ALMA Observes Binary Star System with Wacky Disks

ALMA data of HK Tau shown in a composite image with Hubble infrared and optical data. Credit: B. Saxton (NRAO/AUI/NSF); K. Stapelfeldt et al. (NASA/ESA Hubble)

When it comes to exoplanets, we’ve discovered an array of extremes — alien worlds that seem more like science fiction than reality. But there are few environments more extreme than a binary star system in which planet formation can occur. Powerful gravitational perturbations from the two stars can easily grind a planet to dust, let alone prevent it from forming in the first place.

A new study has uncovered a striking pair of wildly misaligned planet-forming disks in the young binary star system HK Tau. It’s the clearest picture ever of protoplanetary disks around a double star, shedding light on the birth and eventual orbit of the planets in a multiple star system.

The “Atacama Large Millimeter/submillimeter Array (ALMA) has given us an unprecedented view of a main star and its binary companion sporting mutually misaligned protoplanetary disks,” said Eric Jensen from Swarthmore College in a press release. “In fact, we may be seeing the formation of a solar system that may never settle down.”

The two stars in the system — located roughly 450 light-years away in the constellation Taurus — are less than four million years old and are separated by about 58 billion kilometers, or 13 times the distance of Neptune from the Sun.

ALMA’s high sensitivity and unprecedented resolution allowed Jensen and colleagues to fully resolve the rotation of HK Tau’s two protoplanetary disks.

“It’s easier to observe spread-out gas and dust because it has more surface area – just in the same way that it might be hard to see a small piece of chalk from a distance, but if you ground up the chalk and dispersed the cloud of chalk dust, you could see it from farther away,” Jensen told Universe Today.

The key velocity data taken with ALMA that helped the astronomers determine that the disks in HK Tau were misaligned. The red areas represent material moving away from Earth and the blue indicates material moving toward us. Credit: NASA/JPL-Caltech/R. Hurt (IPAC)
The key velocity data taken with ALMA. The red areas represent material moving away from Earth and the blue indicates material moving toward us. Image Credit: NASA / JPL-Caltech / R. Hurt (IPAC)

The carbon monoxide gas orbits both stars in two broad belts that are clearly rotating — the side spinning away from us is redshifted, while the side spinning toward us is blueshifted.

“What we find in this binary system is that the two orbiting disks are oriented very differently from each other, with about a 60 or 70 degree angle between their orbital planes,” Jensen told Universe Today. Because the disks are so misaligned it’s clear that at least one is also out of sync with the orbit of their host stars.

“This clear misalignment has given us a remarkable look at a young binary star system,” said coauthor Rachel Akeson from the NASA Exoplanet Science Institute at the California Institute of Technology. “Though there have been hints before that this type of misaligned system exists, this is the cleanest and most striking example.”

Stars and planets form out of vast clouds of dust and gas. Small pockets in these clouds collapse under the pull of gravity. But as the pocket shrinks, it spins rapidly, with the outer region flattening into a turbulent disk. Eventually the central pocket becomes so hot and dense that it ignites nuclear fusion — in the birth of a star — while the outer disk — now the protoplanetary disk — begins to form planets.

Despite forming from a flat, regular disk, planets can end up in highly eccentric orbits, and may be misaligned with the star’s equator. One likely explanation is that a binary companion star influences them — but only if its orbit is initially misaligned with the planets.

“Because these disks are misaligned with the binary orbit, then so too will be the orbits of any planets they form,” Jensen told Universe Today. “So in the long run, the binary companion will influence those planet orbits, causing them to oscillate and tend to come more into line with the binary orbit, and at the same time become more eccentric.”

Looking forward, the researchers want to determine if this type of system is typical or not. If it is, then tidal forces from companion stars may easily explain the orbital properties that make the present sample of exoplanets so unlike the planets of our own Solar System.

The results will appear in Nature on July 31, 2014.

GAIA is “Go” for Science After a few Minor Hiccups

Gaia Camera Array - Credit: Astrium / ESA

In astronomy we throw around the term “light-year” seemingly as fast as light itself travels. And yet actually measuring this distance is incredibly tricky. A star’s parallax — its tiny apparent shift once a year caused by our moving viewpoint on Earth — tells its distance more truly than any other method.

