ESO’s Latest Dramatic Landscape

This mosaic of images from the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile shows two dramatic star formation regions in the southern Milky Way. The first of these, on the left, is dominated by the star cluster NGC 3603, located about 20 000 light-years away, in the Carina–Sagittarius spiral arm of the Milky Way galaxy. The second object, on the right, is a collection of glowing gas clouds known as NGC 3576 that lies only about half as far from Earth. Credit: ESO / G. Beccari

The universe is stunning. Images from even the most modest telescopes can unveil its brilliant beauty. But couple that with a profound reason — our ability to question and understand the physical laws that dominate that brilliant beauty — and the image transforms into something much more spectacular.

Take ESO’s latest image of two dramatic star formation regions in the southern Milky Way. John Herschel first observed the cluster on the left in 1834, during his three-year expedition to systematically survey the southern skies near Cape Town. He described it as a remarkable object and thought it might be a globular cluster. But future studies (and not to mention more dramatic images from larger telescopes) enriched our understanding, demonstrating that it was not an old globular but a young open cluster.

This chart shows the constellation of Carina (The Keel) and includes all the stars that can be seen with the unaided eye on a clear and dark night. This region of the sky includes some of the brightest star formation regions in the Milky Way. The location of the distant, but very bright and compact, open star cluster NGC 3603 is marked. This object is not spectacular in small telescopes, appearing as just a tight clump of stars surrounded by faint nebulosity. Credit: ESO
This chart shows the constellation of Carina and includes all the stars that can be seen with the unaided eye on a clear and dark night. The location of the open star cluster NGC 3603 is marked. This object is not spectacular in small telescopes, appearing as just a tight clump of stars surrounded by faint nebulosity. Credit: ESO

The Wide Field Imager at ESO’s La Silla Observatory in Chile recently captured the image again. The bright region on the left is the star cluster NGC 3603, located 20,000 light-years away in the Carina-Sagittarius spiral arm of the Milky Way galaxy. The bright region on the right is a collection of glowing gas clouds known as NGC 3576, located only 10,000 light-years away.

Stars are born in enormous clouds of gas and dust, largely hidden from view. But as small pockets in these clouds collapse under the pull of gravity, they become so hot they ignite nuclear fusion, and their light clears away — and brightens — the surrounding gas and dust.

Nearby regions of hydrogen gas are heated, and therefore partially ionized, by the ultraviolet radiation given off by the brilliant hot young stars. These regions, better known as HII regions, can measure several hundred light-years in diameter, and the one surrounding NGC 3603 has the distinction of being the most massive known in our galaxy.

Not only is NGC 3603 known for having the most massive HII region, it’s known for having the highest concentration of massive stars that have been discovered in our galaxy so far. At the center lies a Wolf-Rayet star system. These stars begin their lives at 20 times the mass of the Sun, but evolve quickly while shedding a considerable amount of their matter. Intense stellar winds blast the star’s surface into space at  several million kilometers per hour.

Where NGC 3603 is notable for its extremes, NGC 3576 is notable for its extremities — the two huge curved objects in the outreaches of the cluster. Often described as the curled horns of a ram, these odd filaments are the result of stellar winds from the hot, young stars within the central regions of the nebula. The stars have blown the dust and gas outwards across a hundred light-years.

Additionally, the two dark silhouetted areas near the top of the nebula are known as Bok globules, dusty regions found near star formation sights. These dark clouds absorb nearby light and offer potential sites for the future formation of stars. They may further sculpt the dramatic landscape above, which is the smallest slice of our stunning universe

Loading player…

How Watching 13 Billion Years Of Cosmic Growth Links To Storytelling

Screenshot of a simulation of how the universe's dark matter and gas grew in its first 13 billion years. Credit: Harvard-Smithsonian Center for Astrophysics / YouTube

How do you show off 13 billion years of cosmic growth? One way that astronomers can figure that out is through visualizations — such as this one from the Harvard-Smithsonian Center for Astrophysics, called Illustris.

Billed as the most detailed computer simulation ever of the universe (done on a fast supercomputer), you can slowly see how galaxies come alight and the structure of the universe grows. While the pictures are pretty to look at, the Kavli Foundation also argues this is good for science.

In a recent roundtable discussion, the foundation polled experts to talk about the simulation (and in particular how the gas evolves), and how watching these interaction play out before their eyes helps them come to new understandings. But like any dataset, part of the understanding comes from knowing what to focus on and why.

