This is a First. An Exoplanet in a Polar Circumbinary Disc Surrounding Two Stars.

This illustration shows a binary star surrounded by a thick disc of material in a polar orbit. Copyright and credit: University of Warwick/Mark Garlick

We live in an age of exoplanet discovery. One thing we’ve learned is not to be surprised by the kinds of exoplanets we keep discovering. We’ve discovered planets where it might rain glass or even iron, planets that are the rocky core remnants of gas giants stripped of their atmospheres, and drifting rogue planets untethered to any star.

Continue reading “This is a First. An Exoplanet in a Polar Circumbinary Disc Surrounding Two Stars.”

Juno Spots Salts and Organic Molecules on Ganymede’s Surface

Enhanced image of Ganymede taken by the JunoCam during the mission's flyby on June 7th, 2021. Credit: NASA/JPL-Caltech/SwRI/MSSS/Kalleheikki Kannisto

NASA’s Juno mission continues to orbit Jupiter, gathering data on its atmosphere, composition, gravitational field, magnetic field, and radiation environment. This data is helping scientists to learn more about the planet’s formation, internal structure, mass distribution, and what is driving its powerful winds. Periodically, the spacecraft also performs flybys of Jupiter’s largest satellites (the Galilean Moons), acquiring stunning images and vital data on their surfaces. These include optical and thermal images of Io’s many active volcanoes, Europa’s icy terrain, and infrared images of Ganymede.

During its last flyby of Ganymede (June 7th, 2021), Juno collected infrared images and spectra on the moon’s surface using its Jovian InfraRed Auroral Mapper (JIRAM) instrument. According to a recent study by an international team of researchers, this data revealed the presence of salt minerals and organic molecules on the icy moon’s surface. The findings could help scientists better understand the origin of Ganymede, the composition of its interior ocean, and the way material is exchanged between the surface and interior. In short, it could help scientists determine if life exists deep inside Ganymede’s ocean.

Continue reading “Juno Spots Salts and Organic Molecules on Ganymede’s Surface”

Roman Could Finally Tell Us if Primordial Black Holes Exist

An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse to a black hole. Credit: Aaron Smith/TACC/UT-Austin.
An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse to create black holes. Credit: Aaron Smith/TACC/UT-Austin.

When the Universe erupted into existence with the Big Bang, all of its matter was compressed into a tiny area. Cosmologists theorize that in some regions, subatomic matter may have been so tightly packed that matter collapsed into primordial black holes. If these primordial black holes exist, they’re small, and they could be hiding among the population of free-floating planets.

Continue reading “Roman Could Finally Tell Us if Primordial Black Holes Exist”

Supermassive Black Holes Shut Down Star Formation During Cosmic Noon

Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva
Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva

Since it became operational almost two years ago, the James Webb Space Telescope (JWST) has produced countless breathtaking images of the Universe and enabled fresh insights into how it evolved. In particular, the telescope’s instruments are optimized for studying the cosmological epoch known as Cosmic Dawn, ca. 50 million to one billion years after the Big Bang when the first stars, black holes, and galaxies in the Universe formed. However, astronomers are also getting a better look at the epoch that followed, Cosmic Noon, which lasted from 2 to 3 billion years after the Big Bang.

During this time, the first galaxies grew considerably, most stars in the Universe formed, and many galaxies with supermassive black holes (SMBHs) at their centers became incredibly luminous quasars. Scientists have been eager to get a better look at galaxies dated to this period so they can see how SMBHs affected star formation in young galaxies. Using near-infrared data obtained by Webb, an international team of astronomers made detailed observations of over 100 galaxies as they appeared 2 to 4 billion years after the Big Bang, coinciding with Cosmic Noon.

Continue reading “Supermassive Black Holes Shut Down Star Formation During Cosmic Noon”

Searching for the Supernova Neutrino Background to the Universe

Hubble Space Telescope image of supernova 1994D in galaxy NGC 4526.
Hubble Space Telescope image of supernova 1994D in galaxy NGC 4526.

