Where Should We Look for Life in the Solar System?

Where Should We Look for Life in the Solar System?

Emily Lakdawalla is the senior editor and planetary evangelist for the Planetary Society. She’s also one of the most knowledgeable people I know about everything that’s going on in the Solar System. From Curiosity’s exploration of Mars to the search for life in the icy outer reaches of the Solar System, Emily can give you the inside scoop.

In this short interview, Emily describes where she thinks we should be looking for life in the Solar System.

Follow Emily’s blog at the Planetary Society here.
Follow her on Twitter at @elakdawalla
And Circle her on Google+
Continue reading “Where Should We Look for Life in the Solar System?”

Melting Glaciers May Push The West Antarctic’s Ice Loss Ever Higher

Artist's conception of the European Space Agency's CryoSat mission. Credit: ESA – P. Carril

The West Antarctic Ice Sheet is losing the equivalent of a Lake Tahoe in ice every single year, according to new measurements from the European Space Agency CryoSat satellite — quite a bit more than what was measured earlier. That’s 36 cubic miles or 150 cubic kilometers every single year.

The measured loss also affects sea levels around the world. Between 2005 and 2010, polar scientists previously calculated, oceans rose about 0.0110 inches (0.28 mm) a year due to West Antarctic melting. The new results suggest that the melting is about 15% higher. That would put the new sea-rise rate at 0.0115 inches (0.32 mm) a year.

“We find that ice thinning continues to be most pronounced along fast-flowing ice streams of this sector and their tributaries, with thinning rates of between 4–8 m [13 to 26 feet] per year near to the grounding lines – where the ice streams lift up off the land and begin to float out over the ocean – of the Pine Island, Thwaites and Smith Glaciers,” stated Malcolm McMillan, a research fellow at the United Kingdom’s University of Leeds.

West Antarctic thinning between 2010 and 2013, as measured by the European Space Agency's CryoSat satellite. Credit: CPOM/ESA
West Antarctic thinning between 2010 and 2013, as measured by the European Space Agency’s CryoSat satellite. Credit: CPOM/ESA

What scientists don’t know is whether the ice is thinning faster due to melting glaciers or if CryoSat — the European Space Agency satellite that made these measurements by radar following its launch in 2010 — is simply mapping the same rate of loss but in higher resolution as what was seen before.

“Thanks to its novel instrument design and to its near-polar orbit, CryoSat allows us to survey coastal and high-latitude regions of Antarctica that were beyond the capability of previous altimeter missions, and it seems that these regions are crucial for determining the overall imbalance,” stated Andrew Shepherd, a University of Leeds researcher who led the study.

The research was presented at the American Geophysical Union’s fall meeting this week.

Source: European Space Agency

Young Boy’s Discovery Confirmed as a Peculiar Supernova Explosion

Artist's sketch of a supernova explosion (credit: Adam Burn / Deviant art).

New observations confirm that young Nathan Gray’s discovery is indeed a supernova explosion, albeit a rather peculiar one.  Nathan Gray, age 10, discovered a new cosmic source on October 30th that emerged in the constellation of Draco, and it was subsequently classified as a supernova candidate.  Evidence available at the time was sufficiently convincing that Nathan was promptly heralded as the youngest individual to discover a supernova.

The discovery garnered world-wide attention, however, confirmation via a spectrum from a large telescope was necessary to unambiguously identify the target as a supernova.  In addition, that observation would enable astronomers to determine the supernova class and identify the progenitor of the exploding star.  In other words, was the star initially comparable in mass to the Sun and a member of a binary system, or was the original star significantly more massive and a neutron star is potentially all that remains?

The new observations were acquired by Lina Tomasella and Leonardo Tartaglia of the Padova-Asiago Supernova Group, and imply that the supernova stems from a star significantly more massive than the Sun.   Andrea Pastorello, a member of that group, noted that the target’s spectrum displays the presence of hydrogen (specifically H-alpha emission), which rules out the scenario of a lower-mass progenitor in a binary system (those are classified as type Ia).

Features present in the observations led the astronomers to issue a preliminary supernova classification of type II-pec (peculiar).  The blue spectral continuum is typical of a type IIn supernova, but the expansion velocity inferred from the hydrogen line (3100 km/s) is an order of magnitude larger than expected, which motivated the team to issue the aforementioned classification.  Pastorello further noted that the target is somewhat similar to SN 1998s, and in general type II supernovae exhibit heterogeneous observational properties.