“I think we should look at visualization like mapmakers look at map making. A good mapmaker will be deliberate in what gets included in the map, but also in what gets left out,” said Stuart Levy, a research programmer at the National Center for Supercomputing Applications’ advanced visualization lab, in a statement.

“Visualizers think about their audience … and the specific story they want to tell. And so even with the same audience in mind, you might set up the visualization very differently to tell different stories. For example, for one story you might want to show only what it’s possible for the human eye to see, and in others you might want to show the presence of something that wouldn’t be visible in any sort of radiation at all. That can help to get a point across.”

You can read the whole discussion at this webpage.

Remembering the “World War I Eclipse”

Credit

The paths of total solar eclipses care not for political borders or conflicts, often crossing over war-torn lands.

Such was the case a century ago this week on August 21st, 1914 when a total solar eclipse crossed over Eastern Europe shortly after the outbreak of World War I.

Known as the “War to End All Wars,” — which, of course, it didn’t — World War I would introduce humanity to the horrors of modern warfare, including the introduction of armored tanks, aerial bombing and poison gas. And then there was the terror of trench warfare, with Allied and Central Powers slugging it out for years with little gain.

Eclipse
The path of the total solar eclipse of August 21st, 1914 laid out across modern day Europe. Credit: Google Maps/Fred Espenak/NASA/GSFC.

But ironically, the same early 20th century science that was hard at work producing mustard gas and a better machine gun was also pushing back the bounds of astronomy. Einstein’s Annus Mirabilis or “miracle year” occurred less than a decade earlier on 1905. And just a decade later in 1924, Edwin Hubble would expand our universe a million-fold with the revelation that “spiral nebulae” were in fact, island universes or galaxies in their own right.

Indeed, it’s tough to imagine that many of these discoveries are less than a century in our past. It was against this backdrop that the total solar eclipse of August 21st, 1914 crossed the eastern European front embroiled in conflict.

Solar eclipses have graced the field of battle before. An annular solar eclipse occurred during the Battle of Isandlwana in 1879 during the Zulu Wars, and a total solar eclipse in 585 B.C. during the Battle of Thales actually stopped the fighting between the Lydians and the Medes.

img537
A photograph of an “eclipse camp” in the Crimea in 1914. Credit: University of Cambridge DSpace.

But unfortunately, no celestial spectacle, however grand, would save Europe from the conflagration war. In fact, several British eclipse expeditions were already en route to parts of Russia, the Baltic, and Crimea when the war broke out less than two months prior to the eclipse with the assassination of Archduke Ferdinand on June 28th, 1914. Teams arrived to a Russia already mobilized for war, and Britain followed suit on August 4th, 1914 and entered the war when Germany invaded Belgium.

You can see an ominous depiction of the path of totality from a newspaper of the day, provided from the collection of Michael Zeiler:

1914_August_22_TSE_The_Graphic_1
An illustration of the 1914 total solar eclipse “scorching” a war-ravaged Europe. Credit: From the collection of Michael Zeiler. Used with permission.

Note that the graphic depicts a Europe aflame and adds in the foreboding description of Omen faustum, inferring that the eclipse might be an “auspicious omen…” eclipses have never shaken their superstitious trappings in the eyes of man, which persists even with today’s fears of a “Blood Moon.”

A race was also afoot against the wartime backdrop to get an expedition to a solar eclipse to prove or disprove Einstein’s newly minted theory of general relativity. One testable prediction of this theory is that gravity bends light, and astronomers soon realized that the best time to catch this in action would be to measure the position of a star near the limb of the Sun — the most massive light bending object in our solar system — during a total solar eclipse. The advent of World War I would scrub attempts to observe this effect during the 1914 and 1916 eclipses over Europe.

An expedition led by astronomer Arthur Eddington to observe an eclipse from the island of Principe off of the western coast of Africa in 1919 declared success in observing this tiny deflection, measuring in less than two seconds of arc. And it was thus that a British expedition vindicated a German physicist in the aftermath of the most destructive war up to that date.

The total solar eclipse of August 21st 1914 was a member of saros cycle 124, and was eclipse number 49 of 73 in that particular series. Eclipses in the same saros come back around to nearly the same circumstances once every triple saros period of 3 times 18 years and 11.3 days, or about every 54+ years, and there was an eclipse with similar circumstances slightly east of the 1914 eclipse in 1968 — the last total eclipse of saros 124 — and a partial eclipse from the same saros will occur again on October 25th, 2022.

