If you have a dollar to spare, why not share it? That’s the attitude that Astronomers Without Borders is encouraging people to adopt as it talks about contributing to a Tanzanian campaign to increase astronomy education in the African country.
There’s a crowdfunding campaign on right now to build a Center for Science Education and Observatory. With 23 days to go, 18% of the needed $38,000 has already been raised.
“The highly successful program Telescopes to Tanzania, of the international non-profit organization Astronomers Without Borders, has been actively supporting the East African nation’s schools since 2011. Tanzanian students are without textbooks and many basic educational resources we take for granted in western countries. Teacher training in science is often lacking,” the Indiegogo page reads.
“Now we are building The Center for Science Education and Observatory in East Africa to provide training for teachers, hands-on laboratories, an astronomical observatory, and quality educational resources that will all have a long-lasting impact nationwide.”
Once the center is ready, the campaign pledges it will be able to sustain itself through activities such as astro-tourism.
Is this group of stars belonging to one generation, or more? That’s one of the things that was puzzling astronomers for decades, particularly when they were trying to pin down the age of IC 4499 — the globular cluster you see in this new picture from the Hubble Space Telescope.
“It has long been believed that all the stars within a globular cluster form at the about same time, a property which can be used to determine the cluster’s age,” stated information from the European Space Agency reposted on NASA’s website.
“For more massive globulars however, detailed observations have shown that this is not entirely true — there is evidence that they instead consist of multiple populations of stars born at different times.”
IC 4499 is somewhere in between these extremes, but only has a single generation of stars — its gravity wasn’t quite enough to pull in neighboring gas and dust to create more. Goes to show you how important it is to re-examine the results in science.
The central piece of the “pathfinder” backplane that will hold all the mirrors for NASA’s James Webb Space Telescope (JWST) has arrived at the agency’s Goddard Space Flight Center in Maryland for critical assembly testing on vital parts of the mammoth telescope.
The pathfinder backplane arrived at Goddard in July and has now been hoisted in place onto a huge assembly stand inside Goddard’s giant cleanroom where many key elements of JWST are being assembled and tested ahead of the launch scheduled for October 2018.
The absolutely essential task of JWST’s backplane is to hold the telescopes 18 segment, 21-foot-diameter primary mirror nearly motionless while floating in the utterly frigid space environment, thereby enabling the telescope to peer out into deep space for precise science gathering measurements never before possible.
Over the next several months, engineers will practice installing two spare primary mirror segments and one spare secondary mirror onto the center part of the backplane.
The purpose is to gain invaluable experience practicing the delicate procedures required to precisely install the hexagonal shaped mirrors onto the actual flight backplane unit after it arrives.
The telescopes primary and secondary flight mirrors have already arrived at Goddard.
The mirrors must remained precisely aligned in space in order for JWST to successfully carry out science investigations. While operating at extraordinarily cold temperatures between -406 and -343 degrees Fahrenheit the backplane must not move more than 38 nanometers, approximately 1/1,000 the diameter of a human hair.
The backplane and every other component must function and unfold perfectly and to precise tolerances in space because JWST has not been designed for servicing or repairs by astronaut crews voyaging beyond low-Earth orbit into deep space, William Ochs, Associate Director for JWST at NASA Goddard told me in an interview during a visit to JWST at Goddard.
Watch this video showing movement of the pathfinder backplane into the Goddard cleanroom.
Video Caption: This is a time-lapse video of the center section of the ‘pathfinder’ backplane for NASA’s James Webb Space Telescope being moved into the clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: NASA/Chris Gunn
The actual flight backplane is comprised of three segments – the main central segment and a pair of outer wing-like parts which will be folded over into launch configuration inside the payload fairing of the Ariane V ECA booster rocket. The telescope will launch from the Guiana Space Center in Kourou, French Guiana in 2018.
Both the backplane flight unit and the pathfinder unit, which consists only of the center part, are being assembled and tested by prime contractor Northrop Grumman in Redondo Beach, California.
