Now is a Great Time to Try Seeing Venus in the Daytime Sky

Venus (arrowed) imaged near the waning crescent Moon on August 13th, 2012. (Photo by author).

Here’s a feat of visual athletics to amaze your friends with this week. During your daily routine, you may have noticed the daytime Moon hanging against the azure blue sky. But did you know that, with careful practice and a little planning, you can see Venus in the broad daylight as well?

This week offers a great chance to try, using the daytime Moon as a guide. We recently wrote about the unique circumstances of this season’s evening apparition of the planet Venus. On Friday, December 6th, Venus will reach a maximum brilliancy of magnitude -4.7, over 16 times brighter than Sirius, the brightest star in the sky. And just one evening prior on Thursday December 5th, the 3-day old crescent Moon passes eight degrees above it, slightly closer together than the span of your palm held at arm’s length.

Created using Starry Night Education software.
The orientation of Venus and the Moon on Thursday, December 5th as it crosses the local meridian at 3PM EST. Created using Starry Night Education software.

The Moon will thus make an excellent guide to spot Venus in the broad daylight. It’s even possible to nab the pair with a camera, if you can gauge the sky conditions and tweak the manual settings of your DSLR just right.

The best time to attempt this feat on Thursday will be when the pair transits the local meridian due south of your location. Deep in the southern hemisphere, the Moon and Venus will appear to transit to the north.  This occurs right around 3:00 PM local. The fingernail Moon will be easy to spot, then simply begin scanning the sky to the south of it with the naked eye or binoculars for the brilliant diamond of Venus. High contrast and blocking the Sun out of view is key — Venus will easily pop right out against a clear deep blue sky, but it may disappear all together against a washed out white background.

The Moon will be at a 10% illuminated phase on Thursday, while Venus presents a slimming crescent at 27% illumination. Though tougher to find, Venus is actually brighter than the Moon in terms of albedo… expand it up to the apparent size of a Full Moon and it would be over four times as bright!

Photo by author.
Church and Venus as seen from Westgate River Ranch, Florida. Photo by author.

You’ll be amazed what an easy catch Venus is in the daytime once you’ve spotted it — we’ve included views of Venus in the daytime when visible during sidewalk star parties for years.

Due to its brilliancy, Venus has also been implicated in more UFO sightings than any other planet, and even caused the Indian Army to mistake the pair for snooping Chinese drones earlier this year when it was in conjunction with the planet Jupiter. A daytime sighting of the planet Venus near the Moon was almost certainly the “curious star” reported by startled villagers observing from Saint-Denis, France on January 13th, 1589.

Venus can also cast a noticeable shadow near greatest brilliancy, an effect that can be discerned against a fresh snow-covered landscape. Can’t see it? Take a time exposure shot of the ground and you may just be able to tease it out… but hurry, as the waxing Moon will soon be dominating the early evening night sky show!

Another phenomenon to watch for this week on the face of the waxing crescent Moon is known as Earthshine. Can you just make out the dark limb of the Moon? This is caused by the Earth acting as a “mirror” reflecting sunlight back at the nighttime side of the Moon. And don’t forget, China’s Chang’e-3 lander plus rover will be landing on the lunar surface in the Sinus Iridum region later this month on December 14th, the first lunar soft landing since 1976!

The imaginary line of the ecliptic currently bisects the Moon and Venus, as Venus sits at an extreme southern point 2.5 degrees below the ecliptic — in fact, 2013 the farthest south it’s been since 1930 — and the Moon sits over four degrees above the ecliptic this week. The Moon also reached another notable point today, as it reached its most northern “southerly point” for 2013 at a declination of -19.6 degrees. The Moon’s apparent path is headed for a “shallow year” in 2015, after which it’ll begin to slowly widen over its 18.6 year cycle out to a maximum declination range in 2024. It’s a weird but true fact that the motion of the Moon is not fixed to the Earth’s equatorial plane, but to the path of our orbit traced out by the ecliptic, to which its orbit is tilted an average of five degrees.

Stellarium
The view looking west tonight from latitude 30 degrees north. Created using Stellarium.

And speaking of the Moon, there’s another fun naked-eye feat you can attempt tonight. At dusk, U.S. East Coast observers might just be able to pick up the razor thin crescent Moon hanging low to the West, only 23 hours past New. Begin scanning the western horizon about 10 minutes after sunset. Can you see it with binoculars? The naked eye? Chances get better for sighting the slim crescent Moon the farther west you go. North American observers will have a chance at a “personal best” during next lunation in the first few days of 2014… more to come!

Be sure to send those Venus-Moon conjunction pics in to Universe Today!

How Does a Star Form?

How Does a Star Form?

We owe our entire existence to the Sun. Well, it and the other stars that came before. As they died, they donated the heavier elements we need for life. But how did they form?