All historical evidence we’ve been able to track down suggests that observers that did make it into the path of totality were clouded out at show time, or at very least, no images of the August 21st 1914 eclipse exist today. Can any astute reader prove us wrong? We’d love to see some images of this historical eclipse unearthed!

Starry Night
A simulation of the total solar eclipse of August 21st 1914 as seen from Latvia. Created using Starry Night Education software.

And, as with all things eclipse related, the biggest question is always: when’s the next one? Well, we’ve got another of total lunar eclipse coming right up on October 8th, 2014, again favoring North America. The next total solar eclipse occurs on March 20th, 2015 but is only visible along a path covering the Faroe and Svalbard Islands, with a path crossing the Norwegian Sea.

But, by happy coincidence, we’re also only now three years out this week from the total solar eclipse of August 21st, 2017 that spans the contiguous “Lower 48” of the United States. The shadow of the Moon will race from the northwest and make landfall off of the Pacific coast of Oregon before reaching a maximum duration for totality at 2 minutes and 40 seconds across Missouri, southern Illinois and Kentucky and will then head towards the southeastern U.S. to depart land off of the coast of South Carolina. Millions will witness this event, and it will be the first total solar eclipse for many. A total solar eclipse hasn’t crossed the contiguous United States since 1979, so you could say that we’re “due”!

Credit
The path of the 2017 total solar eclipse across the United States. Credit: Eclipse-Maps.

Already, towns in Kentucky to Nebraska have laid plans to host this event. The eclipse occurs towards the afternoon for residents of the eastern U.S., which typically sees afternoon thunderstorms popping up in the sultry August summer heat. Eclipse cartographer Michael Zeiler states that the best strategy for eclipse chasers three years hence is to “go west, young man…”

It’s fascinating to ponder tales of eclipses past, present, and future and the role that they play in human history… where will you be on August 21st, 2017?

–      Check out Michael Zeiler’s  new site, GreatAmericanEclipse.com

–      Eclipses pop up in science fiction on occasion as well… check out our history spanning eclipse tale Exeligmos.

Australian Amateur Terry Lovejoy Discovers New Comet

The small fuzzy potential comet is at center in this photo taken discovered by Terry Lovejoy. Credit: copyright Alain Maury and Joaquin Fabrega

It’s confirmed! Australian amateur astronomer Terry Lovejoy just discovered his fifth comet, C/2014 Q2 (Lovejoy). He found it August 17th using a Celestron C8 fitted with a CCD camera at his roll-off roof observatory in Brisbane, Australia. 

Image triplet taken by Terry Lovejoy on which he discovered the comet. The comet moves slightly counterclockwise around the larger fuzzy spot. Credit: Terry Lovejoy
Image triplet taken by Terry Lovejoy of his comet discovery. The comet moves slightly counterclockwise around the larger fuzzy spot over the time frame. Credit: Terry Lovejoy

“I take large sets of image triplets, i.e 3 images per star field and use software to find moving objects,” said Lovejoy.  “The software I use outputs suspects that I check manually by eye.”

Most of what pops up on the camera are asteroids, known comets, or false alarms but not this time. Lovejoy’s latest find is a faint, fuzzy object in the constellation Puppis in the morning sky.

Sky as seen from central South America showing the approximate location of the new comet on August 19 in Puppis near the bright star Canopus. Stellarium
Sky as seen from central South America showing the approximate location of the new comet  (purple circle) on August 19 in Puppis near the bright star Canopus. The view shows the sky facing southeast just before the start of dawn. Stellarium

Glowing a dim magnitude +15, the new comet will be a southern sky object until later this fall when it swings quickly northward soon around the time of perihelion or closest approach to the sun. Lovejoy’s find needs more observations to better refine its orbit, but based on preliminary data, Maik Meyer, founder of the Comets Mailing List, calculates a January 2, 2015 perihelion.

Another photo of C/2014 Q2 taken on August 19, 2014. Credit: Jean-François and Alain Maury
Another photo of C/2014 Q2 taken on August 19, 2014. Credit: Jean-François and Alain Maury

On that date, it will be a healthy 84 million miles from the sun, but one month earlier on December 7, the comet could pass just 6.5 million miles from Earth and be well placed for viewing in amateur telescopes.