Observations confirming that Nathan Gray's discovery is a supernova were obtained from the Asiago 1.82-m Copernico Telescope (image credit: L.C. / Istituto Nazionale di Astrofisica).
Observations confirming that young Nathan Gray’s cosmic discovery is a supernova were obtained from the Asiago 1.82-m Copernico Telescope (image credit: L.C. / Istituto Nazionale di Astrofisica).

Nathan had been scanning astronomical images sent by David J. Lane (Saint Mary’s University) for months, and identified some potential sources that proved to be false detections or previous discoveries.  However, the Padova-Asiago Supernova Group has now confirmed that isn’t the case this time.  Indeed, the discovery means that Nathan officially unseats his sister Kathryn as the youngest person to discover a supernova, yet she is elated for her bother (see Nancy Atkinson’s article regarding Kathryn’s discovery).

Nathan, his sister, and parents Paul and Susan, formed a supernova search team in partnership with Lane.  The original discovery images were obtained from the Abbey Ridge Observatory, which is stationed in Lane’s backyard.

Those desiring additional information on supernovae will find the videos below pertinent.


New Project Aims To Improve Galaxy Simulation — And Help Us Understand More About The Universe

Image of NGC 6872 (left) and companion galaxy IC 4970 (right) locked in a tango as the two galaxies gravitationally interact. The galaxies lie about 200 million light-years away in the direction of the constellation Pavo (the Peacock). Image credit: Sydney Girls High School Astronomy Club, Travis Rector (University of Alaska, Anchorage), Ángel López-Sánchez (Australian Astronomical Observatory/Macquarie University), and the Australian Gemini Office.

Galaxy modelling is complicated, and even more so when different computer models don’t agree on how the factors come together. This makes it hard to understand the nature of our universe. One new project called AGORA (Assembling Galaxies of Resolved Anatomy) aims to resolve the discrepancies and make the results more consistent. Basically, the project aims to compare different codes against each other and also against observations.

“The physics of galaxy formation is extremely complicated, and the range of lengths, masses, and timescales that need to be simulated is immense,” stated Piero Madau, professor of astronomy and astrophysics at the University of California, Santa Cruz and co-chair of the AGORA steering committee.

“You incorporate gravity, solve the equations of hydrodynamics, and include prescriptions for gas cooling, star formation, and energy injection from supernovae into the code. After months of number crunching on a powerful supercomputer, you look at the results and wonder if that is what nature is really doing or if some of the outcomes are actually artifacts of the particular numerical implementation you used.”

This is especially important when it comes to modelling the effect of dark matter on the universe. Since the entity is hard for us to see and therefore to identify, physicists rely on models to make predictions about its effect on galaxies and other forms of more ordinary matter.

Nine codes, nine galaxy formation scenarios: this is the sort of problem that AGORA is devoting itself to resolving by comparing different supercomputer simulations. Credit: Simulations performed by Samuel Leitner (ART-II), Ji-hoon Kim (ENZO), Oliver Hahn (GADGET-2- CFS), Keita Todoroki (GADGET-3), Alexander Hobbs (GADGET-3-CFS and GADGET-3-AFS), Sijing Shen (GASOLINE), Michael Kuhlen (PKDGRAV-2), and Romain Teyssier (RAMSES)
Nine codes, nine galaxy formation scenarios: this is the sort of problem that AGORA is devoting itself to resolving by comparing different supercomputer simulations.
Credit: Simulations performed by Samuel Leitner (ART-II), Ji-hoon Kim (ENZO), Oliver Hahn (GADGET-2- CFS), Keita Todoroki (GADGET-3), Alexander Hobbs (GADGET-3-CFS and GADGET-3-AFS), Sijing Shen (GASOLINE), Michael Kuhlen (PKDGRAV-2), and Romain Teyssier (RAMSES)

“One big challenge, however, has been numerically modeling astrophysical processes over the vast range of size scales in the Universe. Supercomputer simulations are designed with three different size scales relevant to three different phenomena: star formation, galaxy formation, and the large scale structure of the universe,” stated the University of California High-Performance Astrocomputing Center.

This means that models of stars coming to be inside of galaxies have one scale of resolution — enough to look at what the gas and dust is made of, for example — but when looking at the entire universe, the computer is more limited to looking at “simple gravitational interactions of dark matter”, the university added. Of course, the more resolution you can get in a computer model, the better — especially because star formation is affected by processes such as how galaxies interact with surrounding gas.