Stars begin as vast clouds of cold molecular hydrogen and helium left over from the Big Bang. These vast clouds can be hundreds of light years across and contain the raw material for thousands or even millions of times the mass of our Sun. In addition to the hydrogen, these clouds are seeded with heavier elements from the stars that lived and died long ago. They’re held in balance between their inward force of gravity and the outward pressure of the molecules. Eventually some kick overcomes this balance and causes the cloud to begin collapsing.

That kick could come from a nearby supernova explosion, collision with another gas cloud, or the pressure wave of a galaxy’s spiral arms passing through the region. As this cloud collapses, it breaks into smaller and smaller clumps, until there are knots with roughly the mass of a star. As these regions heat up, they prevent further material from falling inward.

At the center of these clumps, the material begins to increase in heat and density. When the outward pressure balances against the force of gravity pulling it in, a protostar is formed. What happens next depends on the amount of material.

Some objects don’t accumulate enough mass for stellar ignition and become brown dwarfs – substellar objects not unlike a really big Jupiter, which slowly cool down over billions of years.

If a star has enough material, it can generate enough pressure and temperature at its core to begin deuterium fusion – a heavier isotope of hydrogen. This slows the collapse and prepares the star to enter the true main sequence phase. This is the stage that our own Sun is in, and begins when hydrogen fusion begins.

If a protostar contains the mass of our Sun, or less, it undergoes a proton-proton chain reaction to convert hydrogen to helium. But if the star has about 1.3 times the mass of the Sun, it undergoes a carbon-nitrogen-oxygen cycle to convert hydrogen to helium. How long this newly formed star will last depends on its mass and how quickly it consumes hydrogen. Small red dwarf stars can last hundreds of billions of years, while large supergiants can consume their hydrogen within a few million years and detonate as supernovae. But how do stars explode and seed their elements around the Universe? That’s another episode.

We have written many articles about star formation on Universe Today. Here’s an article about star formation in the Large Magellanic Cloud, and here’s another about star formation in NGC 3576.

Want more information on stars? Here’s Hubblesite’s News Releases about Stars, and more information from NASA’s imagine the Universe.

We have recorded several episodes of Astronomy Cast about stars. Here are two that you might find helpful: Episode 12: Where Do Baby Stars Come From, and Episode 13: Where Do Stars Go When they Die?

Source: NASA

Mother of All Slingshots Set to Hurl India’s MOM Probe to Mars

The Mother of all Slingshots is set for Dec. 1 when the main engine fires to propel India’s first interplanetary spacecraft to Mars. Credit: ISRO

CAPE CANAVERAL, FL – MOM – India’s first ever interplanetary spacecraft – is spending her last day around Mother Earth.

The clock is ticking down relentlessly towards “The mother of all slingshots” – the critical engine firing intended to hurl India’ Mars Orbiter Mission (MOM) probe on her ten month long interplanetary cruise to the Red Planet.

Engineers at the Indian Space Research Organization’s (ISRO) Mission Operations Complex at Bangalore are now just hours away from sending the commands that will ignite MOMs’ liquid fueled main engine for TMI – the Trans Mars Insertion maneuver that will propel MOM away from Earth forever and place the craft on an elliptical trajectory to the Red Planet.

“Performance assessment of all subsystems of the spacecraft has been completed,” reports ISRO.

The do or die 1351 second burn is slated to begin at 00:49 hrs IST tonight – on Dec. 1 Indian local time.

Mars Orbiter Mission (MOM) Mission Operations Complex of ISTRAC, at Bangalore, India. Credit: ISRO
Mars Orbiter Mission (MOM) Mission Operations Complex of ISTRAC, at Bangalore, India. Credit: ISRO

The 440 Newton liquid fueled main engine must fire precisely as planned to inject MOM on target to Mars.

MOM’s picture perfect Nov. 5 liftoff atop India’s highly reliable four stage Polar Satellite Launch Vehicle (PSLV) C25 from the ISRO’s Satish Dhawan Space Centre SHAR, Sriharikota, precisely injected the spacecraft into an initial elliptical Earth parking orbit of 247 x 23556 kilometers with an inclination of 19.2 degrees.

First ever image of Earth Taken by Mars Color Camera aboard India’s Mars Orbiter Mission (MOM) spacecraft currently orbiting Earth prior to upcoming Trans Mars Insertion. Image is focused on the Indian subcontinent.  Credit: ISRO
First ever image of Earth Taken by Mars Color Camera aboard India’s Mars Orbiter Mission (MOM) spacecraft currently orbiting Earth prior to upcoming Trans Mars Insertion. Image is focused on the Indian subcontinent. Credit: ISRO

Since then the engine has fired 6 times to gradually raise the spacecrafts apogee.

The most recent orbit raising maneuver occurred at 01:27 hrs (IST) on Nov 16, 2013 with a burn time of 243.5 seconds increased the apogee from 118,642 km to 192,874 km.

1455132_1401412373430036_247947321_n

Tonight burn is MOM’s final one around Earth and absolutely crucial for setting her on course for Mars.