Accurate parallaxes of nearby stars form the base of the entire cosmic distance ladder out to the farthest galaxies. It’s a crucial science that’s about to take a giant leap forward. The European Space Agency’s long-awaited Gaia observatory — launched on Dec. 19, 2013 — is now ready to begin its science mission. Continue reading “GAIA is “Go” for Science After a few Minor Hiccups”

Astrophoto Heaven: Video Time-Lapse Shows Spectacular Sky Above Desert National Park

Screenshot from the video "Joshua Tree Nights", taken at Joshua Tree National Park. Credit: Mark 'Indy' Kochte / Vimeo

Channelling all U2 fans: this stunning timelapse above Joshua Tree National Park is a walking tourism brochure for astrophotographers. The pictures were taken in September and November 2012 (the latter during the Leonid meteor shower) and just put up on Vimeo a few days ago.

Can you spot any famous astronomical objects? Read below to see some of what was featured in these video clips.

“Due to the lateness in the year I was there, the Milky Way was setting into the light dome of Palm Springs and greater Los Angeles. Consequently, I only got one decent Milky Way sequence in the nights I shot,” wrote videographer Mark ‘Indy’ Kochte on Vimeo.

“At the time I was not traveling with a dolly rail set up, so was limited in the camera movements to using an Astrotrac astrophotography guiding system. However, the Astrotrac would only pan for about 90 minutes before reaching the end of it’s workable motion. Hence why there are a number of  ‘still’, tripod-only sequences.”

Kochte’s page on the project also gives a guide to the astronomical objects and phenomena you will see, including Venus, Jupiter and the zodiacal light — which is caused by sunlight reflecting off dust particles in space (from comets and asteroids).

X-ray Glow: Evidence of a Local Hot Bubble Carved by a Supernova

An artist's conception of the hot local bubble. Image Credit: NASA

I spent this past weekend backpacking in Rocky Mountain National Park, where although the snow-swept peaks and the dangerously close wildlife were staggering, the night sky stood in triumph. Without a fire, the stars, a few planets, and the surprisingly bright Milky Way provided the only light to guide our way.

But the night sky as seen by the human eye is relatively dark. Little visible light stretching across the cosmos from stars, nebulae, and galaxies actually reaches Earth. The entire night sky as seen by an X-ray detector, however, glows faintly.

The origins of the soft X-ray glow permeating the sky have been highly debated for the past 50 years. But new findings show that it comes from both inside and outside the Solar System.

Decades of mapping the sky in X-rays with energies around 250 electron volts — about 100 times the energy of visible light — revealed soft emission across the sky. And astronomers have long searched for its source.

At first, astronomers proposed a “local hot bubble” of gas — likely carved by a nearby supernova explosion during the past 20 million years — to explain the X-ray background. Improved measurements made it increasingly clear that the Sun resides in a region where interstellar gas is unusually sparse.

But the local bubble explanation was challenged when astronomers realized that comets were an unexpected source of soft X-rays. In fact, this process, known as solar wind charge exchange, can occur anywhere atoms interact with solar wind ions.

After this discovery, astronomers turned their eyes to within the Solar System and began to wonder whether the X-ray background might be produced by the ionized particles in the solar wind colliding with diffuse interplanetary gas.

In order to solve the outstanding mystery, a team of astronomers led by Massimilliano Galeazzi from the University of Miami developed an X-ray instrument capable of taking the necessary measurements.

Galeazzi and colleagues rebuilt, tested, calibrated, and adapted X-ray detectors originally designed by the University of Wisconsin and flown on sounding rockets in the 1970s. The mission was named DXL, for Diffuse X-ray emission from the Local Galaxy.

On Dec. 12, 2012, DXL launched from the White Sands Missile Range in New Mexico atop a NASA Black Brant IX sounding rocket. It reached a peak altitude of 160 miles and spent a total of five minutes above Earth’s atmosphere.

The data collected show that the emission is dominated by the local hot bubble, with, at most, 40 percent originating from within the Solar System.

“This is a significant discovery,” said lead author Massimiliano Galeazzi from the University of Miami in a press release. “Specifically, the existence or nonexistence of the local bubble affects our understanding of the galaxy in the proximity to the Sun and can be used as foundation for future models of the Galaxy structure.”

