Keeping An Eye On Gaia

ESA's Gaia spacecraft as seen by the VLT (Credit: ESO)

Gaia, ESA’s long-anticipated mission to map the stars of our galaxy (as well as do a slew of other cool science things) is now tucked comfortably in its position in orbit around Earth-Moon L2, a gravitationally stable spot in space 1.5 million km (932,000 miles) away.

Once its mission begins in earnest, Gaia will watch about a billion stars an average of 70 times each over a five-year span… that’s 40 million observations every day. It will measure the position and key physical properties of each star, including its brightness, temperature and chemical composition, and help astronomers create the most detailed 3D map of the Milky Way ever.

But before Gaia can do this, its own position must be precisely determined. And so several of the world’s most high-powered telescopes are trained on Gaia, keeping track daily of exactly where it is up to an accuracy of 150 meters… which, with the ten-meter-wide spacecraft one and a half million kilometers away, isn’t too shabby.

Called GBOT, for Ground Based Orbit Tracking, the campaign to monitor Gaia’s position was first set up in 2008 — long before the mission launched. This allowed participating observatories to practice targeting on other existing spacecraft, like NASA’s WMAP and ESA’s Planck space telescopes.

The image above shows an image of Gaia (circled) as seen by the European Southern Observatory’s Very Large Telescope Survey Telescope (VST) atop Cerro Paranal in Chile, one of the supporting observatories in the GBOT campaign. The images were taken with the 2.6-meter Survey Telescope’s 268-megapixel OmegaCAM on Jan. 23, 6.5 minutes apart. With just the reflected sunlight off its circular sunshield, the distant spacecraft is about a million times fainter than what your eyes could see unaided.

Gaia mapping the stars of the Milky Way. (ESA/ATG medialab; background: ESO/S. Brunier)
Gaia mapping the stars of the Milky Way. (ESA/ATG medialab; background: ESO/S. Brunier)

It’s also one the closest objects ever imaged by the VST.

Currently Gaia is still undergoing calibration for its survey mission. Some problems have been encountered with stray sunlight reaching its detectors, and this may be due to the angle of the sunshield being a few degrees too high relative to the Sun. It could take a few weeks to implement an orientation correction; read more on the Gaia blog here.

Read more: Ghostly Cat’s Eye Nebula Shines In Space Telescope Calibration Image

Of the billion stars Gaia will observe, 99% have never had their distances accurately measured. Gaia will also observe 500,000 distant quasars, search for brown dwarfs and exoplanets, and will conduct experiments testing Einstein’s General Theory of Relativity. Find out more facts about the mission here.

Gaia launched on December 19, 2013, aboard a Soyuz VS06 from ESA’s spaceport in Kourou, French Guiana. Watch the launch here.

Source: ESA

Runaway Pulsar Produces Longest Jet Trail Ever Observed

An extraordinary jet trailing behind a runaway pulsar is seen in this composite image. Credit: X-ray: NASA/CXC/ISDC/L.Pavan et al, Radio: CSIRO/ATNF/ATCA Optical: 2MASS/UMass/IPAC-Caltech/NASA/NSF

One of the fastest-moving pulsars ever observed is spewing out a record-breaking jet of high-energy particles that stretches 37 light years in length – the longest object in the Milky Way galaxy.

“We’ve never seen an object that moves this fast and also produces a jet,” said Lucia Pavan of the University of Geneva in Switzerland and lead author of a paper analyzing the object. “By comparison, this jet is almost 10 times longer than the distance between the sun and our nearest star.”

The pulsar, a type of neutron star, is has the official moniker of IGR J11014-6103, but is also known as the “Lighthouse nebula.” Astronomers say the pulsar’s corkscrew-like trajectory can likely be traced back to its birth in the collapse and subsequent explosion of a massive star. The curly-cue pattern in the trail suggests the pulsar is wobbling like a spinning top.

The team says that their findings suggest that “jets are common to rotation-powered pulsars, and demonstrate that supernovae can impart high kick velocities to misaligned spinning neutron stars, possibly through distinct, exotic, core-collapse mechanisms.”

The object was first seen by the European Space Agency satellite INTEGRAL. The pulsar is located about 60 light-years away from the center of the supernova remnant SNR MSH 11-61A in the constellation of Carina. Its implied speed is between 4 – 8 million km/hr (2.5 million and 5 million mph), making it one of the fastest pulsars ever observed.

IGR J11014-6103 also is producing a cocoon of high-energy particles that enshrouds and trails behind it in a comet-like tail. This structure, called a pulsar wind nebula, has been observed before, but the Chandra data show the long jet and the pulsar wind nebula are almost perpendicular to one another.

Usually, the spin axis and jets of a pulsar point in the same direction as they are moving.

“We can see this pulsar is moving directly away from the center of the supernova remnant based on the shape and direction of the pulsar wind nebula,” said co-author Pol Bordas, from the University of Tuebingen in Germany. “The question is, why is the jet pointing off in this other direction?”

One possibility requires an extremely fast rotation speed for the iron core of the star that exploded. A problem with this scenario is that such fast speeds are not commonly expected to be achievable.