Everything’s still a little up in the air right now, so these times and distances are likely to change as fresh observations pour in. Take all predictions with a major grain of salt for the moment.

photographed by NASA astronaut Dan Burbank, Expedition 30 commander, onboard the International Space Station on Dec. 22, 2011. Credit: NASA
Comet Lovejoy (C/2011 W3) photographed by NASA astronaut Dan Burbank, onboard the International Space Station on Dec. 22, 2011 from 250 miles up. Credit: NASA

You might remember some of Terry’s earlier comets. Comet Lovejoy (C/2011 W3), a Kreutz sungrazer discovered in November 2011, passed just 87,000 miles above the sun’s surface. Many astronomers thought it wouldn’t  survive the sun’s heat, yet amazingly, although much of its nucleus burned off, enough material survived to produce a spectacular tail.

Terry Lovejoy
Terry Lovejoy

More recently, Comet Lovejoy (C/2013 R1) thrilled observers as it climbed to naked eye brightness last November, managing to do the impossible at the time and draw our eyes away from Comet ISON.

Congratulations Terry on your new find! May it wax brightly this fall.

* Update: The latest orbit calculation from the Minor Planet Center based on 24 observations now puts perihelion at 164.6 million miles (265 million km) on February 14, 2015. Closest approach to Earth of 93.2 million miles (150 million km) will occur in January.

One That Fell to Earth: Researchers Reveal 2012 Novato Meteorite Took a Beating

End of flight fragmentation of the Nov. 18, 2012, fireball over the San Francisco Bay Area (shown in a horizontally mirrored image to depict the time series from left to right). The photographs were taken from a distance of about 40 miles (65 km). Image Credit: Robert P. Moreno Jr., Jim Albers and Peter Jenniskens

What’s the chance of that thump you just heard in your house was a meteorite hitting your roof? That was the case for one family in Novato, California during a fireball event that took place in the north bay area near San Francisco on October 17, 2012.

Researchers have now released new results from analysis of the meteor that fell to Earth, revealing that the “Novato meteorite” was part of numerous collisions over a span of 4 billion years.

There is nothing ordinary about a meteorite whether it just spent 4.4 billion years all alone or spent such time in a game of cosmic pinball, interacting with other small or large bodies of our Solar System. On any given night one can watch at least a couple of meteors overhead burning up, lighting up the sky but never reaching the Earth below. However, in less than two years, Dr. Peter Jenniskens, SETI Institute’s renowned meteor expert was effectively host to two meteorites within a couple hours drive from his office in Mountain View, California.

The first was the Sutter Mill meteorite, a fantastic carbonaceous chondrite full of organic compounds. The second was the Novato meteorite, identified as a L6 chondrite fragmental breccia. which is the focus of new analysis, to be released in a paper in the August issue of Meteoritics and Planetary Science. Early on, it was clear that this meteorite had been a part of a larger asteroidal parent body that had undergone impact shocks.

Analysis of the meteorite was spearheaded by Jenniskens who initially determined the trajectory and orbit of the meteoroid from the Cameras for Allsky Meteor Surveillance (CAMS) which he helped establish in the greater San Francisco bay area. Jenniskens immediately released information about the fireball to local news agencies to ask for the public’s help with the hopes of finding pieces of the meteorite. One resident recalled hearing something hit her roof, and with the help of neighbors, they investigated and soon found the first fragment in their backyard.

Finding fragments was the first step, and over a two year period, the analysis of the Novato meteorite was spread across several laboratories around the world with specific specialties.

Novato N04, found by Bob Verish. The fourth of 6 fragments of the Novato fireball recovered. (Image Credit, B. Verish)
Novato N04, found by Bob Verish. The fourth of six fragments of the Novato fireball recovered. Fusion crust from entry into the Earth’s atmosphere is clearly evident. A 1 centimeter cube is shown for size comparison. (Image Credit, B. Verish, cams.seti.org)

Dr. Jenniskens, along with 50 co-authors, have concluded that the Novato meteorite had been involved in more impacts than previously thought. Dr. Qingzhu Yin, professor in the Department of Earth and Planetary Sciences at the University of California, Davis stated, “We determined that the meteorite likely got its black appearance from massive impact shocks causing a collisional resetting event 4.472 billion years ago, roughly 64-126 million years after the formation of the solar system.”