It’s now clear that the Solar System is currently passing through a small cloud of cold interstellar gas as it moves through the Milky Way.

Colors indicate the density of interstellar helium near Earth and its enhancement in a downstream cone as the neutral atoms respond to the sun's gravity (blue is low density, red is high). Also shown are the observing angles for DXL and ROSAT. Image Credit:  NASA's Goddard Space Flight Center
Colors indicate the density of interstellar helium near Earth and its enhancement in a downstream cone as the neutral atoms respond to the sun’s gravity (blue is low density, red is high). Also shown are the observing angles for DXL and ROSAT. Image Credit: NASA’s Goddard Space Flight Center

The cloud’s neutral hydrogen and helium atoms stream through the Solar System at about 56,000 mph (90,000 km/h). The hydrogen atoms quickly ionize, but the helium atoms travel at a path largely governed by the Sun’s gravity. This creates a helium focusing cone — a breeze focused downstream from the Sun — with a much greater density of neutral atoms. These easily collide with solar wind ions and emit soft X-rays.

The confirmation of the local hot bubble is a significant development in our understanding of the interstellar medium, which is crucial for understanding star formation and galaxy evolution.

“The DXL team is an extraordinary example of cross-disciplinary science, bringing together astrophysicists, planetary scientists, and heliophysicists,” said coauthor F. Scott Porter from NASA’s Goddard Space Flight Center. “It’s unusual but very rewarding when scientists with such diverse interests come together to produce such groundbreaking results.”

The paper has been published in Nature.

Observing Alert – Delta Aquarid Meteor Shower Peaks This Week

A bright meteor from September 21, 1994. Credit: John Chumack.

With the southern Delta Aquarid meteor shower peaking tomorrow morning, the summer meteor-watching season officially begins. While not a rich shower from mid-northern latitudes, pleasant weather and a chance to see the flaming remains of a comet seem motivation enough to go out for a look. With a rate 10-15 per meteors an hour you’re bound to catch a few. 

The farther south you live, the better it gets. Observers in the southern hemisphere can expect double that number because the shower’s radiant will be much higher in the sky. Any meteors flashing south of the radiant won’t get cut off by the southern horizon like they do further north.

The annual shower gets its name from Delta Aquarii, a dim star in the dim zodiac constellation Aquarius. You don’t need to know the constellations to enjoy the show, but if you know the general direction of the radiant you’ll be able to tell shower members from the nightly sprinkle of random meteors called sporadics. If you can trace the path of a meteor backward toward Aquarius, chances are it’s an Aquarid.

A Southern Delta Aquarid meteor captured on July 30, 2013. Credit: John Chumack

There are actually two meteor showers in Aquarius active this time of year – the northern and southern Delta Aquarids. The northern version sprinkles fewer meteors and peaks in mid-August.

The Southern Deltas peak over the next two mornings – July 29 and 30 – but will be out all week. Both serve as a warm-up for the upcoming Perseid meteor shower that climaxes on August 12.

Tonight’s shower will suffer no interference from moonlight, making for ideal meteor watching. Unfortunately, Perseid rates will be reduced by a bright waning gibbous moon.

Don’t be surprised if you see a few Perseids anyway. The shower’s just becoming active. If you can draw a meteor’s trail back to the northeastern sky, it just might be a member. Read more about Perseid prospects from our own David Dickinson.

Meteors from Delta Aquarid meteor shower radiate from near the star Delta Aquarii not far from the bright star Fomalhaut in the Southern Fish low in the south before dawn. Stellarium
Meteors from Delta Aquarid meteor shower radiate from near the star Delta Aquarii not far from the bright star Fomalhaut in the Southern Fish low in the south before dawn. Stellarium

Nearly all meteor showers originate from clouds of sand to seed-sized bits of debris spewed by vaporizing comet ice as they swing near the sun. The Delta Aquarids may trace its origin to dust boiled off Comet 96P/Machholz.

The best time to watch the shower is in the early morning hours before dawn when the radiant rises in the south-southeastern sky above the bright star Fomalhaut. Try to get away from city lights. Point your lawn chair south and spend some time in heavenly contemplation as you wait for Aquarius to toss a few javelins of light your way.