If all goes well the $69 million MOM spacecraft reaches the vicinity of Mars on 24 September 2014.

MOM was the first of two Earth missions to Mars launched this November.

NASA’s $671 Million MAVEN orbiter launched as scheduled on Nov. 18, from Cape Canaveral, Florida and arrives at Mars on Sept. 22, 2014, about two days before MOM.

Both MAVEN and MOM’s goal is to study the Martian atmosphere, unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

Stay tuned here for continuing MOM and MAVEN news and Ken’s MAVEN and SpaceX Falcon 9 launch reports from on site at the Kennedy Space Center press center and Cape Canaveral Air Force Station, Florida.

Ken Kremer

ISON Appears To Be Fading, But Astronomers Keeping Eyes Peeled

Comet ISON appears much fainter in this SOHO image from 2:42 p.m. UTC (9:42 a.m. EST) on Nov. 30. Credit: ESA/NASA/SOHO

A brief morning update (EST) from Karl Battams, who studies sungrazing comets at the Naval Research Laboratory, confirms social media reports that Comet C/2012 S1 ISON appears to be getting fainter in images from the Solar and Heliospheric Observatory (SOHO). (To compare, you can see older images below the jump.)

“Comet #ISON really is fading fast and I no longer see any sign of a “central condensation” (i.e. no obvious indication of a nucleus…),” Battams wrote on Twitter. “I *do* think that something emerged from the Sun, but probably a v.small nucleus or “rubble pile”, and I fear that may have now dissolved.”

This comet, however, has defied predictions over and over again. We’ll keep you posted as to its progress.

Astronomers wrote off  Comet ISON on Thursday (Nov. 28) shortly after it rounded the sun, but it brightened considerably afterwards and researchers said it’s possible a small nucleus did survive the close encounter. Battams previously noted ISON’s behavior is much different than the other 2,000 or so sungrazers he’s observed.

The comet was discovered Sept. 21, 2012 by Artyom Novichonok and Vitali Nevski while conducting the International Scientific Optical Network (ISON) survey and has been the subject of intense speculation about its brightness prospects since.

Bright, brighter, brightest: these views of Comet ISON after its closest approach to the sun Nov. 28 show that a small part of the nucleus may have survived the encounter. Images from the Solar and Heliospheric Observatory. Credit: ESA/NASA/SOHO/GSFC
Bright, brighter, brightest: these views of Comet ISON after its closest approach to the sun Nov. 28 show that a small part of the nucleus may have survived the encounter. Images from the Solar and Heliospheric Observatory. Credit: ESA/NASA/SOHO/GSFC

Zombie ISON ‘Behaving Like A Comet’, Stunned Astronomers Say

Bright, brighter, brightest: these views of Comet ISON after its closest approach to the sun Nov. 28 show that a small part of the nucleus may have survived the comet's close encounter with the sun. Images from the Solar and Heliospheric Observatory. Credit: ESA/NASA/SOHO/GSFC

Talk about the Comeback Kid. After Comet C/2012 S1 ISON rounded the sun yesterday afternoon, professional astronomers around the world looked at the faded debris and concluded it was an “ex-comet.” NASA wrapped up an hours-long Google+ Hangout with that news. The European Space Agency declared it was dead on Twitter.

But the remnants — or whatever ISON is now — kept brightening and brightening and brightening in images from the NASA/European Space Agency Solar and Heliospheric Observatory. The pictures are still puzzling astronomers right now, almost a day after ISON’s closest encounter with the sun.

 

You can follow our liveblogged confusion yesterday, capped by a gobsmacking announcement from the Naval Research Laboratory’s Karl Battams, “We believe some small part of ISON’s nucleus has SURVIVED perihelion,” he said on Twitter. Since then, Battams wrote a detailed blog post, referring to images from the Large Angle and Spectrometric Coronagraph (LASCO) aboard SOHO:

“Matthew [Knight] and I are ripping our hair out right now as we know that so many people in the public, the media and in science teams want to know what’s happened. We’d love to know that too! Right now, here’s our working hypothesis: As comet ISON plunged towards to the Sun, it began to fall apart, losing not giant fragments but at least a lot of reasonably sized chunks. There’s evidence of very large dust in the form of that long thin tail we saw in the LASCO C2 images.

After its closest approach to to the sun on Nov. 28 (left), Comet ISON appeared a dim shadow of its former self (at right). "The comet may still be intact," NASA wrote on Nov. 29. Images from the Solar and Heliospheric Observatory. Credit: ESA/NASA/SOHO/Jhelioviewer
After its closest approach to to the sun on Nov. 28 (left), Comet ISON appeared a dim shadow of its former self (at right). “The comet may still be intact,” NASA wrote on Nov. 29. Images from the Solar and Heliospheric Observatory. Credit: ESA/NASA/SOHO/Jhelioviewer

Then, as ISON plunged through the corona, it continued to fall apart and vaporize, and lost its coma and tail completely just like Lovejoy did in 2011. (We have our theories as to why it didn’t show up in the SDO images but that’s not our story to tell – the SDO team will do that.) Then, what emerged from the Sun was a small but perhaps somewhat coherent nucleus, that has resumed emitting dust and gas for at least the time being. In essence, the tail is growing back, as Lovejoy’s did.