AGORA’s will first aim to “model a realistic isolated disk galaxy” UCSC states, and then compare the codes used to see what they come up with. You can read more about the project’s aims at this Arxiv pre-print paper (led by the University of California, Santa Cruz’s Ji-hoon Kim) or on the AGORA website.

Sources: University of California Santa Cruz and University of California High-Performance Astrocomputing Center.

Mapping Molecular Clouds Changes Astronomers Outlook On Starbirth

Molecular hydrogen in the Whirlpool Galaxy M51. The blueish features show the distribution of hydrogen molecules in M51, the raw material for forming new stars. The PAWS team has used this data to create a catalogue of more then 1,500 molecular clouds. The background is a color image of M51 by the Hubble Space Telescope. Superimposed in blue is the CO(1-0) radiation emitted by carbon monoxide (CO) molecules, as measured for the PAWS study using the millimeter telescopes of the Institut de Radioastronomie Millimétrique. The CO molecules are used as tracers for molecular hydrogen. Credit: PAWS team/IRAM/NASA HST/T. A. Rector (University of Alaska Anchorage)

It didn’t happen overnight. By studying the properties of giant molecular clouds in the Whirlpool Galaxy for several years with the millimeter telescopes of IRAM, the Institut de Radioastronomie Millimétrique, astronomers have been given a whole, new look at star formation. Encompassing 1,500 maps of molecular clouds, this new research has found these building blocks of future suns to be encased in a sort of molecular hydrogen mist. This ethereal mixture appears to be far denser than speculated and is found throughout the galactic disc. What’s more, it would appear the pressure created by the molecular fog is a critical factor in determining whether or not stars are able to form within the clouds.

Stars form in the molecular clouds housed within all galaxies. These formations are vast areas of hydrogen molecules with masses which total from a thousand to several million times that of the Sun. When an area of the cloud folds under the weight of its own gravity, it collapses. Pressure and temperature rise and nuclear fusion begins. A star is born.

This exciting new research is changing the way astronomers think about starbirth regions. Study leader Eva Schinnerer (Max Planck Institute for Astronomy) explains: “Over the past four years, we have created the most complete map yet of giant molecular clouds in another spiral galaxy similar to our own Milky Way, reconstructing the amounts of hydrogen molecules and correlating them with the presence of new or older stars. The picture that is emerging is quite different from what astronomers thought these clouds should be like.” The survey, known as PAWS, targeted the Whirlpool galaxy, also known as M51, at a distance of about 23 million light-years in the constellation Canes Venatici – the Hunting Dogs.

Annie Hughes, a post-doctoral researcher at MPIA involved in the study, says: “We used to think of giant molecular clouds as solitary objects, drifting within the surrounding interstellar medium of rarified gas in isolated splendor; the main repository of a galaxy’s supply of hydrogen molecules. But our study shows that 50% of the hydrogen is outside the clouds, in a diffuse, disk-shaped hydrogen fog permeating the galaxy!”

Not only does the enveloping gas play a critical part in star formation, but galaxy structure does as well. One galactic feature in particular is key – spiral arm structure. They sweep slowly around the core area like hands on a clock and are more populated with stars than the remainder of the galactic disk. Sharon Meidt, another MPIA post-doctoral researcher involved in the study, says: “These clouds are definitely not isolated. On the contrary, interactions between clouds, fog, and overall galactic structure appear to hold the key to whether or not a cloud will form new stars. When the molecular fog moves relative to the galaxy’s spiral arms, the pressure it exerts on any clouds within is reduced, in line with a physical law known as Bernoulli’s principle. Clouds feeling this reduced pressure are unlikely to form new stars. According to the press release, Bernoulli’s law is also thought to be responsible for part of the well-known shower-curtain effect: shower curtains blowing inward when one takes a hot shower, another display of reduced pressure.

Jerome Pety of the Institut de Radioastronomie Millimétrique (IRAM), which operates the telescopes used for the new observations, says: “It’s good to see our telescopes live up to their full potential. A study that needed such extensive observation time, and required both an interferometer to discern vital details and our 30 m antenna to put those details into a larger context, would not have been possible at any other observatory.”

Schinnerer concludes: “So far, the Whirlpool galaxy is one example which we have studied in depth. Next, we need to check that what we have found also applies to other galaxies. For our next steps, we hope to profit from both the extension NOEMA of the compound telescope on the Plateau de Bure and from the newly opened compound telescope ALMA in Chile, which will allow in-depth studies of more distant spiral galaxies.”

