And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
An astronomy student at Mauna Kea Observatories in Hawaii took some time off from his work to share the experience of being on the summit, gazing at the telescopes. The result is a nearly three-minute long time lapse video that makes you feel like you’re standing right next to those observatories.
Watching the telescopes move by day is mesmerizing enough, but stick around a few seconds and then you will see galaxies, stars and other cosmic sights pop into view — right behind the observatories that are looking at the same things.
“This montage was filmed on three nights in April (I was observing on one of the telescopes and would walk outside when things got boring) and four nights during summer 2013,” wrote Sean Goebel on the Vimeo page hosting the video. You can check out more of his timelapse photography at this website.
But in this case, it is… a lost moon of Neptune not seen since its discovery in the late 1980’s.
A new announcement from the 45th Meeting of the Division for Planetary Sciences of the American Astronomical Society being held this week in Denver, Colorado revealed the recovery of a moon of Neptune that was only briefly glimpsed during the 1989 flyby of Voyager 2.
The re-discovery Naiad, the innermost moon of Neptune, was done by applying new processing techniques to archival Hubble images and was announced today by Mark Showalter of the SETI institute.
Collaborators on the project included Robert French, also from the SETI Institute, Dr. Imke de Pater of UC Berkeley, and Dr. Jack Lissauer of the NASA Ames Research Center.
The findings were a tour-de-force of new techniques applied to old imagery, and combined the ground-based 10 meter Keck telescope in Hawaii as well as Hubble imagery stretching back to December 2004.
The chief difficulty in recovering the diminutive moon was its relative faintness and proximity to the “dazzling” disk of Neptune. At roughly 100 kilometres in diameter and an apparent magnitude of +23.9, Naiad is over a million times fainter than +8th magnitude Neptune. It’s also the innermost of Neptune’s 14 known moons, and orbits once every 7 hours just 23,500 kilometres above the planet’s cloud tops. Neptune itself is about 49,000 kilometres in diameter, and only appears 2.3” in size from Earth. From our Earthly vantage point, Naiad only strays about arc second from the disk of Neptune, a tiny separation.
“Naiad has been an elusive target ever since Voyager left the Neptune system,” Showalter said in a recent SETI Institute press release. Voyager 2 has, to date, been the only mission to explore Uranus and Neptune.
To catch sight of the elusive inner moon, Showalter and team applied new analyzing techniques which filtered for glare and image artifacts that tend to “spill over” from behind the artificially occulted disk of Neptune.
Other moons, such as Galatea and Thalassa — which were also discovered during the 1989 Voyager 2 flyby — are also seen in the new images. In fact, the technique was also used to uncover the as of yet unnamed moon of Neptune, S/2004 N1 which was revealed earlier this year.
Naiad is named after the band of nymphs in Greek mythology who inhabited freshwater streams and ponds. The Naiads differed from the saltwater-loving Nereids of mythology fame, after which another moon of Neptune discovered by Gerard Kuiper in 1949 was named.
It’s also intriguing to note that Naiad was discovered in a significantly different position in its orbit than expected. Clearly, its motion is complex due to its interactions with Neptune’s other moons.
“We don’t quite have enough observations to establish a refined orbit,” Mr. Showalter told Universe Today, noting that there may still be some tantalizing clues waiting to be uncovered from the data.
I know the burning question you have, and we had as well during the initial announcement today. Is it REALLY Naiad, or another unknown moon? Showalter notes that this possibility is unlikely, as both objects seen in the Hubble and Voyager data are the same brightness and moving in the same orbit. To invoke Occam’s razor, the simplest solution— that both sightings are one in the same object —is the most likely.
“Naiad is well inside Neptune’s Roche Limit, like many moons in the solar system,” Mr. Showalter also told Universe Today. Naiad is also well below synchronous orbit, and is likely subject to tidal deceleration and may one day become a shiny new ring about the planet.
And speaking of which, the tenuous rings of Neptune have also evolved noticeably since the 1989 Voyager flyby. First discovered from the ESO La Silla Observatory in 1984, data using the new techniques show that the knotted ring segments named the Adams and Le Verrier have been fading noticeably.
“In a decade or two, we may see an ‘arc-less’ ring,” Showalter noted during today’s Division for Planetary Sciences press conference. The two ring segments observed are named after Urbain Le Verrier and John Couch Adams, who both calculated the position of Neptune due to orbital perturbations of the position of Uranus. Le Verrier beat Adams to the punch, and Neptune was first sighted from the Berlin Observatory on the night of September 23rd, 1846. Observers of the day were lucky that both planets had undergone a close passage just decades prior, or Neptune may have gone unnoticed for considerably longer.