So while our theory certainly has holes, right now it does appear that a least some small fraction of ISON has remained in one piece and is actively releasing material. We have no idea how big this nucleus is, if there is indeed one. If there is a nucleus, it is still too soon to tell how long it will survive. If it does survive for more than a few days, it is too soon to tell if the comet will be visible in the night sky. If it is visible in the night sky, it is too soon to say how bright it will be…

This morning (EST), Battams succinctly summarized the latest images he saw: “Based on a few more hours of data, comet #ISON appears to be… well, behaving like a comet!”, he wrote on Twitter.

NASA issued a status update this morning saying it’s unclear if this leftover is debris or an actual nucleus, but added that “late-night analysis from scientists with NASA’s Comet ISON Observing Campaign suggest that there is at least a small nucleus intact.” NASA, as well as Battams, pointed out that comet has behaved unpredictably throughout the 15 months scientists and amateurs have been observing it.

Mike Hankey of Monkton, Maryland took this photo of Comet ISON in outburst this morning Nov. 14. The tail now shows multiple streamers. Click to enlarge. Credit: Mike Hankey
Mike Hankey of Monkton, Maryland took this photo of Comet ISON in outburst Nov. 14. The tail showed multiple streamers. Click to enlarge. Credit: Mike Hankey

Throughout the year that researchers have watched Comet ISON – and especially during its final approach to the sun – the comet brightened and dimmed in unexpected ways.  Such brightness changes usually occur in response to material boiling off the comet, and different material will do so at different temperatures thus providing clues as to what the comet is made of.  Analyzing this pattern will help scientists understand the composition of ISON, which contains material assembled during the very formation of the solar system some 4.5 billion years ago.

Slate Bad Astronomy blogger Phil Plait jokingly threw out phrases like “What the what?” on Twitter yesterday, but added in a late-night update: “If you haven’t figured this out yet: We are *loving* this. The Universe surprises us yet again! How awesome!” He continued with his astonishment in a blog post:

For those keeping score at home, it got bright, then it faded, then it got all smeared out, then it came around the Sun smeared out, and then it seemed to get its act together again. At this point, I refuse to make any further conclusions about this comet; it seems eager to confuse. I’ve been hearing from comet specialists who are just as baffled… which is fantastic! If we knew what was going on, there’d be nothing more to learn.

Science confusion: Comet ISON made its closest approach to the sun Nov. 28. Although it showed up again in images from the Solar and Heliospheric Observatory, scientists could not spot it using the ESA PROBA-2 spacecraft (view pictured). ISON's composition or proximity to the sun may have caused this. Credit: PROBA-2 Science Centre
Science confusion: Comet ISON made its closest approach to the sun Nov. 28. Although it showed up again in images from the Solar and Heliospheric Observatory, scientists could not spot it using the ESA PROBA-2 spacecraft (view pictured). ISON’s composition or proximity to the sun may have caused this. Credit: PROBA-2 Science Centre

In a series of Twitter posts this morning, the European Space Agency’s science feed offered this take from Gerhard Schwehm, ESA’s head of planetary science:

From my initial look at ISON in today’s SOHO images, it seems nucleus has mostly disintegrated. Will only know if part of ISON nucleus has survived by continuing observations and performing more analysis. Bright fan-shape implies lots of material was released and travelling along ISON orbit, not confined in a traditional tail. Would be interesting to learn more about composition of debris to help us piece together what’s happened, but we need more time.

Other spacecraft searching for ISON were not able to spot it. For ESA’s PROBA-2, it may have been because of its composition or proximity to the sun, but scientists are unsure. It was also invisible in NASA’s Solar Dynamics Observatory; “scientists are still looking at the data to figure out why,” an agency Twitter update stated this morning.

So to sum up: no one’s quite sure of what is happening now, or what is happening next, but we will keep you posted and let you know if and when you can see ISON again in your home telescopes.

One of the finest pictures to date of Comet ISON by ace astrophotographer Damian Peach taken on Oct. 27.
One of the finest pictures to date of Comet ISON by ace astrophotographer Damian Peach taken on Oct. 27.

Is Comet ISON Dead? Astronomers Say It’s Likely After Icarus Sun-Grazing Stunt

Comet ISON on Nov. 10 before the recent outburst with well-developed dust (upper) and gas tails. Click ot enlarge. Credit: Damian Peach

Update, 9:55 pm EST: It’s a Thanksgiving miracle: apparently it now looks like ISON has actually survived!!

Image from SOHO indicates a chunk of Comet ISON has survived its close pass of the Sun. Credit: NASA/ESA/SOHO.
Image from SOHO indicates a chunk of Comet ISON has survived its close pass of the Sun. Credit: NASA/ESA/SOHO.