“With the pulsar moving one way and the jet going another, this gives us clues that exotic physics can occur when some stars collapse,” said co-author Gerd Puehlhofer also of the University of Tuebingen.

Read the team’s paper.

Source: Chandra

NSF Report Biased, Expert Says: Americans Don’t Think Astrology is Scientific

Americans ...

Every Thanksgiving when I was home from college, at least one family member would turn to me and ask me how that astrology degree was going, or tell me about a new astrology article they read. It wasn’t that my family members really thought I was studying astrology or even believed astrology was scientific, it was just that they mixed up “astronomy” with “astrology.” In all fairness, for those who don’t follow either astrology or astronomy very closely, it might be considered an honest mistake.

So when a report from the National Science Foundation claimed a majority of young Americans believed astrology was scientific I had my doubts. But so did psychologist, Richard Landers from Old Dominion University who performed a small second study and found the report to be biased.

Since 1979, NSF surveys have asked Americans whether they view astrology — the study of how the movement of celestial bodies affects the here and now — as being scientific.

Their most recent survey showed that nearly half of all Americans (42 percent) believe astrology to be scientific. But what’s more alarming, according to the NSF, is that American understandings of science are moving in the wrong direction. It seems our golden year was in 2004, when 66 percent of Americans said astrology was not at all scientific. That number has been dropping ever since.

It should come as no surprise that those with a higher education are more willing to demote astrology entirely. In 2012, 72 percent of those with graduate degrees indicated that astrology is not scientific, compared with only 34 percent of those who didn’t graduate high school.

Shockingly, age was also related to perceptions of astrology. Younger respondents (ages 18-24) seemed to give astrology a high vote of confidence,with only 42 percent claiming that it isn’t scientific. So roughly six in every 10 young adults believe astrology is absolutely scientific.

But such dramatic conclusions are being drawn from a single question: “Is astrology scientific?” It’s based on the crucial assumption that people are correctly interpreting the word “astrology.”

Landers guessed that the survey respondents might be mixing up the term “astrology” with “astronomy.” So he performed a quick survey himself, using Amazon Mechanical Turk (MTurk) — a crowdsourcing internet marketplace. He collected 100 responses to a survey that asked three questions:

— Please define astrology in 25 words or less.
— Do you believe astrology to be scientific?
— What is your highest level of education completed?

His initial assessment — without taking into account how the respondent defined astrology — showed results very similar to the original survey provided by the NSF — approximately 30 percent found astrology to be scientific. While this percentage is less than what the NSF report found, Landers believes this is due to a user bias (MTurk users tend to be more educated and older than the average American).

But once Landers included the answer to the first question into his results, he saw a very clear trend: those who defined astrology correctly did not believe it to be scientific, while those who confused astrology with astronomy did believe it to be scientific.

Data collected from 100 participants using MTurk.
Data collected from 100 participants using MTurk. Image Credit: R. Landers

Among those that correctly identified astrology, only 13.5 percent found it to be “pretty scientific.” And only one person found it to be “very scientific.” Among those that confused astrology with astronomy, the discipline was overwhelmingly seen as scientific.

“My little quick study doesn’t ‘overturn’ the NSF results” Landers told Universe Today. “It only suggests that the NSF results are probably biased to some degree.”

With such small number statistics Landers certainly didn’t prove the NSF results wrong, but he does call the study into question. Landers also noted an additional study from the European Commission which corroborated his findings.

I for one would love to see the NSF conduct a more detailed study. Including a definition of astrology in the next round of surveys would certainly bring clarification and shed light on the root of the problem.

Update: After posting this article, a reader informed me of a critique of Richard landers’ assessment, posted by The Washington Post’s Jim Lindgren. He conducted another follow-up study to explore the issue. In his own sample, Lindgren found that probably only one respondent out of 108 confused “astrology” with “astronomy.” He claims it’s unlikely the NSF report was biased at all.

However, the back and forth banter between experts suggests these words and their corresponding definitions do need to be clarified. Science journalists have their work cut out for them.

Now’s the Time to See Asteroid Pallas at its Best

2 Pallas

Looking for something off of the beaten celestial path to observe? The coming weeks will offer telescope users a rare chance to catch a well known asteroid, as it puts on its best show for over two decades.

Over the coming weeks, 2 Pallas, one of the “big four” asteroids – or do you say minor/dwarf planet/planetoid? – reaches a favorable observing point known as opposition. Gliding northward through the constellations of Hydra and Sextans through February and March 2014, 2 Pallas presents a favorable binocular challenge for both northern and southern hemisphere observers as it rises to the east opposite to the setting Sun and transits the local meridian around midnight.

And although 2 Pallas reaches opposition roughly every 16 months as seen from our Earthly vantage point, 2014 provides a chance to catch it under exceptional circumstances. And to top it off, the other “Big 4” asteroids – 1 Ceres, 3 Juno and 4 Vesta – are all currently visible as well and reach opposition in the January through April time frame.