The Little Rover that Could: Opportunity Reaches Odometer Milestone

This scene from NASA's Mars Exploration Rover Opportunity shows "Lunokhod 2 Crater." Image Credit: NASA

NASA’s Opportunity mars rover now holds the off-Earth roving distance record after accruing 25 miles of driving. Given that the rover has been roaming the Red Planet for over a decade, that’s a travel speed of roughly 2.5 miles per year, and it’s one to be proud of.

“Opportunity has driven farther than any other wheeled vehicle on another world,” said Mars Exploration Rover Project Manager John Callas, from NASA’s Jet Propulsion Laboratory in a NASA press release. “This is so remarkable considering Opportunity was intended to drive about one kilometer and was never designed for distance. But what is really important is not how many miles the rover has racked up, but how much exploration and discovery we have accomplished over that distance.”

The previous record was held by the Soviet Union’s Lunokhod 2 rover, which landed on the moon in 1973. It drove about 24.2 miles in less than five months, according to calculations recently made using images from NASA’s Lunar Reconnaissance Orbiter.

“The Lunokhod missions still stand as two signature accomplishments of what I think of as the first golden age of planetary exploration, the 1960s and ’70s,” said Steve Squyres from Cornell University, and principal investigator for NASA’s twin Mars rovers. “We’re in a second golden age now, and what we’ve tried to do on Mars with Spirit and Opportunity has been very much inspired by the accomplishments of the Lunokhod team on the moon so many years ago. It has been a real honor to follow in their historical wheel tracks.”

The gold line on this image shows Opportunity's route from the landing site inside Eagle Crater, in upper left, to its current location. Image Credit: NASA
The gold line on this image shows Opportunity’s route from the landing site inside Eagle Crater (upper left) to its current location. Image Credit: NASA

A drive of 157 feet on July 27 put Opportunity’s odometer at 25.01 miles. The rover is currently headed southward along the western rim of Endeavour crater: a site that is continuing to yield evidence of ancient environments with less acidic water than those examined at Opportunity’s landing site.

If the rover can continue to operate for another 25.2 miles — the distance of a marathon — it will approach the next major investigation site: a valley, which scientists have dubbed “Marathon Valley.” Observations from spacecraft in orbit suggest that the valley is composed of a stack of layered sediments, offering a glimpse at the Red Planet’s changing geologic history.

Opportunity has continued to rove, gather scientific observations, and report back to Earth for over 40 times its designed lifespan. Now every additional mile reached will set the record for the longest off-Earth roving distance.

When Good Meteor Showers Go Bad: Prospects for the 2014 Perseids

A 2013 Perseid. Credit:

It’s that time of year again, when the most famous of all meteor showers puts on its best display.

Why are the Perseids such an all ‘round favorite of sky watchers?  Well, while it’s true that other annual meteor showers such as the Quadrantids and Geminids can exceed the Perseids in maximum output, the Perseids do have a few key things going for them. First, the shower happens in mid-August, which finds many northern hemisphere residents camping out under warm, dark skies prior to the start of the new school year. And second, unlike showers such as the elusive Quads which peak over just a few hours, the Perseids enjoy a broad span of enhanced activity, often covering a week or more.

Credit: JPL
The orientation of the orbital path of Comet 109P/Swift-Tuttle and the position of the Earth on August 12th. Credit: JPL-Horizons.

These are all good reasons to start watching for Perseids now. Here’s the low down on the Perseid meteors for 2014:

The History: The Perseids are sometimes referred to as “The Tears of Saint Lawrence,” who was martyred right around the same date on August 10th, 258 A.D. The source of the shower is comet 109P Swift-Tuttle, which  was first identified as such by Schiaparelli in 1866. The comet itself visited the inner solar system again recently in 1992 on its 120 year orbit about the Sun, and rates were enhanced throughout the 1990s.

A 2013 Perseid pierces the plane of the Milky Way.
A 2013 Perseid pierces the plane of the Milky Way. Credit: Stephen Rahn.

Unlike most showers, the Perseids have a very broad peak, and observers and automated networks such as UKMON and NASA’s All Sky Camera sites have already begun to catch activity starting in late July.

Credit: The UK-MON network.
A pair of early 2014 Perseids recently captured by UKMON’s Wilcot station. Credit: The UK-MON network.