Original Story Source: Max Planck Institute for Astronomy News Release.

‘Glowing Wreck Of A Star’ Reveals Cosmic Cannibalism

Composite image of Circinus X-1, which is about 24,000 light-years from Earth in the constellation Circinus. Credit: X-ray: NASA/CXC/Univ. of Wisconsin-Madison/S. Heinz et al; Optical: DSS; Radio:
Composite image of Circinus X-1, which is about 24,000 light-years from Earth in the constellation Circinus. Credit: X-ray: NASA/CXC/Univ. of Wisconsin-Madison/S. Heinz et al; Optical: DSS; Radio: CSIRO/ATNF/ATCA

Circinus X-1 may look like a serene place from a distance, but in reality this gassy nebula is quite a busy spot. Embedded in the nebula is the neutron star that is also a leftover of the supernova that produced the gas. Not only that, but the neutron star is still locked on to a companion and is in fact “cannibalizing” it, astronomers said.

The “glowing wreck of a star”, as the team called it, is exciting because it demonstrates what systems look like in the first stages after an explosion. The nebula is an infant in cosmic terms, with an upper limit to its age of just 4,500 years. To put that in human terms, that’s around the time of the first civilizations (such as in Mesopotamia).

“The fact that we have this remnant along with the neutron star and its companion means we can test all kinds of things,” stated Sebastian Heinz, an astronomy professor at the University of Wisconsin-Madison who led the research.

“Our observations solve a number of puzzles both about this object and the way that neutron stars evolve after they are born. For example, the unusual elliptical orbit on which these two stars swing around each other is exactly what you would expect for a very young X-ray binary.”

X-ray binaries are typically made up of a black hole or a neutron star that is locked on to a “normal” companion star such as that of our sun. That star won’t stay normal forever, however, as it’s being subject to very intense gravity from the black hole or neutron star. Its starstuff is being pulled off, heated, and then emitting radiation in X-rays that are easily trackable across the universe.

While X-ray binaries have been spotted before, seeing one along with a nebula is something special. By comparison, the gas cloud doesn’t stick around for very long — just 100,000 years or so — while the stars can be there for a while longer.

Checking out this star system could not only teach scientists about stellar evolution, but about the nature of neutron stars. One thing puzzling the team right now is why the neutron star has a faint magnetic field, which stands against established theory. Further study will be required to figure out why it isn’t as strong as expected.

Combining observations done with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. The black hole blows a huge bubble of hot gas, 1,000 light-years across or twice as large and tens of times more powerful than the other such microquasars. The stellar black hole belongs to a binary system as pictured in this artist's impression.  Credit: ESO/L. Calçada
A binary X-ray system with a black hole (right) and companion star. Credit: ESO/L. Calçada

This high-resolution view from NASA’s Chandra X-Ray Telescope and the Australia Telescope Compact Array, however, has revealed some new things.

“I have been perplexed by the unusually strong evolution of the orbit of Circinus X-1 since my graduate-school days,” stated Niel Brandt, an astronomer at Pennsylvania State University who is on the team. “The discovery now of this system’s youth provides a satisfying explanation for why its orbit evolves so strongly — because the system likely still is settling down after its violent birth.”

You can read more in the Dec. 4 publication in The Astrophysical Journal or, in prepublished form, on Arxiv.

Sources: University of Wisconsin-Madison and Pennsylvania State University

Get Ready for the 2013 Geminid Meteor Shower

The rising radiant of the Geminids-Looking east at 9PM local from latitude 30 degrees north. (Credit-Stellarium).

One of the best annual meteor showers occurs this coming weekend.

The 2013 Geminid meteors peak this coming Saturday on December 14th. This shower has a broad maximum, assuring that observers worldwide get a good look. In 2013, the maximum for the Geminids is forecast to span from 13:00 Universal Time (UT) on Friday, December 13th to 10:00UT/5:00AM EST on Saturday, December 14th, with a projected maximum centered a few hours earlier at 2:00 UT Saturday morning.

This is good news  for observers spanning both sides of the Atlantic, who should be well placed to catch the event. Keep in mind, meteor showers often peak hours before or after predictions… we certainly don’t know everything that a given meteor stream might have in store!

