Next Generation Gravitational Wave Observatories Could Detect 100-600 Solar Mass Black Hole Mergers

Simulation of merging supermassive black holes. Credit: NASA's Goddard Space Flight Center/Scott Noble
Simulation of merging supermassive black holes. New research shows how dark matter overcomes the Final Parsec Problem. Credit: NASA's Goddard Space Flight Center/Scott Noble

Humans are born wonderers. We’re always wondering about the next valley over, the next horizon, what we’ll understand next about this vast Universe that we’re all wrapped up in.

In 2015, we finally detected our first long-awaited and long-theorized gravitational wave from the distant merger of two stellar mass black holes. But now we want to know more, and only better detectors can feed our appetite.

Continue reading “Next Generation Gravitational Wave Observatories Could Detect 100-600 Solar Mass Black Hole Mergers”

Did Betelgeuse Consume a Smaller Star?

The red supergiant Betelgeuse. Its activity can be confounding, and new research suggests that the star could've consumed a smaller companion star. Image credit: Hubble Space Telescope. Image Credit: ALMA (ESO/NAOJ/NRAO)/E. O’Gorman/P. Kervella

What’s going on with Betelgeuse? In recent years it’s generated a lot of headlines as its luminosity has shifted dramatically several times. The red supergiant brightened by almost 50% earlier this year, triggering speculation that it may go supernova.

But new research suggests there’s something completely different happening with Betelgeuse that has nothing to do with its recent fluctuations. It may have consumed a smaller companion star.

Continue reading “Did Betelgeuse Consume a Smaller Star?”

Three Planets Around this Sunlike Star are Doomed. Doomed!

A distant Sun-like star will leave the main sequence behind, ending its life of fusion. Then it'll expand into a red giant, totally destroying its four planets. Image Credit: fsgregs Creative Commons Attribution-Share Alike 3.0 Unported

According to new research we can start writing the eulogy for four exoplanets around a Sun-like star about 57 light years away. But there’s no hurry; we have about one billion years before the star becomes a red giant and starts to destroy them.

Continue reading “Three Planets Around this Sunlike Star are Doomed. Doomed!”

New Telescopes to Study the Aftermath of the Big Bang

A photograph of a CMB-S4 detector wafer being prepared for testing in a cryostat at Lawrence Berkeley National Laboratory. Credit: Thor Swift/Lawrence Berkeley National Laboratory

Astronomers are currently pushing the frontiers of astronomy. At this very moment, observatories like the James Webb Space Telescope (JWST) are visualizing the earliest stars and galaxies in the Universe, which formed during a period known as the “Cosmic Dark Ages.” This period was previously inaccessible to telescopes because the Universe was permeated by clouds of neutral hydrogen. As a result, the only light is visible today as relic radiation from the Big Bang – the Cosmic Microwave Background (CMB) – or as the 21 cm spectral line created by the reionization of hydrogen (aka. the Hydrogen Line).

Now that the veil of the Dark Ages is being slowly pulled away, scientists are contemplating the next frontier in astronomy and cosmology by observing “primordial gravitational waves” created by the Big Bang. In recent news, it was announced that the National Science Foundation (NSF) had awarded $3.7 million to the University of Chicago, the first part of a grant that could reach up to $21.4 million. The purpose of this grant is to fund the development of next-generation telescopes that will map the CMB and the gravitational waves created in the immediate aftermath of the Big Bang.

L

Satellites Make up to 80,000 Flashing Glints Per Hour. It's a Big Problem for Astronomers

Starlink trails cut through this image of the star Albiero, in the Cygnus constellation. Credit: Rafael Schmall

Large-scale sky surveys are set to revolutionize astronomy. Observatories such as Vera Rubin and others will allow astronomers to observe how the sky changes on the scale of days, not weeks or months. They will be able to capture transient events such as supernovae in their earliest stages and will discover near-Earth asteroids we have missed in the past. At the same time, the rise of satellite constellations such as Starlink threatens to overwhelm these surveys with light pollution and could threaten their ability to succeed.