In recent years, the rates for the Perseids have been lowering a bit but are still enhanced, with ZHRs at 91(2010), 58(2011), 122(2012), and 109(2013). It’s also worth noting that the Perseids typically exhibit a twin peak maximum within a 24 hour span. The International Meteor Organization maintains an excellent page for quick look data to check out what observers worldwide are currently seeing. The IMO also encourages observers worldwide to submit meteor counts by location. Note that the phase of the Moon was near Full in 2011, with observing circumstances very similar to 2014.

The Prospects for 2014: Unfortunately, the 2014 Perseid meteors have a major strike going against them this year: the Moon will be at waning gibbous during its peak and just two days past Full illumination. This will make for short exposure times and light polluted skies. There are, however, some observational strategies that you can use to combat this: one is to place a large building or hill between yourself and the Moon while you observe — another is to start your morning vigil a few days early, before the Moon reaches Full. The expected Zenithal Hourly Rate for 2014 is predicted to hover around 90 and arrive around 00:15 to 2:00 UT on August 13th favoring Europe, Africa and the Middle East.

Created by Author
The orientation of Earth’s shadow during the projected peak of the Perseids on August 13th at 00:15 Universal Time.  The positions where the Sun, Moon, and radiant of the Perseids are directly overhead are also noted. Created by Author.

The Radiant: It’s strange but true: meteor shower radiants wander slightly across the sky during weeks surrounding peak activity, due mostly to the motion of the Earth around the Sun. Because of this, the radiant of the Perseids is not actually in the constellation Perseus on the date that it peaks! At its maximum, the radiant actually sits juuusst north of the constellation that it’s named for on the border of Camelopardalis and Cassiopeia. This is a great pedantic point to bring up with your friends on your August meteor vigil… they’ll sure be glad that you pointed this out to ’em and hopefully, invite you back for next year’s Perseid watch.

The actual position of the radiant sits at 3 Hours 04’ Right Ascension and +58 degrees north declination.

Credit: Starry Night Education software.
The movement of the radiant of the Perseids. The sky is simulated for latitude 30 degrees north at 2:00 AM local on August 13th. Credit: Starry Night Education software.

Meteor-speak: Don’t know your antihelion from a zenithal hourly rate? We wrote a whole glossary that’ll have you talking meteors like a pro for Adrian West’s outstanding Meteorwatch site a few years back. Just remember, the crucial “ZHR” of a shower that is often quoted is an ideal extrapolated rate… light pollution, the true position of the radiant, observer fatigue and limited field of view all conspire to cause you to see less than this predicted maximum. The universe and its meteor showers are indeed a harsh mistress!

Observing: But don’t let this put you off. As Wayne Gretsky said, “You miss 100% of the shots that you don’t take,” and the same is true with meteor observing: you’re sure to see exactly zero if you don’t observe at all. Some of my most memorable fireball sightings over the years have been Perseids. And remember, the best time to watch for meteors is after local midnight, as the Earth is turned forward into the meteor stream. Remember, the car windshield (Earth) gets the bugs (meteors) moving down the summer highway…

Good luck, and let us know of those tales of Perseid hunting and send those meteor pics in to Universe Today!

Annual Atlanta Star Party Coming Soon!

The 2012 Atlanta Star Party. Credit: Bruce Press

If you happen to be attending DragonCon or just live near Atlanta, come and listen to some fantastic speakers and help do astronomy research and education at the Annual Atlanta Star Party!

What: Since 2009, this annual charity event celebrates science and space, and brings people together for a great cause.

When: August 28, 2014, 7:00 p.m.

Pamela Gay and the crew at the 2013 Atlanta Star Party. Credit: Bruce Press
Pamela Gay and the crew at the 2013 Atlanta Star Party. Credit: Bruce Press

Who: Astronomers Pamela Gay, Nicole Gugliucci and Derek Demeter will be speaking at the event.

Where: The Emory University Math and Physics Department hosts the celebration at The Emory Math & Science Center, 400 Dowman Drive, Atlanta, GA 30322.

Why: Proceeds from the Star Party go to the Alzheimer’s Foundation of America and CosmoQuest. And, as always, we throw this party in memory of Jeff Medkeff, the “Blue-Collar Scientist.”