An all-sky composite of the 2008 Geminid meteor shower. (Credit: NASA/MSFC/Bill Cooke, NASA's Meteoroid Environment Office).
An all-sky composite of the 2008 Geminid meteor shower. (Credit: NASA/MSFC/Bill Cooke, NASA’s Meteoroid Environment Office).

But the time to start watching is now. We’ve already seen a few early Geminids this past weekend, and this shower is notable for showing early activity for northern hemisphere observers before local midnight. This is because the radiant, or the direction that the meteors seem to emanate from lies at a high northern declination of 33 degrees north near the star Castor, also known as Alpha Geminorum.

The typical Zenithal Hourly Rate for the Geminids is 80-120, or about 1 to 2 per minute. Keep in mind, the ZHR is an ideal rate, assuming dark skies, with the radiant positioned directly overhead. Most observers will see significantly less activity.

The 2013 Geminids also have to contend with the waxing gibbous Moon, which reaches Full just 3 days after the shower’s expected maximum. This will give observers a dwindling window between moonset and the start of dawn twilight to catch the Geminids at their best.

We always thought that the Geminids had a bit of an undeserved PR problem among annual showers. This no doubt stems from the fact that they arrive in the chilly month of December, a time when fingers go numb, camera batteries die, and conducting a vigil for meteors is challenging.

A 2012 Geminid captured by the author from Mars Hill. North Carolina.
A 2012 Geminid captured by the author from Mars Hill, North Carolina.

This shower is an interesting one though, with an equally interesting history and source. The Geminids were first identified as a distinct meteor shower by R.P. Greg of Manchester UK in 1862, and the estimated ZHR rose from about 20 to 80 through the 20th century. The parent source of the Geminids remained unknown until 1983, when astronomer Fred Whipple linked them to the strange “rock-comet” body 3200 Phaethon. An Apollo asteroid also thought to be a member of the Pallas family of asteroids, 3200 Phaethon seems to be shedding enough material to produce the annual Geminid meteor shower. This makes the annual shower rare as one not produced by a comet. It’s worth noting that 3200 Phaethon also passes extremely close – 0.14 AU – from the Sun at perihelion, and gets periodically “baked” during each 1.4 year passage.

In the 21st century, rates for the Geminids have stayed above a ZHR of 120, currently the highest of any annual shower. It’s worth noting that an extrapolated ZHR of almost 200 were seen in 2011 when the Moon was at an equally unfavorable waning gibbous phase! The Geminids always produce lots of fireballs, capable of being seen even under moonlit skies.

There are also two other showers currently active to watch for this week. One is the Ursid meteors, which radiate from the Little Dipper (Ursa Minor) with a peak ZHR of 10-50 occurring on December 22nd. Also, keep an eye out for Andromedid meteors this week, a defunct shower that may be making a comeback. The source of several great meteor storms in the late 19th century, the Andromedid parent source is the shattered comet formerly known as 3D/Biela.

An early Geminid crosses pathes with Comet 2013 R1 Lovejoy. (Credit: Jason Hullinger).
An early Geminid crosses paths with Comet 2013 R1 Lovejoy. (Credit: Jason Hullinger).

Though the Geminids appear to radiate from the constellation Gemini, they can appear anywhere in the sky. Tracing the path back can determine the source constellation and the “membership” of a given meteor. Random meteors not associated with any identified shower are known as “sporadics.” Block that pesky light-polluting Moon behind a building or hill to optimize your chances of catching sight of a meteor. Employing a friend or two to watch in different directions will also maximize the number seen. The International Meteor Organization always welcomes reports from observers… this is real science that you can contribute to using nothing more sophisticated than your eyes!

The Geminids are medium-speed meteors with an average atmospheric velocity of about 35 kilometres per second, often leaving long, glowing trails worth examining with a pair of binoculars. You might note an apparent surge in speed to this shower past local midnight, as your vantage point turns into the oncoming shower, adding the velocity of the Earth to the approaching Geminids.

Photographing meteors is fun and easy to do; all you’ll need is a DSLR camera mounted on a tripod. Take several manual setting exposures to get the combination of ISO,F-stop, and shutter speed correct for your local sky conditions.  Then simply set the focus to infinity, and use the widest field of view possible. Catching meteors is surreptitious, as they can appear anywhere – and at any time – in the sky. Be sure to thoroughly review those images afterwards… nearly every meteor we’ve caught photographically went unnoticed during observation!