Neptune has completed just over one 164.8 year orbit since its discovery. It also just passed opposition this summer, and is currently a fine telescopic object in the constellation Aquarius.
Unfortunately, there aren’t any plans for a dedicated Neptune mission in the future. New Horizons will cross the orbit of Neptune in August 2014, though it’s headed in the direction of Pluto, which is currently in northern Sagittarius. New Horizons was launched in early 2006, which gives you some idea of just how long a “Neptune Orbiter” would take to reach the outermost ice giant, given today’s technology.
This represents the first time that Naiad has been imaged from the vicinity of Earth, and demonstrates a new processing technique capable of revealing new objects in old Hubble data.
“We keep discovering new ways to push the limit of what information can be gleaned from Hubble’s vast collection of planetary images,” Showalter said in the SETI press release.
Congrats to Showalter and team on the exciting recovery… what other moons, both old and new, lurk in the archives waiting to be uncovered?
– Read today’s SETI Institute press release on the recovery of Naiad.
-Be sure to follow all the action at the 45th DPS conference in Denver this week!
A precious planet? Don’t think so fast, a new study says. The so-called “diamond super-Earth“, 55 Cancri e, may actually have a different composition than initially expected.
The team examined previous observations of the system, which is 40 light years from Earth, and said that there is less carbon (or what diamonds are made of) than oxygen in the planet’s star.
“In theory, 55 Cancri e could still have a high carbon to oxygen ratio and be a diamond planet, but the host star does not have such a high ratio,” stated University of Arizona astronomy graduate student Johanna Teske, who led the study.
“So in terms of the two building blocks of information used for the initial ‘diamond-planet’ proposal – the measurements of the exoplanet and the measurements of the star – the measurements of the star no longer verify that.”
The difficulty is it’s not so easy to send a spacecraft to a planet that is so far away from us, so we can’t do any close-up observations of it. This means that astronomers rely on methods such as absorption spectra (looking at what chemical elements absorb light at different wavelengths) of a star to see what it is made of.
The astronomers said there had been only a single oxygen line found in the last study, and they feel that 55 Cancri is cooler than the sun and has more metals into it. This conclusion would imply that the amount of oxygen in the star “is more prone to error.”
There are, however, a lot of moving pieces to this study. How do you know if a planet and star have similar compositions? How to accurately model a planet that you can’t see very well with conventional telescopes? How to best measure chemical abundances from afar? Teske acknowledged in a statement that her work may not be the definitive answer on this planet, so it will be interesting to see what comes out next.
The study has been accepted into the Astrophysical Journal. In the meantime, you can read the preprint version on Arxiv.
That was fast! Just one year after a Higgs Boson-like particle was found at the Large Hadron Collider, the two physicists who first proposed its existence have received the Nobel Prize in Physics for their work. François Englert (of the former Free University of Brussels in Belgium) and Peter W. Higgs (at the University of Edinburgh in the United Kingdom) received the prize officially this morning (Oct. 8.)
The Brout-Englert-Higgs (BEH) mechanism was first described in two independent papers by these physicists in 1964, and is believed to be responsible for the amount of matter a particle contains. Higgs himself said this mechanism would be visible in a massive boson (or subatomic particle), later called the Higgs boson. Check out more information on what the particle means at this past Universe Today article by editor Nancy Atikinson.
“The awarded theory is a central part of the Standard Model of particle physics that describes how the world is constructed. According to the Standard Model, everything, from flowers and people to stars and planets, consists of just a few building blocks: matter particles. These particles are governed by forces mediated by force particles that make sure everything works as it should,” the Royal Swedish Academy of Sciences said in a statement.
“The entire Standard Model also rests on the existence of a special kind of particle: the Higgs particle. This particle originates from an invisible field that fills up all space. Even when the universe seems empty this field is there. Without it, we would not exist, because it is from contact with the field that particles acquire mass. The theory proposed by Englert and Higgs describes this process.”
A very thrilled CERN (the European Organization for Nuclear Research) noted that the Standard Model theory has been “remarkably successful”, and passed several key tests before the particle was unveiled last year in ATLAS and CMS experiments at the Large Hadron Collider.