Pallas HST
2 Pallas as imaged by the Hubble Space Telescope. Credit: NASA

Pallas and its brethren also have a checkered history though the course of 19th century astronomy.  The second minor planet to be discovered, Heinrich Wilhelm Olbers spied 2 Pallas near opposition on the night of March 28th, 1802. Olbers made this discovery observing from his home rooftop observatory in Bremen, Germany using a five foot – telescopes were often measured in focal length rather than aperture in those days – Dollond refractor.

Olbers discovered 2 Pallas on the border of the astronomical constellations of Virgo and Coma Berenices shining at magnitude +7.5.

Pallas orbit
A simulation of the orbit of 2 Pallas near opposition this month. Credit: NASA/JPL Horizons.

If the name Olbers sounds familiar, it’s because he also lent it to the paradox that now bears his name. Obler’s paradox was one of the first true questions in cosmology posed in a scientific framework that asked: if the universe is actually infinite in time and space, then why isn’t the sky infinitely bright? And, on a curious side note, it was American horror author Edgar Allan Poe that delivered the answer.

But now back to our solar system. Olbers also discovered 4 Vesta just five years after Pallas.

He was definitely on a roll. The discoveries of these space rocks also grabbed the attention of Olbers contemporary, Johann Bode. Bode had formulated a law now known as the Titus-Bode Law that seemed to put the spacing of then known bodies of the solar system in tidy order. In fact, the Titus-Bode law seemed to predict that a body should lie between Mars and Jupiter, and for a brief time in the 18th century — and again in 2006 when the International Astronomical Union let Eris and Pluto in the door before kicking them back out — Ceres, Pallas, Juno and Vesta were all considered planets.

Comparison
A size comparison of the first ten asteroids discovered compared to Earth’s moon. Wikimedia Commons graphic in the Public Domain.

Today, we now know that 2 Pallas is a tiny world about 575 kilometres in diameter. 2 Pallas orbits the Sun once every 4.62 years and has a relatively high inclination of 34.8 degrees relative to the ecliptic. Pallas has no confirmed satellites, though one was once hinted at during a May 29th, 1979 stellar occultation. And though we’ve yet to send a mission to examine Pallas up close, there were early planning considerations to send NASA’s Dawn spacecraft there after its visit to 1 Ceres.

wide
The path of 2 Pallas from February 16th though March 21st. Created by the author using Stellarium.

This month, look for 2 Pallas as a +7th magnitude wandering star at dusk. Mid-February finds 2 Pallas in the constellation Hydra, and it crosses briefly into Sextans starting on March 22nd until it passes just three degrees east of the 2nd magnitude Alphard (Alpha Hydrae) on March 1st, making a good guidepost to find it at its brightest.

2 Pallas last broke +7th magnitude visibility as seen from Earth in 1991 and won’t do so again til 2028. This is because 18.5 Earth years very nearly equals four orbits of Pallas around the Sun, bringing the two worlds back “into sync.” According to calculations by Belgian astronomer Jean Meeus, the 2014 opposition season offers the closest passage to Earth for Pallas from 1980-2060. Pallas can appear at a maximum brightness of magnitude +6.5 — just on the threshold of naked eye visibility — as seen from Earth.

Narrow
A narrow field finder chart  for 2 Pallas with sample comparison magnitudes, decimal points omitted. Created by the author using Stellarium.

Opposition for Pallas occurs on February 22nd, 2014, when the asteroid is 1.23 AUs distant from our fair planet. Watch for 2 Pallas near opposition this year moving at just under half a degree a day — about the diameter of the Full Moon — headed northward at closest approach.

Hunting asteroids at the eyepiece can be a challenge, as they visually resemble pinpoint stars and show no apparent disks even at high magnification. Sketching or photographing the field of view on successive nights is a fun and easy way to cross this object off of your life list. For those who own scopes with digital setting circles, Heavens-Above is a great quick look source for current coordinates.

2 Pallas just passed perihelion at 2.13 Astronomical Units from the Sun on December 6th, 2013, and passes closest to Earth on February 24th at 1.2 A.U.s distant.

Don’t miss the chance to spy this fascinating an enigmatic worldlet coming to a sky near you this season!

-Got pics of 2 Pallas and friends? Be sure to send ‘em in to Universe Today!

Zooniverse Reaches One Million Volunteers

A global map showing where all the volunteers are based. Image Credit: Zooniverse

Zooniverse — the renowned home of citizen science projects — is now one million strong. That’s one million registered volunteers since the project began less than seven years ago.

It all began when Galaxy Zoo launched in July 2007. The initial response to this project was overwhelming. Since then the Zooniverse team has created almost 30 citizen science projects ranging from astronomy to zoology.

“We are constantly amazed by the effort that the community puts into our projects,” said the Zooniverse team in an email regarding the news late last week.

Many projects have produced unique scientific results, ranging from individual discoveries to classifications that rely on input from thousands of volunteers. As of today there are 60+ papers listed on the websites publications page, many of which have made the news.