Also, remember that cold weather plus long exposure times can conspire to drain camera batteries in a hurry. Be sure to keep a spare set of charged batteries ready to go in a warm pocket!

How powerful will the Geminids become? Are we in for a “return of the Andromedids” moving towards 2014? One thing is for sure: you won’t see any meteors if you don’t try. So be sure to get out there, pour a mug of your favorite warming beverage, and don’t miss the 2013 Geminid meteor shower!

–      Got meteors? Be sure and tweet ‘em to #Meteorwatch.

–      Be sure to send those pics of Geminids and more in to Universe Today.

This Spooky X-Ray ‘Hand’ Demonstrates A Pulsar Star Mystery

This X-ray nebula appears to look like a human hand. The ghostly shape comes courtesy of a pulsar star called PSR B1509-58 (B1509 for short) that is just 12 miles or 19 kilometers in diameter. The nebula itself is 150 light-years across. Image taken by NASA's Chandra X-ray Observatory. Credit: NASA/CXC/CfA/P. Slane et al.

That spooky hand in the image above is producing questions for scientists. While the shape only coincidentally looks like a human hand, scientists are still trying to figure out how a small star produced such a large shape visible in X-rays.

Pulsar star PSR B1509-58 (or B1509 for short) is a 12-mile (19-kilometer) remnant of a much larger star that exploded and left behind a quickly spinning neutron star. Energy leaves mostly via neutrino (or neutral particle) emission, with a bit more coming out via beta decay, or a radioactive process where charged particles leave from atoms.

Using a new model, scientists found that so much energy comes out from neutrino emission that there shouldn’t be enough left for the beta decay to set off the X-rays you see here in this image, or in other situations. Yet it’s still happening. And that’s why they’re hoping to take a closer look at the situation.

Artist's conception of a neutron star flare. Credit: University of California Santa Cruz
Artist’s conception of a neutron star flare. Credit: University of California Santa Cruz

“Scientists are intrigued by what exactly powers these massive explosions, and understanding this would yield important insights about the fundamental forces in nature, especially on the astronomical/cosmological scale,” stated Peter Moller, who is with the theoretical division of Los Alamos National Laboratory and participated in the research.

Preliminary studies indicate that to better understand what’s happening on the surface of these objects, computer models must endeavor to “describe the shape of each individual nuclide” (or atom that has a certain number of protons and neutrons in its nucleus). That’s because not all of these nuclides are simple spheres.

Using facilities at Los Alamos, scientists created databases with different types of nuclides that had various beta-decay properties. They then plugged this into a Michigan State University model of neutron stars to see what energy was released as the stars accrete or come together.

Accretion can cause neutron stars to flare violently
Accretion can cause neutron stars to flare violently

The results stood against what was a “common assumption”, the scientists stated, that the radioactive action would be enough to power the X-rays. They urge more study on this front, especially using a proposed Facility for Rare Isotope Beams that would be built at Michigan State, using funding from the U.S. Department of Energy Office of Science. FRIB project participants are hoping that will be ready in the 2020s.

You can read more about the research in the Dec. 1 edition of Nature. It was led by Hendrik Schatz, a professor at the National Superconducting Cyclotron Laboratory at Michigan State.

Source: Los Alamos National Laboratory

Little Big Universe: Tilt-Shifted Astro Images Make Space Look Tiny

Hubble image of the Horsehead Nebula, "tilt-shifted" by Imgur user ScienceLlama (Original image credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA))

Aww, how cute! What an adorable little… nebula?

Although here it may look like it could fit in your hand, the Horsehead Nebula is obviously quite a bit larger – about 1.5 light-years across from “nose” to “mane.” But given a tilt-shift effect by Imgur.com user ScienceLlama, the entire structure takes on the appearance of something tiny — based purely on our eyes’ natural depth-of-field when peering at a small object close up. Usually done with Photoshop filters these days, it’s a gimmick, yes… but it works!

The original image was captured in infrared light by the Hubble Space Telescope and released in April 2013, in celebration of its 23rd anniversary.

Check out more of ScienceLlama’s “tiny universe” images below:

A tiny Centaurus A
A tiny Centaurus A
A tiny Crab Nebula (see original Spitzer image here)
A tiny Crab Nebula (see original NASA image here)
A tiny Andromeda Galaxy (see original here)
A tiny Andromeda Galaxy in hydrogen alpha (see original here)

See these and more on ScienceLlama’s Imgur page here, and follow Science Llama on Twitter here.