Update, 8:35 p.m. EST: Uncertainty about Comet ISON’s fate likely will persist for some time. Karl Battams just tweeted that after 2,000 sungrazing comet observations, he has never seen brightening in the same way that ISON (or its remains) appear to be doing right now. We’ll keep watching. Real-time images are available on this website.

Update, 6:30 p.m. EST: An excellent blog post from Phil Plait (who writes the Bad Astronomy blog on Slate) summarizes his take of the comet’s fate; debris (most likely, he says) continues to show up in images. An except: “It held together a long time, got very bright last night, faded this morning, then apparently fell apart. This isn’t surprising; we see comets disintegrate often enough as they round the Sun. ISON’s nucleus was only a couple of kilometers across at best, so it would have suffered under the Sun’s heat more than a bigger comet would have. Still, there’s more observing to do, and of course much data over which to pore.”

Update, 4:40 p.m. EST: On Twitter, the European Space Agency (quoting SOHO scientist Bernhard Fleck) said the comet is gone. Separately, the Naval Research Laboratory’s Karl Battams posted that he thinks recent observations show debris from ISON, but not a nucleus. Astronomers are still monitoring, however. 

Update, 3:56 p.m. EST: Something has emerged from perihelion, but the experts are divided as to whether it’s leftovers of ISON’s tail, or the comet itself. Stay tuned.

The fate of Comet C/2012 S1 ISON is uncertain. It made its closest approach to the sun today (Nov. 28) around 1:44 p.m. EST (6:44 p.m. UTC). As of Thursday night, what’s happening to the comet is still unclear, as observers try to keep up hopes for a good comet show in the next few weeks.

It will take a few more hours until NASA and other agencies can say for sure what the comet’s fate is. That said, there still is valuable science that can be performed if ISON has broken up — more details below the jump.

ISON coincided with American Thanksgiving, causing a lot of astronomers and journalists to work holiday hours while pundits made jokes about the comet being “roasted” along with the turkey. Meanwhile, amateur astronomer Stuart Atkinson — author of the Waiting for ISON blog — was among those eagerly awaiting the comet’s closest approach.

mars_stu

But as the comet made its closest approach, astronomers grew more and more skeptical than it had survived. Phil Plait (who writes the Bad Astronomy blog on Slate) pointed out that the comet’s nucleus appeared much dimmer than its tail in images from SOHO (Solar and Heliospheric Observatory), NASA’s sun-gazing spacecraft. This implied that the nucleus was disintegrating.

phil_plait

Plait and Karl Battams — a Naval Research Laboratory astrophysicist who operates the Sungrazing Comets Project — both participated in a NASA Google+ Hangout on ISON. As of about 2 p.m. EST (7 p.m. UTC), both said that they believe ISON is an “ex-comet”, although it will be a few more hours before scientists can say for sure.

The challenge is that the two spacecraft used to watch ISON swing around the sun — the Solar Dynamics Observatory and SOHO — are not necessarily designed to look for comets. Battams and Plait initially said that it sometimes take additional image processing to view information in it. more As time elapsed though, both expressed extreme skepticism that the comet survived.

Even if the comet is dead, Plait pointed out that scientists can still learn a lot from the remaining debris. ISON is believed to be a pristine example of bodies in the Oort Cloud, a vast body of small objects beyond the orbit of Neptune. Examining the dust in its debris trail could tell scientists more about the origins of the solar system.

“The fact that  it’s broken up is really cool. There’s a lot we can learn from it and a lot we can get from it,” he said.

Battams added that ISON has been a very unpredictable comet, flaring up when people expected it would fade, and vice versa. “ISON is just weird. It has behaved unpredictably at times. When it’s done something strange, we spent some time scratching our heads, figuring out what is going on and we think we know what it’s doing … it then goes and does something different.”

Amid the waiting came the inevitable social media jokes (including science fiction and fantasy references.)

kurtis_williams

 

suthers

 

ison_isoff

 

For others, the comet served as an inspiration for daring to be courageous.

peter_fries

Forging Stars – Peering Into Starbirth and Death

The Large Magellanic Cloud is one of the closest galaxies to our own. Astronomers have now used the power of the ESO’s Very Large Telescope to explore NGC 2035, one of its lesser known regions, in great detail. This new image shows clouds of gas and dust where hot new stars are being born and are sculpting their surroundings into odd shapes. But the image also shows the effects of stellar death — filaments created by a supernova explosion (left). Credit: ESO

Some 160,000 light years away towards the constellation of Dorado (the Swordfish), is an amazing area of starbirth and death. Located in our celestial neighbor, the Large Magellanic Cloud, this huge stellar forge sculpts vast clouds of gas and dust into hot, new stars and carves out ribbons and curls of nebulae. However, in this image taken by ESO’s Very Large Telescope, there’s more. Stellar annihilation also awaits and shows itself as bright fibers left over from a supernova event.

For southern hemisphere observers, one of our nearest galactic neighbors, the Large Magellanic Cloud, is a well-known sight and holds many cosmic wonders. While the image highlights just a very small region, try to grasp the sheer size of what you are looking at. The fiery forge you see is several hundred light years across, and the factory in which it is contained spans 14,000 light years. Enormous? Yes. But compared to the Milky Way, it’s ten times smaller.

Even at such a great distance, the human eye can see many bright regions where new stars are actively forming, such as the Tarantula Nebula. This new image, taken by ESO’s Very Large Telescope at the Paranal Observatory in Chile, explores an area cataloged as NGC 2035 (right), sometimes nicknamed the Dragon’s Head Nebula. But, just what are we looking at?

The Dragon’s Head is an HII region, more commonly referred to as an emission nebula. Here, young stars pour forth energetic radiation and illuminate the surrounding clouds. The radiation tears electrons away from the atoms contained within the gas. These atoms then gel again with other atoms and release light. Swirling in the mix is dark dust, which absorbs the light and creates deep shadows and create contrast in the nebula’s structure.

However, as we look deep into this image, there’s even more… a fiery finale. At the left of the photo you’ll see the results of one of the most violent events in the Universe – a supernova explosion. These troubled tendrils are all that’s left of what once was a star and its name is SNR 0536-67.6. Perhaps when it exploded, it was so bright that it was capable of outshining the Magellanic Cloud… fading away over the weeks or months that followed. However, it left a lasting impression!

Original Story Source: ESO Image Release.

ISON Watch: A Post-Perihelion Viewing Guide

ISON: A 2013 pre-perihelion portrait. (Credit and copyright: Efrain Morales/Jaicoa observatory. Used with permission).

“ISON Lives!!!”

“ISON R.I.P…”

Those are just some of the possible headlines that we’ve wrestled with this week, as Comet C/2012 S1 ISON approaches perihelion tomorrow evening. It’s been a rollercoaster ride of a week, and this sungrazing comet promises to keep us guessing right up until the very end.

Comet ISON reaches perihelion on U.S. Thanksgiving Day Thursday, November 28th at around 18:44 Universal Time/ 1:44 PM Eastern Standard Time. ISON will pass 1.2 million kilometres from the surface of the Sun, just over eight times farther than Comet C/2011 W3 Lovejoy did in 2011, and about 38 times closer to the Sun than Mercury reaches at perihelion.

Comet ISON as seen from Ottawa, Canada on the morning of November 20th. (Credit: Andrew Symes/@FailedProtostar).
Comet ISON as seen from Ottawa, Canada on the morning of November 20th. (Credit: Andrew Symes/@FailedProtostar).

Earth-based observers essentially lost sight of ISON in the dawn twilight this past weekend, and there were fears that the comet might’ve disintegrated all together as it was tracked by NASA’s STEREO spacecraft. Troubling reports circulated early this week that emission rates for the comet had dropped while dust production had risen, possibly signaling that  fragmentation of the nucleus was imminent. Certainly, this comet is full of surprises, and our observational experience with large sungrazing comets of this sort is pretty meager.

Credit: SOHO
ISON (entering frame, to the right) currently “photobombing” SOHO’s LASCO C3 camera. Credit: NASA/ESA/SOHO.

However, as ISON entered the field of view of the Solar and Heliospheric Observatory’s LASCO C3 camera earlier today it still appeared to have some game left in it. NASA’s Solar Dynamics Observatory will pick up ISON starting at around 17:09UT/12:09 PM EST tomorrow, and track it through its history-making perihelion passage for just over two hours until 19:09UT/2:19PM EST.

And just as with Comet Lovejoy a few years ago, all eyes will be glued to the webcast from NASA’s Solar Dynamics Observatory as ISON rounds the bend towards its date with destiny… don’t miss it!

Note: you can also follow ISON’s current progress as seen from SOHO at their website!

The tracking plan for the Solar Dynamics Observatory on November 28th as ISON passes through perihelion. (Credit: NASA/SDO).
The tracking plan for the Solar Dynamics Observatory on November 28th as ISON passes through perihelion. (Credit: NASA/SDO).

For over the past year since its discovery, pundits have pondered what is now the astronomical question of the approaching hour: just what is ISON going to do post-perihelion? Will it dazzle or fizzle? In this context, ISON has truly become “Schrödinger’s Comet,” both alive and dead in the minds of those who would attempt to divine its fate.

Recent estimates place ISON’s nucleus at between 950 and 1,250 metres in diameter. This is well above the 200 metre size that’s considered the “point of no return” for a comet passing this close to the Sun. But again, another key factor to consider is how well put together the nucleus of the comet is: a lumpy rubble pile may not hold up against the intense heat and the gravitational tug of the Sun!

Current updated light curve for ISON. Be sure to check with NASA's Comet ISON Observing Campaign for the latest updates. (Compiled by Matthew Knight on November 24th, 2013).
Current updated light curve for ISON. Be sure to check with NASA’s Comet ISON Observing Campaign for the latest updates. (Compiled by Matthew Knight on November 24th, 2013).