The predominant theory of the Moon’s formation involves an impact of the Earth by a Mars-sized body. The event resulted in the formation of the Moon but also the dispersal of many fragments throughout the inner Solar System. Dr. Qingzhu Yin continued, “We now suspect that the moon-forming impact may have scattered debris all over the inner solar system and hit the parent body of the Novato meteorite.”

Additionally, the researcher discovered that the parent body of the Novato meteorite experienced a massive impact event approximately 470 million years ago. This event dispersed many asteroidal fragments throughout the Asteroid Belt including a fragment from which resulted the Novato meteorite.

The Novato meteorite strewn field determined by Dr. Jenniskens team's analysis of CAMS allsky images. (Illustration Credit, P. Jenniskens, NASA/SETI)
The Novato meteorite strewn field determined by Dr. Jenniskens team’s analysis of CAMS allsky images. (Illustration Credit, P. Jenniskens, NASA, SETI – cams.seti.org)

The trajectory analysis completed earlier by Dr. Jenniskens pointed the Novato meteorite back to the Gefion asteroid family. Dr. Kees Welten, cosmochemist at UC Berkeley, was able to further pinpoint the time, drawing the conclusion, “Novato broke from one of the Gefion family asteroids nine million years ago.” His colleague at Berkeley, cosmochemist Dr. Kunihiko Nishiizumialso added, “but may have been buried in a larger object until about one million years ago.”

There was more that could be revealed about history of  the Novato meteorite. Dr. Derek Sears a meteoriticist working for the Bay Area Environmental Research Institute in Sonoma, California and stationed at NASA Ames Reserach Center applied his expertise in thermoluminescence. Dr. Sears was involved in the analysis of Lunar regolith returned by the Apollo astronauts using this analysis method.

“We can tell the rock was heated, but the cause of the heating is unclear,” said Dr. Sears, “It seems that Novato was hit again.” As stated in the NASA press release, “Scientists at Ames measured the meteorites’ thermoluminescence – the light re-emitted when heating of the material and releasing the stored energy of past electromagnetic and ionizing radiation exposure – to determine that Novato may have had another collision less than 100,000 years ago.”

From this apparent final collision one hundred thousand years ago, the Novato meteoroid completed over 10,000 orbits of the Sun and with its final Solar orbit, intercepted the Earth, entering our atmosphere and mostly burning up over California. The meteoroid is estimated to have measured 14 inches across (35 cm) and have weighed 176 pounds (80 kg). What reached the ground likely amounted to less than 5 lbs. (~ 2 kg). Only six fragments were recovered and many more remain buried or hidden in Sonoma and Napa counties.

Besides the analysis that revealed the series of likely impact events in the meteoroids history, a team led by Dr. Dan Glavin from NASA Goddard Space Flight Center undertook analysis in search of amino acids, the building blocks of life. They detected non-protein amino acids in the meteorite that are very rare on Earth. Dr. Jenniskens emphasized that the quick recovery of the fragments by scores of individuals that searched provided pristine samples for analysis.

The impact dent on the rooftop of the Webber home in Novato. Luis Rivera points to the dent. (Image Credit, P.Jenniskens, L.Rivera, cams.seti.org)
The impact dent on the rooftop of the Webber home in Novato. Luis Rivera points to the dent. (Image Credit, P.Jenniskens, L.Rivera, cams.seti.org)

Robert P. Moreno, Jr. in Santa Rosa, CA photographed the fireball in greatest detail with a high resolution camera. Several other photos were brought forward from other vantage points. Dr. Jenniskens stated, “These photographs show that this meteorite – now one of the best studied meteorites of its kind – broke in spurts, each time creating a flash of light as it entered Earth’s atmosphere.”

An animated gif of the series of photographs taken by Robert Moreno Jr. (Credit, R. Moreno Jr., NASA, SETI)
An animated gif of the series of photographs taken by Robert Moreno Jr. Click on the image to animate in full resolution. (Credit, R. Moreno Jr., NASA, SETI)

Numerous individuals and groups undertook the search for the Novato meteorite. Dr. Jenniskens trajectory analysis included a likely impact zone or strewn field. People from all walks of life roamed the streets, open fields and hillsides of the north bay in search of fragments. Despite organized searches by Dr. Jenniskens, it was the footwork from other individuals that led to finding six fragments and was the first step which led to these studies that add to the understanding  of the early Solar System’s development.