(H/T to Google+ user Brian Koberlein and fellow Space Community member Warren Isaac. Featured on Reddit.com.)

ADDITION 12/17: Several of these images (like this one) were originally processed by Robert Gendler from Hubble-acquired data, but the attribution was not noted by ScienceLlama. I apologize for the oversight — see more of Robert’s beautiful astrophotography on his website here. Another original source was Adam Block of the Mount Lemmon Sky Center.

China’s Maiden Moon Rover Mission Chang’e 3 Achieves Lunar Orbit

Artists concept of the Chinese Chang'e 3 lander and rover on the lunar surface. Credit: Beijing Institute of Spacecraft System Engineering

China’s maiden moon landing probe successfully entered lunar orbit on Friday, Dec. 6, following Sunday’s (Dec. 1) spectacular blastoff – setting the stage for the historic touchdown attempt in mid December.

Engineer’s at the Beijing Aerospace Control Center (BACC) commanded the Chang’e 3 lunar probe to fire its braking thrusters for 361 seconds, according to China’s Xinhua news agency.

The do or die orbital insertion maneuver proceeded precisely as planned at the conclusion of a four and a half day voyage to Earth’s nearest neighbor.

China’s ‘Yutu’ lunar lander is riding piggyback atop the four legged landing probe during the history making journey from the Earth to the Moon.

Liftoff of China’s first ever lunar rover on Dec. 2 local China time from the Xichang Satellite Launch Center, China. Credit: CCTV
Liftoff of China’s first ever lunar rover on Dec. 2 local China time (Dec. 1 EST) from the Xichang Satellite Launch Center, China. Credit: CCTV

The critical engine burn placed Chang’e 3 into its desired 100 kilometer (60 mi.) high circular orbit above the Moon’s surface at 5:53 p.m. Friday, Beijing Time (4:53 a.m. EST).

An engine failure would have doomed the mission.

Chang’e 3 is due to make a powered descent to the Moon’s surface on Dec. 14, firing the landing thrusters at an altitude of 15 km (9 mi) for a soft landing in a preselected area called the Bay of Rainbows or Sinus Iridum region.

The Bay of Rainbows is a lava filled crater located in the upper left portion of the moon as seen from Earth. It is 249 km in diameter.

The variable thrust engine can continuously vary its thrust power between 1,500 to 7,500 newtons, according to Xinhua.

The lander is equipped with terrain recognition equipment and software to avoid rock and boulder fields that could spell catastrophe in the final seconds before touchdown if vehicle were to land directly on top of them.

The voyage began with the flawless launch of Chang’e 3 atop China’s Long March 3-B booster at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center, in southwest China.

If successful, the Chang’e 3 mission will mark the first soft landing on the Moon since the Soviet Union’s unmanned Luna 24 sample return vehicle landed nearly four decades ago back in 1976.

Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum
Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum

The name for the ‘Yutu’ rover – which means ‘Jade Rabbit’ – was chosen after a special naming contest involving a worldwide poll and voting to select the best name.

‘Yutu’ stems from a Chinese fairy tale, in which the goddess Chang’e flew off to the moon taking her little pet Jade rabbit with her.

The six-wheeled ‘Yutu’ rover will be lowered in stages to the moon’s surface in a complex operation and then drive off a pair of landing ramps to explore the moon’s terrain.

Yutu measures 150 centimeters high and weighs approximately 120 kilograms.

The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, radar and other sensors to investigate the lunar surface and composition.

Spectacular view of Chang’e 3 thruster firings after separation from upper stage with Earth in the background. Credit: CCTV
Spectacular view of Chang’e 3 thruster firings after separation from upper stage with Earth in the background. Credit: CCTV

Chang’e 3 marks the beginning of the second phase of China’s lunar robotic exploration program.

The lander follows a pair of highly successful lunar orbiters named Chang’e 1 and 2 which launched in 2007 and 2010.

The next step will be an unmanned lunar sample return mission, perhaps by 2020.

China’s Chang’e 3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a similarly spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for continuing Chang’e 3, LADEE, MAVEN and MOM news and Ken’s SpaceX and MAVEN launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about Chang’e 3, SpaceX, MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Dec 10: “Antares ISS Launch from Virginia, Mars and SpaceX Mission Update”, Amateur Astronomers Association of Princeton, Princeton University, Princeton, NJ, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM