Infinity states that their Bloostar system will be capable of placing a 75kg (165 lbs) payload into a 600 km (372 mi) sun-synchronous orbit. In contrast, the International Space Station orbits at 420 km (260 mi) altitude.

The Bloostar launch phases. Zero2Infinity intends to de-orbit the final stage to minimize their contribution to the growing debris field in low-earth orbit. Their plans are to launch from a ship at sea. (Photo Credit: 0II00)
The Bloostar launch phases. Zero2Infinity intends to de-orbit the final stage to minimize their contribution to the growing debris field in low-earth orbit. Their plans are to launch from a ship at sea. (Photo Credit: 0II00)

For the developing cubesat space industry, a 75 kg payload to orbit is huge. A single cubesat 10x10x10 cm (1U) will typically weigh about 1 kg so Bloostar would be capable of launching literally a constellation of cubesats or in the other extreme, a single micro-satellite with potentially its own propulsion system to go beyond low-earth orbit.

The Rockoon concept is not unlike what Scaled Composites undertakes with a plane and rocket. Their Whiteknight planes lift the SpaceShips to 50,000 feet for takeoff whereas the Zero2Infinity balloon will loft Bloostar to 65,000 feet or higher. The increased altitude of the balloon launch reduces the atmospheric density to half of what it is at 50,000 feet and altogether about 8% of the density at sea level.

The act of building and launching a stratospheric balloon to 30 km (100,000 feet) altitude with >100 kg instrument payloads is a considerable accomplishment. This is just not the releasing of a balloon but involves plenty of logistics and telecommunications with instrumentation and also the returning of payloads safely to Earth. This is clearly half of what is necessary to reach orbit.

Bloostar is blazing new ground in Spain. The ground tests of their liquid fuel rocket engine are the first of its kinds in the country. Zero2Infinity began launching balloons in 2009. The founder and CEO, Jose Mariano Lopez-Urdiales is an aeronautical engineer educated in Spain with R&D experience involving ESA, MIT and Boeing. He has speerheaded organizations and activities in his native Spain. In 2002 he presented to the World Space Congress in Houston, the paper “The Role of Balloons in the Future Development of Space Tourism”.

References:

Zero2Infinity Press Release

Bloostar Launch Cycle

 

Hawking Radiation Replicated in a Laboratory?

In honor of Dr. Stephen Hawking, the COSMOS center will be creating the most detailed 3D mapping effort of the Universe to date. Credit: BBC, Illus.: T.Reyes

Dr. Stephen Hawking delivered a disturbing theory in 1974 that claimed black holes evaporate. He said black holes are not absolutely black and cold but rather radiate energy and do not last forever. So-called “Hawking radiation” became one of the physicist’s most famous theoretical predictions. Now, 40 years later, a researcher has announced the creation of a simulation of Hawking radiation in a laboratory setting.

The possibility of a black hole came from Einstein’s theory of General Relativity. Karl Schwarzchild in 1916 was the first to realize the possibility of a gravitational singularity with a boundary surrounding it at which light or matter entering cannot escape.

This month, Jeff Steinhauer from the Technion – Israel Institute of Technology, describes in his paper, “Observation of self-amplifying Hawking radiation in an analogue black-hole laser” in the journal Nature, how he created an analogue event horizon using a substance cooled to near absolute zero and using lasers was able to detect the emission of Hawking radiation. Could this be the first valid evidence of the existence of Hawking radiation and consequently seal the fate of all black holes?

This is not the first attempt at creating a Hawking radiation analogue in a laboratory. In 2010, an analogue was created from a block of glass, a laser, mirrors and a chilled detector (Phys. Rev. Letter, Sept 2010); no smoke accompanied the mirrors. The ultra-short pulse of intense laser light passing through the glass induced a refractive index perturbation (RIP) which functioned as an event horizon. Light was seen emitting from the RIP. Nevertheless, the results by F. Belgiorno et al. remain controversial. More experiments were still warranted.

The latest attempt at replicating Hawking radiation by Steinhauer takes a more high tech approach. He creates a Bose-Einstein condensate, an exotic state of matter at very near absolute zero temperature. Boundaries created within the condensate functioned as an event horizon. However, before going into further details, let us take a step back and consider what Steinhauer and others are trying to replicate.

Artists illustrations of black holes are guided by descriptions given from theorists. There are many illustrations. A black hole has never been seen up close. However, to have Hawking radiation all the theatrics of accretion disks and matter being funneled off a companion star are unnecessary. One just needs a black hole in the darkness of space. (Illustration: public domain)
Artists illustrations of black holes are guided by descriptions given to them by theorists. There are many illustrations. A black hole has never been seen up close. However, to have Hawking radiation, all the theatrics of accretion disks and matter being funneled off a companion star are unnecessary. Just a black hole in the darkness of space will do. (Illustration: public domain)

The recipe for the making Hawking radiation begins with a black hole. Any size black hole will do. Hawking’s theory states that smaller black holes will more rapidly radiate than larger ones and in the absence of matter falling into them – accretion, will “evaporate” much faster. Giant black holes can take longer than a million times the present age of the Universe to evaporate by way of Hawking radiation. Like a tire with a slow leak, most black holes would get you to the nearest repair station.