For Dr. Jenniskens, Novato was part of a trifecta – the April 22, 2012, Sutter Mill meteorite in the nearby foothills of the Sierras, the Novato meteorite and the massive Chelyabinsk airburst event in Russia on February 15, 2013. Throughout this period, Dr. Jenniskens all-sky camera network continued to expand and record “falling stars” – meteors. The number of meteors recorded with calculated trajectories is now over 175,000. The SETI Institute researcher has been supported by NASA and personnel at the institute and ordinary citizens including amateur astronomers that have refined the methods for meteor orbital determination and estimating their size and mass. Several websites have compiled images and results for the Novato meteorite with Dr. Jenniskens’ – CAMS.SETI.ORG being most prominent.

What Sparked Star Explosion 2014J? NASA Telescope Seeks Clues

Astronomers are gazing closely at supernova 2014J (inset) to see what sort of triggers caused the star explosion. Credit: NASA/SAO/CXC/R. Margutti et al

X marks the spot: after probing the area where a star used to be, in X-rays, astronomers have been able to rule out one cause for the supernova explosion.

Because the Chandra X-Ray Observatory did not detect anything unusual in X-rays, astronomers say this means that a white dwarf was not responsible for pulling off material from a massive star that exploded (from Earth’s vantage point) on Jan. 21, 2014, triggering excitement from professional and amateur astronomers alike.

“While it may sound a bit odd, we actually learned a great deal about this supernova by detecting absolutely nothing,” stated study leader Raffaella Margutti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Massachusetts. “Now we can essentially rule out that the explosion was caused by a white dwarf continuously pulling material from a companion star.”

So what caused it? Possibly two white dwarfs merged instead. Follow-up observations will take place in Messier 88 and the source of the explosion, which was about 12 million light-years from Earth. While that’s a long time by human standards, astronomers point out that is close on the cosmic distance scale.

A study on this work was recently published in The Astrophysical Journal. You can read a preprint version of the article here.

Source: NASA

Need A Summer Vacation? Pictures Allow You To Tour The Solar System For Free

The shadow of the Opportunity rover lies on the Martian surface in this picture taken on Sol 3752, on Aug. 13. The rover is on the west rim of Endeavour Crater, near the Martian equator. Its landing site was Meridani Planum. Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ.

Many of us in the northern hemisphere are on summer vacation right now, and others are dreaming of it. While taking off somewhere exotic requires time and money, looking at pictures around the solar system provides cheaper thrills — in stranger places!

Several spacecraft roaming our planetary neighborhood regularly send back raw images of what they’re seeing. Here are some views from them taken in the past week.

Mars: After setting an off-word driving record, the Opportunity rover is still trundling on Mars after more than 10 years of operations. One of its latest raw images, above, shows its shadow and tracks on the surface of the Red Planet. Its heading to a destination called “Marathon Valley”, which is a likely spot for clay materials, and recently observed a transit of the moon Phobos. The rover’s computer had a brief reset, but is in good health besides that.

Tracks of the Curiosity rover crisscross Mars in this picture taken on Sol 719 (Aug. 14, 2014). Credit: NASA/JPL-Caltech
Tracks of the Curiosity rover crisscross Mars in this picture taken on Sol 719 (Aug. 14, 2014). Credit: NASA/JPL-Caltech

Mars: The Curiosity rover — which recently celebrated its two-year Earth birthday on Mars — has been on the move itself. Scientists are carefully moving the rover to its next science destination, about 1/3 of a mile (500 meters) away. The challenge is the extremely rocky terrain is damaging the rover’s wheels, but NASA said a recent drive through a rocky stretch produced less wear than feared.

A lava surface in southern Elysium Planitia taken by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Credit: NASA/JPL/University of Arizona
A lava surface in southern Elysium Planitia taken by the Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). Credit: NASA/JPL/University of Arizona

Mars: These strange features spotted by the Mars Reconnaissance Orbiter are puzzling scientists. Usually the cones you see are indicative of lava features, but these are smaller than usual. “What’s really odd here is that the cones are associated with lighter areas with polygonal patterns,” stated the University of Arizona on its blog for the High Resolution Imaging Science Experiment (HiRISE). “Such polygons are commonly visible on the denser portions of lava flows, while the rougher areas have more broken-up low-density crust.”