Family fun at the 2012 Atlanta Star Party. Credit: Bruce Press.
Family fun at the 2013 Atlanta Star Party. Credit: Bruce Press.

Tickets can be bought at http://atlantastarparty.com/tickets/ and you can share the promo code STARRY2014 for $5 off.

There is also a silent auction already started at: http://atlantastarparty.com/silent-auction/

Carnival Of Space #364

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

This week’s Carnival of Space is hosted by Joe Latrell at his Photos To Space blog.

Click here to read Carnival of Space #364

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

How Do Gravitational Slingshots Work?

How Do Gravitational Slingshots Work?

Have you ever heard that spacecraft can speed themselves up by performing gravitational slingshot maneuvers? What’s involved to get yourself going faster across the Solar System.

Let’s say you want to go back in time and prevent Kirk from dying on the Enterprise B.

You could use a slingshot maneuver. You’d want to be careful that you don’t accidentally create an alternate reality future where the Earth has been assimilated by the Borg, because Kirk wasn’t in the Nexus to meet up with Professor Picard and Sir Iandalf Magnetopants, while they having the best time ever gallivanting around New York City.

*sigh* Ah, man. I really love those guys. What was I saying? Oh right. One of the best ways to increase the speed of a spacecraft is with a gravitational slingshot, also known as a gravity assist.

There are times that fantasy has bled out too far into the hive mind, and people confuse a made up thing with an actual thing because of quirky similarities, nomenclature and possibly just a lack of understanding.

So, before we go any further a “gravitational slingshot” is a gravity assist that will speed up an actual spacecraft, “slingshot maneuver” is made up bananas nonsense. For example, when Voyager was sent out into the Solar System, it used gravitational slingshots past Jupiter and Saturn to increase its velocity enough to escape the Sun’s gravity.

So how do gravitational assists work? You probably know this involves flying your spacecraft dangerously close to a massive planet. But how does this help speed you up? Sure, as the spacecraft flies towards the planet, it speeds up. But then, as it flies away, it slows down again. Sort of like a skateboarder in a half pipe.

This process nets out to zero, with no overall increase in velocity as your spacecraft falls into and out of the gravity well. So how do they do it? Here’s the trick. Each planet has an orbital speed travelling around the Sun.

As the spacecraft approaches the planet, its gravity pulls the much lighter spacecraft so that it catches up with the planet in orbit. It’s the orbital momentum from the planet which gives the spacecraft a tremendous speed boost. The closer it can fly, the more momentum it receives, and the faster it flies away from the encounter.

To kick the velocity even higher, the spacecraft can fire its rockets during the closest approach, and the high speed encounter will multiply the effect of the rockets. This speed boost comes with a cost. It’s still a transfer of momentum. The planet loses a tiny bit of orbital velocity.

If you did enough gravitational slingshots, such as several zillion zillion slingshots, you’d eventually cause the planet to crash into the Sun. You can use gravitational slingshots to decelerate by doing the whole thing backwards. You approach the planet in the opposite direction that it’s orbiting the Sun. The transfer of momentum will slow down the spacecraft a significant amount, and speed up the planet an infinitesimal amount.

Messenger's complicated flyby trajectory. Credit: NASA
Messenger’s complicated flyby trajectory. Credit: NASA

NASA’s MESSENGER spacecraft made 2 Earth flybys, 2 Venus flybys and 3 Mercury flybys before it was going slowly enough to make an orbital insertion around Mercury. Ulysses, the solar probe launched in 1990, used gravity assists to totally change its trajectory into a polar orbit above and below the Sun. And Cassini used flybys of Venus, Earth and Jupiter to reach Saturn with an efficient flight path.

Nature sure is trying to make it easy for us. Gravitational slingshots are an elegant way to slow down spacecraft, tweak their orbits into directions you could never reach any other way, or accelerate to incredible speeds.

It’s a brilliant dance using orbital mechanics to aid in our exploration of the cosmos. It’s a shining example of the genius and the ingenuity of the minds who are helping to push humanity further out into the stars.

What do you think? What other places is the general comprehension between actual facts and fictional knowledge blurring, just like the “slingshot maneuver” and “gravitational slingshot”?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!