So you have a black hole. It has an event horizon. This horizon is also known as the Schwarzchild radius; light or matter checking into the event horizon can never check out. Or so this was the accepted understanding until Dr. Hawking’s theory upended it. And outside the event horizon is ordinary space with some caveats; consider it with some spices added. At the event horizon the force of gravity from the black hole is so extreme that it induces and magnifies quantum effects.

All of space – within us and surrounding us to the ends of the Universe includes a quantum vacuum. Everywhere in space’s quantum vacuum, virtual particle pairs are appearing and disappearing; immediately annihilating each other on extremely short time scales. With the extreme conditions at the event horizon, virtual particle and anti-particles pairs, such as, an electron and positron, are materializing. The ones that appear close enough to an event horizon can have one or the other virtual particle zapped up by the black holes gravity leaving only one particle which consequently is now free to add to the radiation emanating from around the black hole; the radiation that as a whole is what astronomers can use to detect the presence of a black hole but not directly observe it. It is the unpairing of virtual particles by the black hole at its event horizon that causes the Hawking radiation which by itself represents a net loss of mass from the black hole.

So why don’t astronomers just search in space for Hawking radiation? The problem is that the radiation is very weak and is overwhelmed by radiation produced by many other physical processes surrounding the black hole with an accretion disk. The radiation is drowned out by the chorus of energetic processes. So the most immediate possibility is to replicate Hawking radiation by using an analogue. While Hawking radiation is weak in comparison to the mass and energy of a black hole, the radiation has essentially all the time in the Universe to chip away at its parent body.

This is where the convergence of the growing understanding of black holes led to Dr. Hawking’s seminal work. Theorists including Hawking realized that despite the Quantum and Gravitational theory that is necessary to describe a black hole, black holes also behave like black bodies. They are governed by thermodynamics and are slaves to entropy. The production of Hawking radiation can be characterized as a thermodynamic process and this is what leads us back to the experimentalists. Other thermodynamic processes could be used to replicate the emission of this type of radiation.

Using the Bose-Einstein condensate in a vessel, Steinhauer directed laser beams into the delicate condensate to create an event horizon. Furthermore, his experiment creates sound waves that become trapped between two boundaries that define the event horizon. Steinhauer found that the sound waves at his analogue event horizon were amplified as happens to light in a common laser cavity but also as predicted by Dr. Hawking’s theory of black holes. Light escapes from the laser present at the analogue event horizon. Steinhauer  explains that this escaping light represents the long sought Hawking radiation.

Publication of this work in Nature underwent considerable peer review to be accepted but that alone does not validate his findings. Steinhauer’s work will now withstand even greater scrutiny. Others will attempt to duplicate his work. His lab setup is an analogue and it remains to be verified that what he is observing truly represents Hawking radiation.

References:

Observation of self-amplifying Hawking radiation in an analogue black-hole laser“, Nature Physics, 12 October 2014

“Hawking Radiation from Ultrashort Laser Pulse Filaments”, F. Belgiorno, et al., Phys. Rev. Letter, Sept 2010

“Black hole explosions?”, S. W. Hawking, et al., Nature, 01 March 1974

“The Quantum Mechanics of Black Holes”, S. W. Hawking, Scientific American, January 1977

A Ghastly Green Shade On The Space Station Evokes Hallowe’en Spirit

The International Space Station is bathed in a green laser as part of a communications test at the European Space Agency's optical ground station in Spain. Credit: ESA (screenshot)

Woah, is that home to six people in space now some sort of a ghoul? Here is a video of the International Space Station in an odd shade of … green. And no, it’s not because astronauts secretly painted the hull during their spacewalk this week.

What you’re actually seeing is a green laser shining on the space station as part of a test of next-generation communications technologies. Lasers have been used in successful tests to the Moon and the space station in the past year, hinting that perhaps there’s a faster way to transmit data than over traditional radio.

The clip was filmed at the European Space Agency’s optical ground station in Tenerife, Spain, on Oct. 8 as part of a social media event. Below, you can see a shot of the laser in action, aiming at the sky. More photos are here.

A green laser shines out into space at an October 2014 social media event at the European Space Agency's optical ground station in Spain. Credit: Daniel Lopez/IAC
A green laser shines out into space at an October 2014 social media event at the European Space Agency’s optical ground station in Spain. Credit: Daniel Lopez/IAC