A raw image of the Sun taken by the Solar and Heliospheric Observatory (SOHO) on Aug. 15, 2014. Credit: ESA/NASA/SOHO
A raw image of the Sun taken by the Solar and Heliospheric Observatory (SOHO) on Aug. 15, 2014. Credit: ESA/NASA/SOHO

Sun: The Solar and Heliospheric Observatory (SOHO) is one of a few sentinels keeping watch over the Sun for sunspots and other signs of solar activity. This allows scientists to make better predictions about when solar storms sweep over our planet, which is important for protecting satellites and infrastructure from the worst of these storms.

A raw image of Saturn taken by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute
A raw image of Saturn taken by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute

Saturn: The Cassini spacecraft has been busily gazing at Saturn and its moons  in the past week, including looking at temperatures in the atmosphere (specifically, in the upper troposphere and tropopause) in the gas giant. Just visible in this image is a huge hexagonal storm that scientists previously said acts somewhat like the Earth’s ozone hole.

A raw view of Titan taken by the Cassini spacecraft Aug. 13, 2014. Credit: NASA/JPL/Space Science Institute
A raw view of Titan taken by the Cassini spacecraft Aug. 13, 2014. Credit: NASA/JPL/Space Science Institute

Titan: Saturn’s largest moon — which contains organic compounds that could be precursors to life’s chemistry — is undergoing some changes as summer approaches. A few days ago, scientists noted that clouds are starting to form in Titan’s northern hemisphere. While they’re not sure yet if it will herald summer, scientists added that the lack of clouds before that defied models.

A close-up view of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Aug. 7, 2014. Credit:  ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
A close-up view of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Aug. 7, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Comet 67P/Churyumov–Gerasimenko: The Rosetta spacecraft just arrived at this comet on Aug. 6, and has been sending back a few images of this small body that is speeding towards the Sun. You may recognize this particular image as part of the basis for a 3-D image that was released yesterday. Meanwhile, team members are examining dust production of the comet, which has already started as it heads to its closest Sun approach (between Earth and Mars) in about a year.

Funding Friday: How $1 Can Make A Difference For Tanzanian Astronomy

A student uses a telescope for the first time at Kalinga Primary School in northern Tanzania. Credit: Telescopes to Tanzania/Indiegogo

If you have a dollar to spare, why not share it? That’s the attitude that Astronomers Without Borders is encouraging people to adopt as it talks about contributing to a Tanzanian campaign to increase astronomy education in the African country.

There’s a crowdfunding campaign on right now to build a Center for Science Education and Observatory. With 23 days to go, 18% of the needed $38,000 has already been raised.

“The highly successful program Telescopes to Tanzania, of the international non-profit organization Astronomers Without Borders, has been actively supporting the East African nation’s schools since 2011. Tanzanian students are without textbooks and many basic educational resources we take for granted in western countries. Teacher training in science is often lacking,” the Indiegogo page reads.

“Now we are building The Center for Science Education and Observatory in East Africa to provide training for teachers, hands-on laboratories, an astronomical observatory, and quality educational resources that will all have a long-lasting impact nationwide.”

Once the center is ready, the campaign pledges it will be able to sustain itself through activities such as astro-tourism.

Diamond Pinpricks: Gorgeous Shot Of Star Group That Once Baffled Astronomers

A Hubble Space Telecope picture of globular cluster IC 4499. The new observations showed that it is about 12 billion years old, contrary to previous observations showing a puzzling young age. Credit: European Space Agency and NASA

Is this group of stars belonging to one generation, or more? That’s one of the things that was puzzling astronomers for decades, particularly when they were trying to pin down the age of IC 4499 — the globular cluster you see in this new picture from the Hubble Space Telescope.

While astronomers now know the stars are from a single generation that are about 12 billion years old (see this paper from three years ago), for about 15 years before that at least one paper said IC 4499 was three billion to four billion years younger than that.

“It has long been believed that all the stars within a globular cluster form at the about same time, a property which can be used to determine the cluster’s age,” stated information from the European Space Agency reposted on NASA’s website.

“For more massive globulars however, detailed observations have shown that this is not entirely true — there is evidence that they instead consist of multiple populations of stars born at different times.”

IC 4499 is somewhere in between these extremes, but only has a single generation of stars — its gravity wasn’t quite enough to pull in neighboring gas and dust to create more. Goes to show you how important it is to re-examine the results in science.