In the first two weeks after Galaxy Zoo’s launch, registered citizen scientists classified more than a million galaxies. Each volunteer was presented with an image from the Sloan Digital Sky Survey and asked to classifiy the galaxy as belonging to one of six categories: elliptical, clockwise spiral, anticlockwise spiral, edge-on, merger, or unsure.

An example of an unknown galaxy needing classification. Image credit: Galaxy Zoo
An example of an unknown galaxy needing classification. Image credit: Galaxy Zoo

But citizen scientists weren’t simply labeling galaxies, they were helping astronomers to answer crucial questions and raise new ones about our current understandings of galaxy evolution. One significant finding showed that bar-shaped features in spiral galaxies has doubled over the latter half of the history of the Universe. This confirms that bars signify maturity in spiral galaxies and play an important role in shutting down star formation.

Another finding downplayed the importance of collisions in forming supermassive black holes. Citizen scientists found 13 bulgeless galaxies — suggesting they had never experienced a major collision — with supermassive black holes, nonetheless. All healthy black holes, with masses at least millions of times that of the Sun, must have grown through less dramatic processes.

Planet Hunters — a citizen science project developed in 2010 — has also seen wide success. Ordinary citizens examine the Kepler Space Telescope’s light curves of stars and flag any slight dips in brightness that might indicate a planet crossing in front of the star. Many eyes examine each light curve, allowing some to cross check others.

An example light curve.
An example light curve asking for any obvious dips. Image Credit: Planet Hunters

In roughly three years, citizen scientists examined more than 19 million Kepler light curves. Contrary to what many astronomers expected, ordinary citizens were able to spot transiting objects that many computer algorithms missed.

In 2012, Planet Hunter volunteers, Kian Jek and Robert Gagliano discovered an exoplanet in a four-star system. The Neptune-size planet, labeled “Planet Hunters 1” (PH1), orbits its two parent stars every 138 days. A second pair of stars, approximately 90 billion miles away, are also gravitationally bound to the system. This wacky system was later confirmed by professional astronomers.

In 2013, Planet Hunter volunteers discovered yet another planet candidate, which, if confirmed, would make a known six-planet system really the first seven-planet system. The five innermost planets are smaller than Neptune, while the two outer planets are gas giants. All orbit within Earth’s orbit around the Sun.

These are only a few of Zooniverse’s citizen science projects. Others allow ordinary citizens to help analyze how whales communicate with one another, study the lives of the ancient Greeks, and even look at real life cancer data. So join today and become number one million and one.

Zooniverse is produced by the Citizen Science Alliance, which works with many academic and other partners worldwide.

Happy 1st Anniversary Chelyabinsk! The Fireball that Woke Up the World

Chelyabinsk fireball recorded by a dashcam from Kamensk-Uralsky north of Chelyabinsk where it was still dawn. A study of the area near this meteor air burst revealed similar signatures to the Tall el_Hammam site.
Chelyabinsk fireball recorded by a dashcam from Kamensk-Uralsky north of Chelyabinsk where it was still dawn. A study of the area near this meteor air burst revealed similar signatures to the Tall el_Hammam site.

Wonder and terror. Every time I watch the dashcam videos of the Chelyabinsk fireball it sends chills down my spine. One year ago today, February 15, 2013, the good citizens of Chelyabinsk, Russia and surrounding towns collectively experienced these two powerful emotions as they witnessed the largest meteorite fall in over 100 years. 


Incredible compilation of dashcam and security camera videos of the fireball

The Chelyabinsk fall, the largest witnessed meteorite fall since the Tunguska event in 1908, exploded with 20-30 times the force of the atomic bomb over Hiroshima at an altitude of just 14.5 miles (23 km). Before it detonated into thousands of mostly gravel-sized meteorites and dust,  it’s estimate the incoming meteoroid was some 66 feet (20-meters) end to end, as tall as a five-story building. The shock wave from the explosion shattered windows up and down the city, injuring nearly 1,500 people.

Friction and enormous pressures placed upon the Chelyabinsk meteoroid by the atmosphere caused it to explode to pieces and send a shock wave across the cities below. This is a selection of typical small, fusion-crust covered Chelyabinsk meteorites. The U.S. penny is 9mm in diameter. Credit: Bob King
Atmospheric friction pressure on the Chelyabinsk meteoroid caused it to explode to pieces and send a shock wave across the land below. Pictured is a selection of typical small, fusion-crust covered Chelyabinsk meteorites recovered shortly after the fall. The U.S. penny is 9mm in diameter. Credit: Bob King

For nearby observers it briefly appeared brighter than the sun.  NASA Meteorite researcher Peter Jenniskens conducted an Internet survey of eyewitnesses and found that eye pain and temporary blindness were the most common complaints from those who looked directly at the fireball.  20 people also reported sunburns including one person burned so badly that his skin peeled:

Trajectory projection and strewnfield map showing the main fireball (and two additional explosions) at top and the elliptical shaped area where the densest concentration of meteorites were found. Credit: Svend  Buhl and K. Wimmer
Map showing the trajectory of the main fireball in yellow (and two additional explosions at top left). The pink oval, called the strewnfield, is where the densest concentration of meteorites were found. Click to see additional maps. Credit: Svend Buhl and K. Wimmer

“We calculated how much UV light came down and we think it’s possible,” Jenniskens said. Perhaps surprisingly, most of the meteoroid’s mass – an estimated 76% – burned up and was converted to dust during atmospheric entry. It’s estimated that only 0.05% of the original meteoroid or 9,000 to 13,000 pounds of meteorites fell to the ground.