“The discovery of the Higgs boson at CERN last year, which validates the Brout-Englert-Higgs mechanism, marks the culmination of decades of intellectual effort by many people around the world,” stated CERN director General Rolf Heuer.
CERN added that the discovery last year was exciting, but the Higgs boson only explains only the matter that we can see. CERN is among the organizations on the hunt for dark matter and energy, forms that can’t be sensed with conventional observatories but can be seen through their effects — such as gravitational lensing.
Fluffy, with a core of density. That’s what the interior of the asteroid 87 Sylvia likely looks like, astronomers say. The neatest thing about that observation? It didn’t require a drill or even a spacecraft visit. That came from watching the orbits of the asteroid’s two moons, Romulus and Remus.
The discovery illustrates the power of amateur and professional astronomers working together, the team said. On Jan. 6, dozens of small telescopes across France, Greece and Italy were set up to watch a celestial show: watching Sylvia move in front of an eleventh-magnitude star. The professionals received assistance from European Asteroidal Occultations (EURASTER), a group of professional and amateur observers, for this event.
“Observers at different locations see different parts of the asteroid, or its moons, passing in front of the star,” the team stated in a press release. “Such occultations allow exquisitely precise measurements of the relative positions and sizes of the occulting objects.”
Of the 50 observers watching the show, twelve of them saw the occultation, which lasted anywhere from four to 10 seconds depending on where the observers were.
Subsequently, the professional astronomers determined how Sylvia is shaped by using that information and combining it with other data, such as recordings of the asteroid’s light variations that happened as it spun, and some direct images using adaptive optics. The team noted that Romulus and Remus don’t seem to change in their paths in space due to Sylvia’s non-circular shape, making them conclude that it has an interior of different materials.
All told, there were 66 adaptive optics observations of the asteroids using 8 to 10 meter telescopes at the W. M. Keck Observatory, the European Southern Observatory, and Gemini North. Calculations of the system came from the Institute of Celestial Mechanics and Ephemerides Calculations (IMCCE) of the Paris Observatory.
“Four observers detected a two-second eclipse of the star caused by Romulus, the outermost moon, at a relative position close to our prediction. This result confirmed the accuracy of our model and provided a rare opportunity to directly measure the size and shape of the moon,” stated Jérôme Berthier, an IMCCE astronomer.
“Combined observations from small and large telescopes provide a unique opportunity to understand the nature of this complex and enigmatic triple asteroid system,” added Francis Marchis, a senior research scientist at the Carl Sagan Center of the SETI Institute, who led the research. “Thanks to the presence of these moons, we can constrain the density and interior of an asteroid, without the need for a spacecraft’s visit. Knowledge of the internal structure of asteroids is key to understanding how the planets of our solar system formed.”
The results were presented yesterday (Oct. 7) at the American Astronomical Society’s division of planetary sciences meeting in Denver.
Heads up, North American residents: our Moon is about to blot out two naked eye stars on Friday and Saturday night.
Such an event is known as an occultation, an astronomical term that has its hoary roots in astronomy’s pseudoscience ancestor of astrology. An occultation is simply when one astronomical body passes in front of another from our line of sight. There’s nothing quite like watching a star disappear on the dark limb of the Moon. In a universe where events often transpire over periods of time longer than a human life span, occultations are abrupt affairs to witness.
Close double stars have also been teased out of occultation data, winking out in a quick, step-wise fashion. If an occultation such as the two this weekend occurs while the Moon is waxing towards Full, we get the added advantage of watching the action on the leading dark limb of the Moon during convenient early evening hours.
First up is the occultation of the +3.9th magnitude star Rho Sagittarii on Friday night, October 11th. Central conjunction for this occultation occurs at 00:40 Universal Time (UT) early on the morning of the 12th. The Moon will be at a 51% illuminated waxing gibbous phase, having passed First Quarter just prior to the start of the occultation at 7:02 PM EDT/23:02 UT on the 11th. The sunset terminator line at the start of the occultation will bisect the central U.S., and observers east of the Mississippi will get to witness the entire event. The southern graze line will cross Cuba and Guatemala. Note that the Moon will also pass its most southern declination for this lunation just two days prior on October 9th at 23:00 UT/7:00 PM EDT, at a declination of -19.6 degrees. This is one of the Moon’s most southern journeys for 2013, meaning that it will still ride fairly far to the south in the sky during this weekend’s occultations.