Source: NASA and the European Space Agency

James Webb Space Telescope’s Pathfinder Mirror Backplane Arrives at NASA Goddard for Critical Assembly Testing

Center section of the "pathfinder" (test) backplane of NASA's James Webb Space Telescope is hoisted into place in the assembly stand in NASA Goddard's giant cleanroom. Engineers will practice mirror installations over the next several months. Credit: NASA/Chris Gunn

The central piece of the “pathfinder” backplane that will hold all the mirrors for NASA’s James Webb Space Telescope (JWST) has arrived at the agency’s Goddard Space Flight Center in Maryland for critical assembly testing on vital parts of the mammoth telescope.

The pathfinder backplane arrived at Goddard in July and has now been hoisted in place onto a huge assembly stand inside Goddard’s giant cleanroom where many key elements of JWST are being assembled and tested ahead of the launch scheduled for October 2018.

The absolutely essential task of JWST’s backplane is to hold the telescopes 18 segment, 21-foot-diameter primary mirror nearly motionless while floating in the utterly frigid space environment, thereby enabling the telescope to peer out into deep space for precise science gathering measurements never before possible.

Over the next several months, engineers will practice installing two spare primary mirror segments and one spare secondary mirror onto the center part of the backplane.

JWST is being assembled here inside the world’s largest clean room at NASA Goddard Space Flight Center, Greenbelt, Md. Primary mirror segments stored in silver colored containers at top left. Technicians practice mirror installation on test piece of backplane (known as the BSTA or Backplane Stability Test Article) at center, 3 hexagonals.  Telescope assembly bays at right.  Credit: Ken Kremer- kenkremer.com
JWST pathfinder backplane has arrived here at NASA Goddard clean room.
JWST is being assembled here inside the world’s largest clean room at NASA Goddard Space Flight Center, Greenbelt, Md. Primary mirror segments stored in silver colored containers at top left. Technicians practice mirror installation on test piece of backplane (known as the BSTA or Backplane Stability Test Article) at center, 3 hexagonals. Pathfinder backplane has been hoisted into telescope assembly bays at right. Credit: Ken Kremer- kenkremer.com

The purpose is to gain invaluable experience practicing the delicate procedures required to precisely install the hexagonal shaped mirrors onto the actual flight backplane unit after it arrives.

The telescopes primary and secondary flight mirrors have already arrived at Goddard.

The mirrors must remained precisely aligned in space in order for JWST to successfully carry out science investigations. While operating at extraordinarily cold temperatures between -406 and -343 degrees Fahrenheit the backplane must not move more than 38 nanometers, approximately 1/1,000 the diameter of a human hair.

The backplane and every other component must function and unfold perfectly and to precise tolerances in space because JWST has not been designed for servicing or repairs by astronaut crews voyaging beyond low-Earth orbit into deep space, William Ochs, Associate Director for JWST at NASA Goddard told me in an interview during a visit to JWST at Goddard.

Watch this video showing movement of the pathfinder backplane into the Goddard cleanroom.

Video Caption: This is a time-lapse video of the center section of the ‘pathfinder’ backplane for NASA’s James Webb Space Telescope being moved into the clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: NASA/Chris Gunn

The actual flight backplane is comprised of three segments – the main central segment and a pair of outer wing-like parts which will be folded over into launch configuration inside the payload fairing of the Ariane V ECA booster rocket. The telescope will launch from the Guiana Space Center in Kourou, French Guiana in 2018.

Both the backplane flight unit and the pathfinder unit, which consists only of the center part, are being assembled and tested by prime contractor Northrop Grumman in Redondo Beach, California.

Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room.  Credit: Ken Kremer- kenkremer.com
Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room. Credit: Ken Kremer- kenkremer.com

The test unit was then loaded into a C-5, flown to the U.S. Air Force’s Joint Base Andrews in Maryland and unloaded for transport by trailer truck to NASA Goddard in Greenbelt, Maryland.

JWST is the successor to the 24 year old Hubble Space Telescope and will become the most powerful telescope ever sent to space.

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.

A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA
A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.

Read my story about the recent unfurling test of JWST’s sunshade – here.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The Webb telescope backplane "pathfinder" or practice-model was unloaded from a C-5 aircraft at the U.S. Air Force's Joint Base Andrews in Maryland.   Image Credit:   NASA/Desiree Stover
The Webb telescope backplane “pathfinder” or practice-model was unloaded from a C-5 aircraft at the U.S. Air Force’s Joint Base Andrews in Maryland. Image Credit: NASA/Desiree Stover

Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom.  Credit: NASA/ESA
Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom. Credit: NASA/ESA