But what are the current prospects for spotting ISON after its fiery perihelion passage?

If the comet holds together, reasonable estimates put its maximum brightness near perihelion at between magnitudes -3 and -5, in the range of the planet Venus at maximum brilliancy. ISON will, however, only stand 14’ arc minutes from the disk of the Sun (less than half its apparent diameter) at perihelion, and spying it will be a tough feat that should only be attempted by advanced observers.

Note that for observers based at high northern latitudes “north of the 60,” the shallow angle of the ecliptic might just make it possible to spot Comet ISON low in the dawn after perihelion and before sunrise November 29th:

ISON Perihelion 1730UT Fairbanks
ISON post-perihelion at sunrise on November 29th as seen from Fairbanks, Alaska. (Created using Starry Night Education software.

We’ve managed to see the planet Venus the day of solar conjunction during similar circumstances with the Sun just below the horizon while observing from North Pole, Alaska.

Most northern hemisphere observers may catch first sight of Comet ISON post-perihelion around the morning of December 1st. Look low to the east, about half an hour before local sunrise. Use binoculars to sweep back and forth on your morning comet dawn patrol. Note that on December 1st, Saturn, Mercury, and the slim waning crescent Moon will also perch nearby!

The morning of December 1st
Comet ISON, Mercury, Saturn and the Moon: looking east on the morning of December 1st as seen from latitude 30 degrees north. (Created using Starry Night Education software).

Comet ISON will rapidly gain elevation on successive mornings as it heads off to the northeast, but will also rapidly decrease in brightness as well. If current projections hold, ISON will dip back below magnitude 0 just a few days after perihelion, and back below naked eye visibility by late December. Observers may also be able to start picking it up low to the west at dusk by mid-December, but mornings will be your best bet.

ISON path
The path of comet ISON for the first  week of December as seen from latitude 30 degrees north. Note: the planets and the Moon are depicted for December 1st. (Created using Stellarium).

Keep in mind, if ISON fizzles, this could become a “death-watch” for the remnants of the comet, as fragments that might only be visible with binoculars or a telescope follow its outward path.  If this turns out to be the case, then the best views of the “Comet formerly known as ISON” have already occurred.

Another possible scenario is that the comet might fragment right around perihelion, leaving us with a brief but brilliant “headless comet,” similar to W3 Lovejoy back in late 2011. The forward light scattering angle for any comet is key to visibility, and in this aspect, ISON is just on the grim edge in terms of its potential to enter the annals of “great” comets, such as Comet Ikeya-Seki back in 1965.

ISON will then run nearly parallel to the 16 hour line in right ascension from south to north through the month of December as it crosses the celestial equator, headed for a date with the north celestial pole just past New Years Day, 2014.

Whether as fragments or whole, comets have to obey Sir Isaac and his laws of physics as they trace their elliptical path back out of the solar system. Keep in mind, a comet’s dust tail actually precedes it on its way outbound as the solar wind sweeps past, a counter-intuitive but neat concept we may just get to see in action soon.

Here are some key dates to watch for as ISON makes tracks across the northern hemisphere sky. Passages are noted near stars brighter than +5th magnitude and closer than one degree except as mentioned:

November 29th through December 15th.
The celestial path of ISON from November 29th to December 15th. (Credit: Starry Night).

December 1st: ISON is grouped with Saturn, Mercury and the slim crescent Moon in the dawn.

December 2nd: Passes near the +4.9 magnitude star Psi Scorpii.

December 3rd: Passes into the constellation Ophiuchus.

December 5th: Passes near the +2.7 magnitude multiple star Yed Prior.

December 6th: Crosses into the constellation Serpens Caput.

December 8th: Crosses from south to north of the celestial equator.

December 15th: Passes into the constellation Hercules and near the +5th magnitude star Kappa Herculis.

December 17th: The Moon reaches Full, marking the middle of a week with decreased visibility for the comet.

December 19th: Passes into the constellation of Corona Borealis.

December 20th: Passes near the +4.8th magnitude star Xi Coronae Borealis.

December 22nd: Passes 5 degrees from the globular cluster M13. Photo op!

Dec 16-Jan 8
The path of Comet ISON from December 16th to January 8th. (Credit: Starry Night).

December 23rd: Crosses back into the constellation Hercules.

December 24th: Passes near the +3.9 magnitude star Tau Herculis.

December 26th:  Comet ISON passes closest to Earth at 0.43 A.U. or 64 million kilometres distant, now moving with a maximum apparent motion of nearly 4 degrees a day.

December 26th: Crosses into the constellation Draco and becomes circumpolar for observers based at latitude 40 north.

December 28th: Passes the +2.7 magnitude star Aldhibain.

December 29th: Passes the +4.8 magnitude star 18 Draconis.

December 31st: Passes the 4.9 magnitude star 15 Draconis.