Rho Sagittarii is an F-type star 122 light years distant. Stick around until February 23rd, 2046, and you’ll get to see an even rarer treat, when the planet Venus occults the very same star. Just south of the Rho Sagittarii pair lies the region from which the Wow! Signal was detected in 1977.
The Moon moves at an average speed of just over a kilometre a second in its orbit about the Earth, and traverses roughly the apparent distance of its angular size of 30’ in one hour. The duration of occultations as seen from their center line take about an hour from ingress to egress, though its much tougher to watch a star reappear on the bright limb of the Moon!
And the night of Saturday, October 12th finds the 62% illuminated waxing gibbous Moon occulting an even brighter star across roughly the same region. The star is +3.1 magnitude Beta Capricorni, which also goes by the Arabic name of Dabih, meaning “the butcher.” Dabih is also an interesting double star with a +6th magnitude component 3.5’ away from the +3rd magnitude primary. Dabih is an easy split with binoculars, and it will be fun to watch the two components pass behind the Moon Saturday night. This occultation also occurs the night of October 12th which is traditionally Fall Astronomy Day. If you’re hosting a star party this coming Saturday night, be sure to catch the well-timed occultation of Beta Capricorni! The central conjunction for this event occurs at 01:27 UT on the morning of the 13th, and North American observers east of the Rockies will get to see the entire event.
Beta Capricorni is 328 light years distant, putting the physical separation of the B component at about a third of a light year away from the primary star at 21,000 astronomical units distant. “Beta B” thus takes about 700,000 years to orbit its primary! It’s also amazing to think that those fusion-born photons took over three centuries to get here, only to be rudely “interrupted” by the bulk of our Moon in the very last second of their journey.
And be sure to keep an eye on the primary star as it winks out, as it’s a known spectroscopic triple star with unseen companions in respective 9 and 1374 day orbits. Dabih may just appear to “hang” on the jagged lunar limb as those close companions wink out in a step-wise fashion.
Both occultations are bright enough to watch with the naked eye, although a standard set of 10x 50 binoculars will provide a fine view. The ingress of an occultation is also an excellent event to catch on video, and if you’ve got WWV radio running audio in the background, you can catch the precise time that the star disappears from your locale.
Note: WWV radio is still indeed broadcasting through the ongoing U.S. government shutdown, though they’re operated by NOAA & the NIST.
The International Occultation and Timing Association is always interested in reports of occultations carried out by amateur astronomers. Not only can this reveal or refine knowledge of close double stars, but a series of occultation observations from precisely known locations can map the profile of the lunar limb.
Be sure to catch both events this U.S. Columbus Day/Canadian Thanksgiving Day weekend, and send those pics in to Universe Today!
Precise timings for the ingress and egress of each lunar occultations for major North American cities can be found at the following pages:
For millennia, human eyes have seen only one face of the moon. Put a dude from the Iron Age in a time machine and whisk him to 2013 and he’d see the same pattern of light lunar highlands punctuated by dark grey spots you see. Night after night after night.
That all changed 54 years ago today when the Soviet Union’s Luna 3 probe opened its camera shutter and snapped the first pictures of the lunar far side. Though blurry and banded with electronic noise, everyone who saw them sat up in surprise. The backside barely resembled the front. It lacked in the familiar lunar maria, the dark spots that we instinctively patch together to form the face of the “man in the moon”.
Only two dark ovals were seen, Mare Moscoviense (Sea of Moscow) and the lava-filled floor of the crater Tsiolkovsky, named for Konstantin Tsiolkovksy, the Russian rocket pioneer. The rest, which looks like dried paste, is jammed with craters and related the near side’s light-toned, cratered highlands. Both are remnants of the original lunar crust that solidified as the moon cooled after formation.
Darker areas or “seas” are more recent basaltic lavas that welled up to fill huge impact scars left by colliding asteroids. They contain iron-rich minerals from deep beneath the crust which make them less reflective, hence darker in comparison to the highlands.
The moon hides its back or far side through a neat trick – it rotates at the same rate as it revolves around the Earth. Normally, rotation would bring new features into view, but every little bit it turns, it moves an equal amount along its orbit, hiding what would otherwise be exposed. It’s called synchronous rotation or tidal locking. Most of the larger moons in the solar system are tidally locked to their planets. Jupiter’s four biggest and brightest moons are a great example.