No video I’ve seen better captures the both the explosion of the fireball and ensuring confusion and chaos better than this one.

The largest fragment, weighing 1,442 lbs. (654 kg), punched a hole in the ice of Lake Chebarkul. Divers raised it from the bottom muck on Oct. 16 last year and rafted it ashore, where scientists and excited onlookers watched as the massive space rock was hoisted onto a scale and promptly broke into three pieces. Moments later the scale itself broke from the weight.

The 26-foot-wide (8-meter) hole punched in the ice of Chebarkul Lake by the largest fragment of the Chelyabinsk meteorite. Credit: Eduard Kalinin
The 26-foot-wide (8-meter) hole punched in the ice of Chebarkul Lake by the largest fragment of the Chelyabinsk meteorite. Credit: Eduard Kalinin

There were plenty of meteorite to go around as local residents tracked down thousands of fragments by looking for holes pierced in the snow cover by the hail of space rocks. Working with hands and trowels, they dug out mostly small, rounded rocks covered in fresh black fusion crust, a 1-2 mm thick layer of rock blackened and melted rock from frictional heating by the atmosphere. According to the Meteoritical Bulletin Database entry,  the total mass of the recovered meteorites to date comes to 1,000 kg (2,204 lbs.) with locals finding up to more than half of that total.


Animation of the orbit Chelyabinsk meteoroid via Ferrin and Zuluaga. Meteoroid is the name given a meteor while still orbiting the sun before it enters Earth’s atmosphere.

Thanks to the unprecedented number of observations of the fireball recorded by dashcams, security cameras and eyewitness accounts, astronomers were able to determine an orbit for  Although some uncertainties remain, the object is (was) a member of the Apollo family of asteroids, named for 1862 Apollo, discovered in 1932. Apollos cross Earth’s orbit on a routine basis when they’re nearest the sun. Chelyabink’s most recent crossing was of course its last.

Chelyabinsk meteorites exhibit many signs of  shock created during an asteroid impact long ago. Many specimens show a typical pale white color with small chondrules typical of LL5 chondrite. A closer look shows fine, dark shock veins of melted glass. Other fragments are made of impact melt, rock shocked-heated and blackened by impact. Credit: Bob King
Chelyabinsk meteorites tell the tale of an earlier impact with another asteroid 4.452 billion years ago. Many specimens are pale white with small chondrules typical of LL5 chondrites. A closer look shows fine, dark shock veins of melted glass. Other fragments are made of pure impact melt, rock shocked-heated, melted and blackened by impact. Credit: Bob King

Chelyabinsk belongs to a class of meteorites called ordinary chondrites, a broad category that includes most stony meteorite types. The chondrites formed from dust and metals whirling about the newborn sun some 4.5 billion years ago; they later served as the building blocks for the planets, asteroids and comets that populate our solar system. Chondrites are further subdivided into many categories. Chelyabinsk belongs to the scarce LL5 class — a low iron, low metal stony meteorite composed of silicate materials like olivine and plagioclase along with small amounts of iron-nickel metal.

 

Most of the Chelyabinsk meteorites were shattered and broken during the explosion / shock blast, revealing brecciation, metal and shock veins in their interiors. Credit: Bob King
Most of the Chelyabinsk meteorites were shattered and broken during the explosion / shock blast, revealing brecciation, metal and shock veins in their interiors. Credit: Bob King
A thin slice of Chelyabinsk impact melt breccia. Flows of once-molten rock (gray) surround islands of less altered material. A small iron nickel nodule is seen at lower left. Credit: Bob King
A thin slice of Chelyabinsk impact melt breccia. Flows of once-molten rock (paler gray) surround islands of less altered material. A small iron nickel nodule is seen at lower left. Credit: Bob King

 

A closer look at Chelyabinsk meteorites reveals a fascinating story of ancient impact. Remarkably, the seeds of the meteoroid’s atmospheric destruction were sown 115 million years after the solar system’s formation when ur-Chelyabinsk was struck by another asteroid, suffering a powerful shock event that heated, fragmented and partially melted its interior. Look inside a specimen and the signs are everywhere – flows of melted rock, spider webby shock veins of melted silicates and peculiar, shiny cleavages called “slickensides” where meteorites broke along  pre-existing fracture planes.

Slickensides on a Chelyabinsk meteorite fragment where the fragment broke along a pre-existing fracture plane. Credit: Bob King
Slickensides on a Chelyabinsk meteorite fragment where the fragment broke along a pre-existing fracture plane. Credit: Bob King

Jenniskens calculated that the object may have come from the Flora family of S-type or stony asteroids in the belt between Mars and Jupiter. Somehow Chelyabinsk held together after the impact until nearly the time it met its fate with Earth’s atmosphere. Researchers at University of Tokyo and Waseda University in Japan discovered that the meteorite had only been exposed to cosmic rays for an unusually brief time for a Flora member – just 1.2 million years. Typical exposures are much longer and indicate that the Chelyabinsk parent asteroid only recently broke apart. Jenniskens speculates it was likely part of a loosely-bound, rubble pile asteroid that may have broken apart during a previous close encounter with Earth in the last 1.2 million years. The rest of the rubble pile might still be orbiting relatively nearby as part of the larger population of near-Earth asteroids.

Rivulets of melted rock line the fusion crust of melted rock on this small Chelyabinsk meteorite. Credit: Bob King
Rivulets of melted rock line the fusion crust of melted rock on this small Chelyabinsk meteorite. Credit: Bob King

Good thing Chelyabinsk arrived pre-fractured. Had it been solid through and through, more of the original asteroid might have survived its fiery descent and wreaked even more havoc in in its wake.

We’re fortunate that Chelyabinsk contains a fantastic diversity of features and that we have so many pieces for study. Surveys have found some 500 near-Earth asteroids. No doubt some are part of the parent body of Chelyabinsk and may grace our skies on some future date. Whatever happens, Feb. 15, 2013 will go down as a very loud “wake-up call” for our species to implement more asteroid-hunting programs both in space and on the ground. Enjoy a few more photos of this incredible gift from space:

This Chelyabinsk "nosecone" or "bullet" weighs just 0.35g. It displays a beautiful streamlined form from its flight through the atmosphere. Credit: Bob King
This Chelyabinsk “nosecone” or “bullet” weighs just 0.35g. It displays a beautiful streamlined form from its flight through the atmosphere. Credit: Bob King
Check out the bubble texture on this one. Heated by friction with the air, this fragment shows bubbly crust from escaping gases. Credit: Bob King
Check out the bubble texture on this one. Heated by friction with the air, this fragment shows bubbly crust from escaping gases. Credit: Bob King
Slice of Chelyabinsk showing relatively unshocked areas (light brown) cut by thick dark veins of shock-darkened material. Credit: Bob King
Slice of Chelyabinsk showing mildy shocked areas (light brown) cut by thick dark veins of shock-darkened material. Credit: Bob King
Some Chelyabinsk individuals show interesting variations in color that have nothing to do with rusting. It's believed that varying amounts of oxygen available to the speeding rocks during the meteorite break up created the brownish-red coloration on some fusion crusts. Credit: Bob King
Some Chelyabinsk individuals show interesting variations in color that have nothing to do with rusting. It’s believed that varying amounts of oxygen available to the speeding rocks during the meteorite break up created the brownish-red coloration on some fusion crusts. Credit: Bob King
OK, I saved the weirdest for last - a smaller Chelyabinsk meteorite appears to have followed closely enough behind the larger for there liquid fusion crusts to have welded them together. Just my speculation. Credit: Bob King
I saved the weirdest for last – a smaller Chelyabinsk meteorite appears to have followed closely enough behind the larger for their still-molten fusion crusts to have welded them together. Just my speculation. Credit: Bob King

Ghostly Cat’s Eye Nebula Shines In Space Telescope Calibration Image

A view of the Cat's Eye Nebula during the calibration phase of Gaia, a Milky Way-mapping telescope. Credit: ESA/DPAC/Airbus DS

Here’s a glimpse of how a telescope gets ready for its main mission. The European Space Agency’s Gaia telescope is in the middle of a commissioning phase before mapping out the locations of stars and other objects in the Milky Way. While the nominal mission is not to take pictures, it is through these images that controllers can verify that the telescope is tuned properly to do its work.

What you’re seeing is data from the Gaia camera’s “sky-mapper strips” that are actually intensity maps rendered in black and white, ESA explained. You can see in the picture above that the shot on the left is a bit blurry, while the one on the right looks a bit sharper. That’s because controllers better calibrated the charged coupled devices to the spacecraft’s spin rate, ESA said.

Lucky for us, ESA is sharing those images so we can see the process in action. This set of pictures below follows on from a calibration image of the Large Magellanic Cloud that was released last week. More details are available at ESA and also in this Dec. 19 Universe Today story.

A calibration image of M94 taken by Gaia, a Milky Way-mapping telescope, in early 2014. The gap is due to the image appearing on two separate CCDs. Credit: ESA/DPAC/Airbus DS
A calibration image of M94 taken by Gaia, a Milky Way-mapping telescope, in early 2014. The gap is due to the image appearing on two separate CCDs. Credit: ESA/DPAC/Airbus DS
Writes the European Space Agency in February 2014: "This is a rotated Gaia image section (left; extracted from the cluster image of NGC 2516 above), compared to a Digital Sky Survey image taken from the ground (right)." Credit: ESA/DPAC/Airbus DS/DSS
Writes the European Space Agency in February 2014: “This is a rotated Gaia image section (left; extracted from the cluster image of NGC 2516 above), compared to a Digital Sky Survey image taken from the ground (right).” Credit: ESA/DPAC/Airbus DS/DSS

For Valentine’s Day, Enjoy These Hearts On Earth, Mars And Other Places

A heart-shaped feature in the Arabia Terra region of Mars taken by NASA's Mars Reconnaissance Orbiter. Image Credit: NASA/JPL-Caltech/MSSS.