It’s a sobering statement that stars like the Sun, more accurately ALL stars will die eventually, yes even the Sun! Don’t panic though, we still have a good few billion years to go so you will get to the end of this article. The more massive stars die as the dramatic supernovae explosions and when they do, they send a burst of neutrinos across the Universe.  Astronomers now think it’s likely there is a background of neutrinos across the cosmos and that one day we will be able to map the historical distribution of supernova explosions, may be even by 2035.

Continue reading “Searching for the Supernova Neutrino Background to the Universe”

Dimorphos is Probably a Piece of Didymos

NASA/Johns Hopkins APL.

Last September, NASA purposefully smashed a spacecraft into Dimorphos, a 160m-wide space rock orbiting a larger asteroid named Didymos. The goal of the mission, called DART (the Double Asteroid Redirection Test), was to demonstrate humanity’s ability to redirect hazardous asteroids away from Earth. That part of the mission was a success above and beyond all expectations. But now scientists are also learning more about the origins of the two asteroids. A study conducted in the wake of the DART impact found that Dimorphos is made from the same material as Didymos, and that the pair of asteroids likely originated from a single body.

Continue reading “Dimorphos is Probably a Piece of Didymos”

TESS Finds Eight More Super-Earths

Artist’s impression of a Super-Earth orbiting a Sun-like star. Super-Earths are more massive than Earth yet lighter than ice giants like Neptune and Uranus, and can be made of gas, rock or a combination of both. They are between twice the size of Earth and up to 10 times its mass. Image Credit: ESO

NASA’s Kepler spacecraft has discovered most of the confirmed exoplanets that we know of. But its successor, TESS (Transiting Exoplanet Survey Satellite), is catching up. New research announces the validation of eight more TESS candidates, and they’re all Super-Earths.

Continue reading “TESS Finds Eight More Super-Earths”

SETI Works Best When Telescopes Double-Check Each Other

The LOFAR 'superterp', part of the core of the extended telescope located in the Netherlands. Credit: LOFAR/ASTRON

The Search for Extraterrestrial Intelligence (SETI) has evolved considerably in the past sixty years since the first experiment was conducted. This was Project Ozma, which was conducted in 1960 by Dr. Frank Drake and his colleagues using the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. While the experiment did not reveal any radio signals from space, it established the foundation upon which all future SETI is based. Like Ozma, the vast majority of these experiments have searched for possible technosignatures in the radio spectrum.

Unfortunately, this search has always been plagued by the problem of radio interference from Earth-based radio antennas and satellites in orbit, which can potentially flood SETI surveys with false positives. In a recent study, an international team of astronomers (including researchers with Breakthrough Listen) recommended that future technosignature searches rely on multi-site simultaneous observations. This has the potential of eliminating interference from terrestrial sources and narrowing the search for extraterrestrial radio signals.

Continue reading “SETI Works Best When Telescopes Double-Check Each Other”

Lucy Completes its First Flyby… and Discovers a Bonus Asteroid

Dinkinesh
Moonlet rise over Dinkinesh as seen from NASA's Lucy spacecraft, taken within a minute of closest approach. Credit: NASA/Goddard/SwRI/Johns Hopkins APL/NOAO

NASA’s Lucy mission hits the jackpot on its very first asteroid flyby earlier this week.

Welcome to Dinkinesh. NASA’s Lucy mission flew past its first target of Wednesday, November 1st, and turned up a surprise: 152830 Dinkinesh (meaning ‘marvelous’ in the Amharic language) is not one asteroid, but two (!)

Continue reading “Lucy Completes its First Flyby… and Discovers a Bonus Asteroid”

Comet H2 Lemmon Brightens in Early November Ahead of Expectations

Comet H2 Lemmon
Comet H2 Lemmon passes near the galaxy NGC 4258 on October 12th. Credit: Dan Bartlett

Discovered early this year, Comet C/2023 H2 Lemmon may approach naked eye brightness this month.

A comet discovered earlier this year is performing above expectations, and is currently well-placed in the dusk sky. We’re talking about Comet C/2023 H2 Lemmon, moving up the charts now at magnitude +8 and brightening.

Continue reading “Comet H2 Lemmon Brightens in Early November Ahead of Expectations”