Equipped with both wide angle (200 mm) and telephoto (500 mm) lenses, Luna 3 took 29 pictures covering about 70 percent of the far side during its loop around the moon. The first picture was shot from 39,500 miles away (63,500 km), the last taken 40 minutes later from 41,445 miles (66,700 km) distant. After the photo session was done, the probe passed over the moon’s north pole and headed back toward Earth.
Temperature and radiation-resistant film used for the photos was automatically moved to an onboard processor where it was developed, fixed and dried. A cathode ray tube then shot a beam of light through the film and onto a photoelectric multiplier, a light-sensitive device that converted the different gradations of tone into electric signals which were then transmitted to Earth. Almost sounds like a fire brigade, but hey it worked!
So what’s the reason for the moon’s split personality? We know the far side crust is 50 miles (80 km) thick versus 37 miles (60 km) for the near side. A thicker far side crust may have prevented magma from reaching and flooding the surface as they did on the near side. Heat released by the decay of radioactive elements also may play a role. NASA’s Lunar Prospector probe found more on the near side, where they may have encouraged the formation of hot magmas that eventually found their way to the surface.
What caused the fascinating asymmetry is unknown, but it may have to do with the slowing of the moon’s rotation into its present tidally-locked state under the heavy hand of Earth’s dominating gravitational influence.
Finding Earth 2.0, in the words of noted SETI researcher Jill Tarter, is something a lot of exoplanet searchers are hoping for one day. They’re trying not to narrow down their search to Sun-like stars, but also examine stars that are smaller, like red dwarfs.
A new study, however, cautions that the X-ray environment of these dwarfs may give us false positives. They looked at Earth-mass planets in the neighborhood of four stars, such as GJ 667 (which has three planets that could be habitable), and concluded it’s possible for oxygen to reside in these planets even in the absence of life.
The work builds on a published paper in the Astrophysical Journal that argues that GJ 876, studied by the Hubble Space Telescope, could allow a hypothetical planet to have plenty of oxygen in its atmosphere, even without the presence of life.
The researchers themselves, however, caution that the results are preliminary and there is a lot more to study before coming to a definitive conclusion.
For example: “The effects of stellar flares on the atmosphere of the hypothetical Earth-like planet around GJ 876 have not been considered in this work,” stated Kevin France, who is with the University of Colorado at Boulder and also a co-author.
“At this point, we do not have a sufficient understanding of the amplitude and frequency of such flares on older, low-mass exoplanet host stars to make predictions about their impact on the production of biomarker signatures.”
The report was presented at the American Astronomical Society division for planetary sciences meeting in Denver today (Oct. 7). It was not immediately clear from a press release if the newer study has been submitted for peer review.
While some of you will no doubt be heading to the theaters to see the new release of “Gravity,” for those that want to stay in for the weekend, here’s the perfect short film. The National Radio Astronomy Observatory (NRAO) has released a new 24-minute film about the recently renovated Karl G. Jansky Very Large Array (VLA) radio telescope. The film is narrated by Academy Award-winning actress Jodie Foster, star of the 1997 Warner Brothers film, “Contact,” which was filmed in part at the VLA.
“In ‘Contact,’ I played the role of an astronomer using the VLA,” Foster said. “In narrating this new film for the VLA Visitor Center, I have the privilege of introducing tomorrow’s scientists, technicians, and engineers to the amazing complexities of this great telescope, and to the wonders of the universe that it reveals.”
Titled “Beyond the Visible,” the film tells the behind-the-scenes story of the operation and scientific achievements of the VLA, which has been at the forefront of astrophysical research since its dedication in 1980. Spectacular ground and aerial footage of the iconic radio telescope is augmented by first-person interviews with staffers who keep the telescope working and scientists who use it to discover exciting new facts about the universe. The film also depicts many of the technical tasks needed to keep the array functioning at the forefront of science.
“Since the last film for the Visitor Center was produced in 2002, we’ve completed a massive technological upgrade that turned the VLA into a completely new and vastly more powerful tool for cutting-edge science,” said Dale Frail, NRAO’s Director for New Mexico Operations. “It was time to update the story we tell our visitors,” he added.
The film replaces an earlier video that ran at the VLA Visitor Center auditorium, which is visited by some 20,000 people annually. You can’t currently go to the Visitor Center to see the new film at the moment, however, because of the US federal government shutdown. So, watch it here. Hopefully the shutdown will be resolved soon so that people can resume their visits to the VLA.