While we’re unsure about the status of chocolates and flowers in locations far beyond Earth, there certainly is no lack of hearts for us to look at to enjoy Valentine’s Day. If you look at enough geologic features or gas clouds, statistically some of them will take on shapes that we recognize (such as faces).

Below, we’ve collected some hearts on Mars and other places in the universe. Have we missed any? Share other astronomy hearts in the comments!

This heart-shaped feature on Mars "is actually a pit formed by collapse within a straight-walled trough known in geological terms as a graben," wrote Malin Space Systems in 1999. Picture taken by Mars Global Surveyor. Credit: Malin Space Science Systems, MGS, JPL, NASA
This heart-shaped feature on Mars “is actually a pit formed by collapse within a straight-walled trough known in geological terms as a graben,” wrote Malin Space Systems in 1999. Picture taken by Mars Global Surveyor. Credit: Malin Space Science Systems, MGS, JPL, NASA
A heart-shaped mesa captured by Mars Global Surveyor in 1999, in the Promethei Rupes region. Credit: Malin Space Science Systems, MGS, JPL, NASA
A heart-shaped mesa captured by Mars Global Surveyor in 1999, in the Promethei Rupes region. Credit: Malin Space Science Systems, MGS, JPL, NASA
The Heart and Soul nebulae in an infrared mosaic from NASA's Wide-field Infrared Survey Explorer (WISE). It is located about about 6,000 light-years from Earth. Credit: NASA/JPL-Caltech/UCLA
The Heart and Soul nebulae in an infrared mosaic from NASA’s Wide-field Infrared Survey Explorer (WISE). It is located about about 6,000 light-years from Earth. Credit: NASA/JPL-Caltech/UCLA

 

 

 

How Fast Do Black Holes Spin?

How Fast Do Black Holes Spin?

There is nothing in the Universe more awe inspiring or mysterious than a black hole. Because of their massive gravity and ability to absorb even light, they defy our attempts to understand them. All their secrets hide behind the veil of the event horizon.

What do they look like? We don’t know. They absorb all the radiation they emit. How big are they? Do they have a size, or could they be infinitely dense? We just don’t know. But there are a few things we can know. Like how massive they are, and how fast they’re spinning.

Wait, what? Spinning?

Consider the massive star that came before the black hole. It was formed from a solar nebula, gaining its rotation by averaging out the momentum of all the individual particles in the cloud. As mutual gravity pulled the star together, through the conservation of angular momentum it rotated more rapidly. When a star becomes a black hole, it still has all that mass, but now compressed down into an infinitesimally smaller space. And to conserve that angular momentum, the black hole’s rate of rotation speeds up… a lot.The entire history of everything the black hole ever consumed, averaged down to a single number: the spin rate.

If the black hole could shrink down to an infinitely small size, you would think that the spin rate might increase to infinity too. But black holes have a speed limit.

“There is a speed limit to the spin of a black hole. It’s sort of set by the faster a black hole spins, the smaller is its event horizon.”

That’s Dr. Mark Morris, a professor of astronomy at UCLA. He has devoted much of his time to researching the mysteries of black holes.

“There is this region, called the ergosphere between the event horizon and another boundary, outside. The ergosphere is a very interesting region outside the event horizon in which a variety of interesting effects can occur.”

Scientists measure the spin rates of supermassive black holes by spreading the X-ray light into different colors. Image credit: NASA/JPL-Caltech
Scientists measure the spin rates of supermassive black holes by spreading the X-ray light into different colors. Image credit: NASA/JPL-Caltech

Imagine the event horizon of a black hole as a sphere in space, and then surrounding this black hole is the ergosphere. The faster the black hole spins, the more this ergosphere flattens out.

“The speed limit is set by the event horizon, eventually, at a high enough spin, reaches the singularity. You can’t have what’s called a naked singularity. You can’t have a singularity exposed to the rest of the Universe. That would mean that the singularity itself could emit energy or light and somebody outside could actually see it. And that can’t happen. That’s the physical limitation of how fast it can spin. Physicists use units for angular momentum that are cast in terms of mass, which is a curious thing, and the speed limit can be described as the angular momentum equals the mass of the black hole, and that sets the speed limit.”

Just imagine. The black hole spins up to the point that it’s just about to reveal itself. But that’s impossible. The laws of physics won’t let it spin any faster. And here’s the amazing part. Astronomers have actually detected supermassive black holes spinning at the limits predicted by these theories.

One black hole, at the heart of galaxy NGC 1365 is turning at 84% the speed of light. It has reached the cosmic speed limit, and can’t spin any faster without revealing its singularity.

The Universe is a crazy place.