January 2nd: Crosses into the constellation Ursa Minor.

January 4th: Crosses briefly back into the constellation Draco.

January 6th: Crosses back into the constellation Ursa Minor.

January 7th: Crosses into Cepheus; passes within 2.5 degrees of Polaris and the North Celestial Pole.

And after what is (hopefully) a brilliant show, ISON will head back out into the depths of the solar system, perhaps never to return. Whatever the case turns out to be, observations of ISON will have produced some first-rate science… and no planets, popes or prophets will have been harmed in the process. And while those in the business of predicting doom will have moved on to the next apocalypse in 2014, the rest of us will have hopefully witnessed a dazzling spectacle from this icy Oort Cloud visitor, as we await the appearance of the next Great Comet.

Enjoy the show!

ISON: "Great Comet" or the "Great Pumpkin?" Photo and gourd-based artwork by author.
ISON: “Great Comet” or “Great Pumpkin?” Photo and gourd-based artwork by author.

– Got question about Comet ISON? Lights in the Dark has answers!

– Be sure to post those amazing post-perihelion pics of Comet ISON on Universe Today’s Flickr page.

Anybody Want A Peanut? New Model Shows Tasty Orbital Shapes In Milky Way’s Bulge

Artist's impression of the Milky Way, looking at it edge on. This makes the bulge at the center look like a peanut, astronomers say. Credit: ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt.

Remember that 3-D map of the Milky Way that postulated that the center of the galaxy is shaped like a box or peanut? A new math model of the bulge shows that stars in the center of that bulge move in figure-eight orbits (which can also be interpreted as a peanut-shell shape.) Before, previous studies suggested these orbits looked more like bananas.

“The difference is important; astronomers develop theories of star motions to not only understand how the stars in our galaxy are moving today but also how our galaxy formed and evolves,” the Royal Astronomical Society stated.

In the middle of the galaxy, there are a lot of gravitational forces at play due to the sheer number of stars, as well as particles of dust and dark matter, congregating in the area. This makes it harder to model orbits than in more simple situations, such as our own solar system.

This is how a new model envisions it working:

Milky Way. Image credit: NASA
Milky Way. Image credit: NASA

“As the stars go round in their orbits, they also move above or below the plane of the bar. When stars cross the plane they get a little push, like a child on a swing,” the RAS said.

“At the resonance point, which is a point a certain distance from the center of the bar, the timing of the pushes on the stars is such that this effect is strong enough to make the stars at this point move up higher above the plane. (It is like when a child on the swing has been pushed a little every time and eventually is swinging higher.) These stars are pushed out from the edge of the bulge.”

The researchers suppose that the stars would have two “vertical oscillations” in each orbit, but in between the orbits are shaped somewhat like a peanut shell. This “could give rise to the observed shape of the bulge, which is also like a peanut-shell,” RAS stated.

The research (led by Alice Quillen, an astronomy researcher at the University of Rochester) is available in the Monthly Notices of the Royal Astronomical Society, as well as (in preprint version) on Arxiv.

Source: Royal Astronomical Society

Kepler May Go Planet-Hunting Again! Infographic Shows How That Would Work

Infographic showing how the Kepler space telescope could continue searching for planets despite two busted reaction wheels. Credit: NASA Ames/W Stenzel

The planet-seeking Kepler space telescope had to stop its primary mission this summer after the failure of a second of its four reaction wheels, the devices that keep it pointing at a spot in the constellation Cygnus. NASA, however, has a backup plan. It’s considering stabilizing the spacecraft using the sun! You can see the details in this infographic.

The plan is still preliminary as it needs testing, and it also needs budgetary approval while NASA is fighting to keep other programs going at the funding levels the agency wants. But if it works, this is what NASA is proposing:

  • Keep the spacecraft oriented almost parallel to its orbit around the sun.
  • Gaze at a particular part of the sky for 83 days.
  • When the sun is close to coming into the telescope, move the spacecraft and do another 83-day observation period.
  • This would mean the spacecraft will have 4.5 “unique viewing periods” a year, NASA says.

“With the failure of a second reaction wheel, the spacecraft can no longer precisely point at the mission’s original field of view. The culprit is none other than our own sun,” NASA stated in a recent press release.

Artist's conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech
Artist’s conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech

“The very body that provides Kepler with its energy needs also pushes the spacecraft around by the pressure exerted when the photons of sunlight strike the spacecraft. Without a third wheel to help counteract the solar pressure, the spacecraft’s ultra-precise pointing capability cannot be controlled in all directions.”

But this could be a way to counteract it. Mission managers put Kepler through a 30-minute test in October where the telescope looked at a spot in the constellation Sagittarius, which “produced an image quality within five percent of the primary mission image quality,” NASA stated. More testing is underway.

NASA should have more details at the end of this year as to whether to proceed to a 2014 Senior Review, which is held every two years to review current missions and decide which ones are still worth funding.

Source: NASA