The test unit was then loaded into a C-5, flown to the U.S. Air Force’s Joint Base Andrews in Maryland and unloaded for transport by trailer truck to NASA Goddard in Greenbelt, Maryland.
JWST is the successor to the 24 year old Hubble Space Telescope and will become the most powerful telescope ever sent to space.
Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.
The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).
NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.
Read my story about the recent unfurling test of JWST’s sunshade – here.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) has captured a spectacular event: a supermassive black hole’s gravity tugging on nearby X-ray light.
In just a matter of days, the corona — a cloud of particles traveling near the speed of light — fell in toward the black hole. The observations are a powerful test of Einstein’s theory of general relativity, which says gravity can bend space-time, the fabric that shapes our universe, and the light that travels through it.
“The corona recently collapsed in toward the black hole, with the result that the black hole’s intense gravity pulled all the light down onto its surrounding disk, where material is spiraling inward,” said coauthor Michael Parker from the Institute of Astronomy in Cambridge, United Kingdom, in a press release.
The supermassive black hole, known as Markarian 335, is about 324 million light-years from Earth in the direction of the constellation Pegasus. Such an extreme system squeezes about 10 million times the mass of our Sun into a region only 30 times the diameter of the Sun. It spins so rapidly that space and time are dragged around with it.
NASA’s Swift satellite has monitored Mrk 335 for years, recently noting a dramatic change in its X-ray brightness. So NuSTAR was redirected to take a second look at the system.
NuSTAR has been collecting X-rays from black holes and dying stars for the past two years. Its specialty is analyzing high-energy X-rays in the range of 3 to 79 kiloelectron volts. Observations in lower-energy X-ray light show a black hole obscured by clouds of gas and dust. But NuSTAR can take a detailed look at what’s happening near the event horizon, the region around a black hole form which light can no longer escape gravity’s grasp.
Specifically, NuSTAR is able to see the corona’s direct light, and its reflected light off the accretion disk. But in this case, the light is blurred due to the combination of a few factors. First, the doppler shift is affecting the spinning disk. On the side spinning away from us, the light is shifted to redder wavelengths (and therefore lower energy), whereas on the side spinning toward us, the light is shifted to bluer wavelengths (and therefore higher energy). A second effect has to do with the enormous speeds of the spinning black hole. And a final effect is from the gravity of the black hole, which pulls on the light, causing it to lose energy.
All of these factors cause the light to smear.
Intriguingly, NuSTAR observations also revealed that the grip of the black hole’s gravity pulled the corona’s light onto the inner portion of the accretion disk, better illuminating it. NASA explains that as if somebody had shone a flashlight for the astronomers, the shifting corona lit up the precise region they wanted to study.
“We still don’t understand exactly how the corona is produced or why it changes its shape, but we see it lighting up material around the black hole, enabling us to study the regions so close in that effects described by Einstein’s theory of general relativity become prominent,” said NuSTAR Principal Investigator Fiona Harrison of the California Institute of Technology. “NuSTAR’s unprecedented capability for observing this and similar events allows us to study the most extreme light-bending effects of general relativity.”
The new data will likely shed light on these mysterious coronas, where the laws of physics are pushed to their limit.
The article has been published in the Monthly Notices of the Royal Astronomical Society and is available online.
“What are those two bright stars in the morning sky?”
About once a year we can be assured that we’ll start fielding inquires to this effect, as the third and fourth brightest natural objects in the sky once again meet up.
We’re talking about a conjunction of the planets Jupiter and Venus. Venus has been dominating the dawn sky for 2014, and Jupiter is fresh off of solar conjunction on the far side of the Sun on July 24th and is currently racing up to greet it.
We just caught sight of Jupiter for the first time for this apparition yesterday from our campsite on F.E. Warren Air Force Base in Cheyenne, Wyoming. We’d just wrapped up an early vigil for Perseid meteors and scrambled to shoot a quick sequence of the supermoon setting behind a distant wind farm. Jupiter was an easy catch, first with binoculars, and then the naked eye, using brilliant Venus as a guide post.
And Jupiter will become more prominent as the week progresses, climaxing with a fine conjunction of the pair on Monday, August 18th. This will be the closest planet versus planet conjunction for 2014. At their closest — around 4:00 Universal Time or midnight Eastern Daylight Saving Time — Venus and Jupiter will stand only 11.9’ apart, less than half the diameter of a Full Moon. This will make the pair an “easy squeeze” into the same telescopic field of view at low power. Venus will shine at magnitude -3.9, while Jupiter is currently about 2 magnitudes or 6.3 times fainter at magnitude -1.8. In fact, Jupiter shines about as bright as another famous star just emerging into the dawn sky, Sirius. Such a dawn sighting is known as a heliacal rising, and the first recovery of Sirius in the dawn heralded the flooding of the Nile for the ancient Egyptians and the start what we now term the Dog Days of Summer.
To the naked eye, enormous Jupiter will appear to be the “moon” that Venus never had next weekend. The spurious and legendary Neith reported by astronomers of yore lives! You can imagine the view of the Earth and our large Moon as a would-be Venusian astronomer stares back at us (you’d have to get up above those sulfuric acid clouds, of course!)
Said conjunction is only a product of our Earthly vantage point. Venus currently exhibits a waxing gibbous disk 10” across — three times smaller than Jupiter — but Venus is also four times closer to Earth at 1.61 astronomical units distant. And from Jupiter’s vantage point, you’d see a splendid conjunction of Venus and the Earth, albeit only three degrees from the Sun:
How often do the two brightest planets in the sky meet up? Well, Jupiter reaches the same solar longitude (say, returns back to opposition again) about once every 13 months. Venus, however, never strays more than 47.1 degrees elongation from the Sun and can thus always be found in either the dawn or dusk sky. This means that Jupiter pairs up with Venus roughly about once a year:
Note that next year and 2019 offer up two pairings of Jupiter and Venus, while 2018 lacks even one. And the conjunction on August 27th, 2016 is only 4’ apart! And yes, Venus can indeed occult Jupiter, although that hasn’t happened since 1818 and won’t be seen again from Earth until – mark your calendars – November 22nd, 2065, though only a scant eight degrees from the Sun. Hey, maybe SOHO’s solar observing successor will be on duty by then…
Venus has been the culprit in many UFO sightings, as pilots have been known to chase after it and air traffic controllers have made furtive attempts to hail it over the years. And astronomy can indeed save lives when it comes to conjunctions: in fact, last year’s close pairing of Jupiter and Venus in the dusk sky nearly sparked an international incident, when Indian Army sentries along the Himalayan border with China mistook the pair for Chinese spy drones. Luckily, Indian astronomers identified the conjunction before shots were exchanged!
Next week’s conjunction also occurs against the backdrop of Messier 44/Praesepe, also known as the “Beehive cluster”. It’ll be difficult to catch sight of M44, however, because the entire “tri-conjunction” sits only 18 degrees from the Sun in the dawn sky. Binocs or a low power field of view might tease out the distant cluster from behind the planetary pair.
And to top it off, the waning crescent Moon joins the group on the mornings of August 23rd and 24th, passing about five degrees distant. Photo op! Can you follow Venus up into the daytime sky, using the Moon as a guide? How about Jupiter? Be sure to block that blinding Sun behind a hill or building while making this attempt.
The addition of the Moon will provide the opportunity to catch a skewed “emoticon” conjunction. A rare smiley face “:)” conjunction occurred in 2009, and another tight skewed tri-conjunction is in the offering for 2056. While many national flags incorporate examples of close pairings of Venus and the crescent Moon, we feel at least one should include a “smiley face” conjunction, if for no other reason than to highlight the irony of the cosmos.
A challenge: can you catch a time exposure of the International Space Station passing Venus and Jupiter? You might at least pull off a “:/” emoticon image!
Don’t miss the astronomical action unfolding in a dawn sky near you over the coming weeks. And be sure to spread the word: astronomical knowledge may just well avert a global catastrophe. The fate of the free world lies in the hands of amateur astronomers!
I firmly believe that our next greatest discovery will be detecting an exomoon in orbit around a distant exoplanet. Although no one has been able to confirm an exomoon — yet — the hunt is on.
Now, a research team thinks following a trail of radio wave emissions may lead astronomers to this groundbreaking discovery.
The difficulty comes in trying to spot an exomoon using existing methods. Some astronomers think that hidden deep within the wealth of data collected by NASA’s Kepler mission are miniscule signatures confirming the presence of exomoons.
If an exomoon transits the star immediately before or just after the planet does, there will be an added dip in the observed light. Although astronomers have searched through Kepler data, they’ve come up empty handed.
So the team, led by Ph.D. student Joaquin Noyola, from the University of Texas at Arlington, decided to look a little closer to home. Specifically, Noyola and colleagues analyzed the radio wave emissions that result from the interaction between Jupiter, and it’s closest moon, Io.
During its orbit, Io’s ionosphere interacts with Jupiter’s magnetosphere — a layer of charged plasma that protects the planet from radiation — to create a frictional current that emits radio waves. Finding similar emissions near known exoplanets could be the key to predicting where moons exist.
“This is a new way of looking at these things,” said Noyola’s thesis advisor, Zdzislaw Musielak, in a press release. “We said, ‘What if this mechanism happens outside of our Solar System?’ Then, we did the calculations and they show that actually there are some star systems that if they have moons, it could be discovered in this way.”
The team even pinpointed two exoplanets — Gliese 876b, which is about 15 light-years away, and Epsilon Eridani b, which is about 10.5 light-years away — that would be good targets to begin their search.
With such a promising discovery on the horizon, theoretical astronomers are beginning to address the factors that may deem these alien moons habitable.
“Most of the detected exoplanets are gas giants, many of which are in the habitable zone,” said coauthor Suman Satyal, another Ph.D. student at UT Arlington. “These gas giants cannot support life, but it is believed that the exomoons orbiting these planets could still be habitable.”
Of course one look at Io shows the drastic effects a nearby planet may have on its moon. The strong gravitational pull of Jupiter distorts Io, causing its shape to oscillate, which generates enormous tidal friction. This effect has led to over 400 active volcanoes.
But a moon at a slightly further distance could certainly be habitable. A second look at Europa — Jupiter’s second-most inner satellite — demonstrates this facet. It’s possible that life could very well exist under Europa’s icy crust.
Exomoons may be frequent, habitable abodes for life. But only time will tell.
The findings have been published in the Aug. 10 issues of the Astrophysical Journal and are available online.
Black holes one billion times the Sun’s mass or more lie at the heart of many galaxies, driving their evolution. Although common today, evidence of supermassive black holes existing since the infancy of the Universe, one billion years or so after the Big Bang, has puzzled astronomers for years.
How could these giants have grown so massive in the relatively short amount of time they had to form? A new study led by Tal Alexander from the Weizmann Institute of Science and Priyamvada Natarajn from Yale University, may provide a solution.
Black holes are often mistaken to be monstrous creatures that suck in dust and gas at an enormous rate. But this couldn’t be further from the truth (in fact the words “suck” and “black hole” in the same sentence makes me cringe). Although they typically accumulate bright accretion disks — swirling disks of gas and dust that make them visible across the observable Universe — these very disks actually limit the speed of growth.
First, as matter in an accretion disk gets close to the black hole, traffic jams occur that slow down any other infalling material. Second, as matter collides within these traffic jams, it heats up, generating energy radiation that actually drives gas and dust away from the black hole.
A star or a gas stream can actually be on a stable orbit around the black hole, much as a planet orbits around a star. So it is quite a challenge for astronomers to think of ways that would make a black hole grow to supermassive proportions.
Luckily, Alexander and Natarajan may have found a way to do this: by placing the black hole within a cluster of thousands of stars, they’re able to operate without the restrictions of an accretion disk.
Black holes are generally thought to form when massive stars, weighing tens of solar masses, explode after their nuclear fuel is spent. Without the nuclear furnace at its core pushing against gravity, the star collapses. While the inner layers fall inward to form a black hole of only about 10 solar masses, the outer layers fall faster, hitting the inner layers, and rebounding in a huge supernova explosion. At least that’s the simple version.
The team began with a model of a black hole, created from this stellar blast, embedded within a cluster of thousands of stars. A continuous flow of dense, cold, opaque gas fell into the black hole. But here’s the trick: the gravitational pull of many nearby stars caused it to zigzag randomly, preventing it from forming an accretion disk.
Without an accretion disk, not only is matter more able to fall into the black hole from all sides, but it isn’t slowed down in the accretion disk itself.
All in all, the model suggests that a black hole 10 times the mass of the Sun could grow to more than 10 billion times the mass of the Sun by one billion years after the Big Bang.
Since 1995, astronomers have detected thousands of worlds orbiting nearby stars, sparking a race to find the one that most resembles Earth. The discovery of habitable exoplanets and even extraterrestrial life is often referred to as the Holy Grail of science. So with the gold rush of exoplanet discoveries these days, it’s pretty tempting in news articles to lose readers in a fantastical narrative.
This month I’m launching a project on Beacon — a new independent platform for journalism — that will go behind the sensational headlines covering the search for Earth 2.0.
But I can’t do it without your help. In order to commit to writing about this on a regular basis, I need to raise $4,000 from subscribers who are willing to support my work over this month. Don’t worry, subscriptions are available for only $5 per month. This will supply the funding necessary to write for six months.
By Kepler’s definition, to be Earth-like a planet must be both Earth-size (less than 1.25 times Earth’s radius and less than twice Earth’s mass) and must circle its host star within the habitable zone: the band where liquid water can exist.
This simple, and yet variant, definition is a crucial starting point. But one glance at our Solar System (namely Venus and Mars) demonstrates that just because a planet is Earth-like doesn’t mean it’s an Earth twin.
So even if we do find Earth-like planets, we still don’t have the ability to know if they’re water worlds with luscious green planets and civilizations peering back at us.
But should we scale our definition of Earth-like planets up or down? Examples in the Solar System suggest that we should scale it down. Maybe planets located nearer to the center of the habitable zone are more congenial to life.
But can we base our definition on a single example — even if it’s the only example we know — alone? Theoretical astronomers suggest the picture is much more complicated. Life might arise on larger worlds, ones up to three times as massive as Earth, because they’re more likely to have an atmosphere due to more volcanic activity. Or life might arise on older worlds, where there’s simply more time for life to evolve.
It’s a crucial debate in astronomy research today, and it’s one that the media needs to handle with care. I am proud to be a part of Universe Today’s team, bringing readers up-to-date with the on goings in our local Universe. And Beacon will allow me to spend even more time, focusing on such a critical topic.
For each article, I will gather news, opinions and commentary from astronomers in the field. Not only do I have training as an astronomer, but my graduate school research focused on detecting exoplanet atmospheres from ground-based telescopes. With this deep-rooted understanding of the field at hand, I am able to parse complex information by directly reading peer-reviewed journal articles and interviewing astronomers I’ve met through my previous research.
But I really do need your help. Subscriptions are available for only $5 per month, and there are special rewards — such as gorgeous astronomy photos printed on canvas and gift subscriptions for friends — for people who subscribe at higher levels. You can directly subscribe here.
But here’s the best part: when you subscribe to my work, you’ll get access not only to all the stories I write, but the work of over 100 additional writers, based all over the world. This month Beacon is launching a series of astronomy projects, including one by Universe Today writer Elizabeth Howell.
The Universe is big, but how big is it? That all depends on whether the Universe is finite or infinite. Even the word “big” is tough to get clear. Are we talking about the size of the Universe we can see, or the Universe’s actual size right now?
The Universe is big, but how big is it? And what the heck kind of question is that? Are elephants big? Trucks? Dinosaurs? Cheese? Is cheese big? How big is cheese? How big is big?
The word “big” is tough to get clear. Are we talking about the size of the Universe we can see, or the Universe’s actual size right now? This becomes even more complicated when we are trying to work under assumptions of either the Universe is finite or the Universe is infinite.
One difficulty with talking about the size, is that the Universe is expanding. Light takes time to travel from distant galaxies, and while that light travels, the Universe continues to expand. So our problem with talking about how big it is, is that there is no single meaning to distance when it comes to the universe. For this reason, astronomers usually don’t worry about the distance to galaxies at all, and instead focus on redshift, which is measured by z. The bigger the z, the more redshift, and the more distant the galaxy.
As an example, consider one of the most distant galaxies we’ve observed, which has a redshift of 7.5. Using this, we can determine distance by calculating how long the light has traveled to reach us. With a redshift of 7.5, that comes out to be about 13 billion years. You might think that means it’s 13 billion light years away, but 13 billion years ago the universe was smaller, so it was actually closer at the time the light left that galaxy. Using this, if you calculate that distance, it was only a short 3.4 billion light years away.
Now the galaxy is much farther than that. After the light left the galaxy, the galaxy continued to move away from us. It is now about 29 billion light years away. Which is definitely more than 13, and quite a bit more than its original 3.4.
Usually it is this big distance that people mean when they ask for the size of the universe. This is known as the co-moving distance. Of course, we can only see so far. So, how far can we see? The most distant light we are able to observe is from the cosmic microwave background, which has a redshift of about z = 1,000.
This means the co-moving distance of the cosmic background is about 46 billion light years. Sticking us at the center of a massive sphere, the currently observable universe has a diameter of about 92 billion light years. Even with this observed distance, we know that it extends much further than that. If what we could see was all there is, we would see galaxies tend to gravitate towards us, which we don’t observe.
In fact we don’t see any kind of galaxy clumping to a particular point at all. So as far as we know the universe could extend forever. It could be even stranger than that. Despite some media controversy, if the BICEP2 detection of early inflation is correct, it is likely the Universe undergoes a type of inflation with the intimidating moniker of “eternal inflation”. If it is the case, our observable universe is merely one bubble within an endless sea of other bubble universes. This is otherwise referred to as… the multiverse.
So, in the immortal words of Douglas Adams, “Space,” it says, “is big. Really big. You just won’t believe how vastly, hugely, mindbogglingly big it is. I mean, you may think it’s a long way down the road to the chemist’s, but that’s just peanuts to space”
What do you think? Does the Universe go on for ever? Tell us in the comments below. And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!
With the full Moon approaching just a little bit closer than Earth to usual, a cosmonaut on the International Space Station took a few moments of his time to capture a few shots of it setting behind the Earth. Oleg Artemyev was just a shade closer to that Moon than the rest of us, and the sequence of pictures (below the jump) is stunning.
As Universe Today’s David Dickinson explained last week, the so-called “supermoon” refers to a phenomenon where the full Moon falls within 24 hours of perigee (closest approach to the Earth.) We’re in a cycle of supermoons right now, with this weekend’s the second in a three-part cycle this year.
The Moon appears about 14% bigger between its furthest and closest approaches to Earth. While the difference is subtle in the sky, it does produce higher tides on Earth (with an example being Hurricane Sandy in 2012.)
Technically the perigee happened August 10 at 6:10 p.m. UTC (2:10 p.m. EDT), but people (including Artemyev) took several pictures of the moon a bit before and after that time. One example from our Universe Today Flickr pool is at the bottom of this post. You can see more examples on Flickr.