What to Wear? The History and Future of Spacesuits

Credit:

The issue of “what to wear?” takes on an extra dimension of life and death when it comes to space travel. Upon exiting a spacecraft on a spacewalk, an astronaut becomes his very own personal satellite in orbit about the Earth and must rely on the flimsy layer of his suit to provide them with a small degree of protection from radiation and extreme fluctuations of heat and cold.

We recently had a chance to see the past, present and future of space suit technology in the Smithsonian Institutions’ touring Suited for Space exhibit currently on display at the Tampa Bay History Center in Tampa, Florida.

Tampa Bay History Center Director of Marketing Manny Leto recently gave Universe Today an exclusive look at the traveling display. If you think you know space suits, Suited for Space will show you otherwise, as well as give you a unique perspective on a familiar but often overlooked and essential piece of space hardware. And heck, it’s just plain fascinating to see the design and development of some of these earlier suits as well as videos and stills of astronauts at work – and yes, sometimes even at play – in them.

One of the highlights of the exhibit are some unique x-ray images of iconic suits from space travel history. Familiar suits become new again in these images by Smithsonian photographer Mark Avino, which includes a penetrating view of Neil Armstrong’s space suit that he wore on Apollo 11.

Credit
X-ray images of Neil Armstrong’s historic suit on display in Suited for Space. (Photo by author).

Space suits evolved from pressure suits developed for high-altitude flights in the 1950’s, and Suited for Space traces that progression. It was particularly interesting to see the depiction of Wiley Post’s 1934 suit, complete with steel cylindrical helmet and glass portal! Such early suits resembled diving bell suits of yore — think Captain Nemo in a chemsuit. Still, this antiquated contraption was the first practical full pressure suit that functioned successfully at over 13,000 metres altitude.

Credit:
Wiley Post’s 1934 “rubber bladder suit.” (Photo by author).

No suit that has been into space is allowed to tour due to the fragility of many historic originals that are now kept at the Smithsonian, though several authentic suits used in training during the U.S. space program are on display. We thought it was  interesting to note how the evolution of the spacesuit closely followed the development of composites and materials through the mid-20th century. You can see the progression from canvas, glass and steel in the early suits right up though the advent of the age of plastic and modern fabrics. Designs have flirted with the idea of rigid and semi-rigid suits before settling on the modern day familiar white astronaut suit.

credit
A x-ray photo of an EX-1A spacesuit. (Photo by author).

Spacesuit technology has also always faced the ultimate challenge of protecting an astronaut from the rigors of space during Extra-Vehicular Activity, or EVA.

Cosmonaut Alexey Leonov performed the first 12 minute space walk during Voskhod 2 back in 1965, and NASA astronaut Ed White became the first American to walk in space on Gemini 4 just months later. Both space walkers had issues with over-heating, and White nearly didn’t make it back into his Gemini capsule.

credit
Early evolution of space suits on display at the Suited for Space exhibit. (Photo by author).

Designing a proper spacesuit was a major challenge that had to be overcome. In 1962, Playtex (yes THAT Playtex) was awarded a contract to develop the suits that astronauts would wear on the Moon. Said suits had 13 distinct layers and weighed 35 kilograms here on Earth. The Playtex industrial division eventually became known as the International Latex Corporation or ILC Dover, which still makes spacesuits for ISS crewmembers today. It’s also fascinating to see some of the alternate suits proposed, including one “bubble suit” with arms and legs (!) that was actually tested but, thankfully, was never used.

These suits were used by astronauts on the Moon, to repair Hubble, build the International Space Station and much more. Al Worden recounts performing the “most distant EVA ever” on the return from the Moon in his book Falling to Earth. This record will still stand until the proposed asteroid retrieval mission in the coming decade, which will see astronauts performing the first EVA ever in orbit around Earth’s Moon.

credit
An A5-L Spacesuit. Credit: Smithsonian/Suited for Space.

And working in a modern spacesuit during an EVA is anything but routine. CSA Astronaut Chris Hadfield said in his recent book An Astronaut’s Guide to Life on Earth that “Spacewalking is like rock climbing, weightlifting, repairing a small engine and performing an intricate pas de deux – simultaneously, while encased in a bulky suit that’s scraping your knuckle, fingertips and collarbone raw.”

And one only has to look at the recent drama that cut ESA astronaut Luca Parmitamo’s EVA short last year to realize that your spacesuit is the only thin barrier that exists between yourself and the perils of space.

“We’re delighted to host our first Smithsonian Institution Travelling Exhibition Service (SITES) and we think that Florida’s close ties to NASA and the space program make it a great fit for us,” said Rodney Kite-Powell, the Tampa Bay History Center’s Saunders Foundation Curator of History.

Be sure to catch this fascinating exhibit coming to a city near you!

-And you can see these suits in action on the up and coming future EVAs for 2014.

-Here’s the schedule for Suited for Space Exhibit tour.

-Astronaut Nicole Stott (veteran of STS-128, -129, -133, & ISS Expeditions 20 and 21) will also be on hand at the Tampa Bay History Center on March 2014 (Date to be Announced) to present Suited for Space: An Astronaut’s View.

– Follow the Tampa Bay History Museum of Twitter as @TampaBayHistory.