Continue reading “Satellites Make up to 80,000 Flashing Glints Per Hour. It's a Big Problem for Astronomers”

JWST Searches for Planets in the Fomalhaut System

This image shows Fomalhaut, the star around which the newly discovered planet orbits. Fomalhaut is much hotter than our Sun, 15 times as bright, and lies 25 light-years from Earth. It is blazing through hydrogen at such a furious rate that it will burn out in only one billion years, 10% the lifespan of our star. The field of view is 2.7 x 2.9 degrees.

The Fomalhaut system is nearby in astronomical terms, and it’s also one of the brightest stars in the night sky. That means astronomers have studied it intensely over the years. Now that we have the powerful James Webb Space Telescope the observations have intensified.

The Fomalhaut system has a confounding and complex dusty disk, including a dusty blob. The blob has been the subject of an ongoing debate in astronomy. Can the JWST see through its complexity and find answers to the systems unanswered questions?

Continue reading “JWST Searches for Planets in the Fomalhaut System”

An Exo-Neptune Beat the Odds and Kept its Atmosphere

An artist impression of exoplanet LTT9779b orbiting its host star. Credit: Ricardo Ramírez Reyes (Universidad de Chile)

As planet-hunting scientists find more and more planets, they’ve encountered some puzzles. One of them concerns the lack of Neptune-size worlds orbiting close to their stars. Astronomers think that these planets aren’t massive enough to retain their atmospheres in the face of their stars’ powerful radiation, which strips it away.

But at least one of these planets has retained its atmosphere. How?

Continue reading “An Exo-Neptune Beat the Odds and Kept its Atmosphere”

What’s Inside the Carina Pillars? Massive Protostars and Newly-Forming Planets!

Dust Pillars in the Carina Nebula. Astronomers are peering inside Carina's pillars to get new details about starbirth activities. Credit: NASA, ESA, and the Hubble Heritage Project (STScI/AURA) Acknowledgment: M. Livio (STScI) and N. Smith (University of California, Berkeley)
Dust Pillars in the Carina Nebula. Astronomers are peering inside Carina's pillars to get new details about starbirth activities. Credit: NASA, ESA, and the Hubble Heritage Project (STScI/AURA) Acknowledgment: M. Livio (STScI) and N. Smith (University of California, Berkeley)

Star-forming nebulae are busy places. Unfortunately, clouds of gas and dust usually hide the action. To cut through the dust in one such region, a team of astronomers used the Atacama Large Millimeter Array (ALMA). They peered inside the Pillars of the Carina Nebula and studied molecular outflows (or jets) emanating from objects in this famous star-birth nursery.

Continue reading “What’s Inside the Carina Pillars? Massive Protostars and Newly-Forming Planets!”

Civilizations are Probably Spreading Quickly Through the Universe

An illustration of cosmic expansion. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

The Search for Extraterrestrial Intelligence (SETI) has always been plagued by uncertainty. With only one habitable planet (Earth) and one technologically advanced civilization (humanity) as examples, scientists are still confined to theorizing where other intelligent life forms could be (and what they might be up to). Sixty years later, the answer to Fermi’s famous question (“Where is Everybody?”) remains unanswered. On the plus side, this presents us with many opportunities to hypothesize possible locations, activities, and technosignatures that future observations can test.

One possibility is that the growth of civilizations is limited by the laws of physics and the carrying capacity of the planetary environments – aka. The Percolation Theory Hypothesis. In a recent study, a team from the University of the Philippines Los Banos looked beyond traditional Percolation Theory to consider how civilizations might grow in three different types of Universes (static, dark energy-dominated, and matter-dominated). Their results indicate that, depending on the framework, intelligent life has a finite amount of time to populate the Universe and is likely to do so exponentially.

Continue reading “Civilizations are Probably Spreading Quickly Through the Universe”

Astronomers Want JWST to Study the Milky Way Core for Hundreds of Hours

This overview of the Milky Way's Galactic Center (GC) shows the region of the proposed JWST survey. Image Credit: NASA/JPL-Caltech/S. Stolovy (Spitzer Science Center/Caltech)

To understand the Universe, we need to understand the extreme processes that shape it and drive its evolution. Things like supermassive black holes (SMBHs,) supernovae, massive reservoirs of dense gas, and crowds of stars both on and off the main sequence. Fortunately there’s a place where these objects dwell in close proximity to one another: the Milky Way’s Galactic Center (GC.)

Continue reading “Astronomers Want JWST to Study the Milky Way Core for Hundreds of Hours”