Quick, what’s the reddest star visible to the naked eye?
Depending on your sky conditions, your answer may well be this week’s astronomical highlight.
Mu Cephei, also known as Herschel’s Garnet Star, is a ruddy gem in the constellation Cepheus near the Cygnus/Lacerta border. A variable star ranging in brightness by a factor of about three-fold from magnitudes 5.0 to 3.7, Mu Cephei is low to the northeast for mid-northern latitude observers in July at dusk, and will be progressively higher as summer wears on. Continue reading “Seeing Red: Hunting Herschel’s Garnet Star”
Last week, astronaut Karen Nyberg shared via video how she washes her long hair in space. Since about 1.5 million people have watched it, NASA decided to give equal time to the bald guy in space, Luca Parmitano. As I stated last week, obviously, Parmitano uses a different method than Nyberg. Note it takes about 3 minutes for Nyberg to wash her hair, while it takes Parmitano less than a minute.
Citizen scientists have discovered planets beyond our Solar System and established morphological classifications for thousands of galaxies (e.g., the Planet Hunters and Galaxy Zoo projects). At an upcoming meeting of planetary scientists, Hamed Pourkhorsandi from the University of Tehran will present his efforts to mobilize citizens to identify impact craters throughout Persia. Pourkhorsandi said he is recruiting volunteers to identify craters using Google Earth, while continuing to seek sightings of fireballs cited in ancient books and among rural folk. Discovering impact craters is an important endeavour, since it helps astronomers estimate how many asteroids of a particular size strike Earth over a given time (i.e., the impact frequency). Indeed, that is especially relevant in light of the recent meteor explosion over Russia this past February (see the UT article here), which hints at the potentially destructive nature of such occurrences.
Satellite images have facilitated the detection of impact sites such as the Kamil and Puka craters, which were identified by V. de Michele and D. Hamacher using Google Earth, respectively (see the UT article here). Pourkhorsandi noted that, “Free access to satellite images has led to the investigation of earth’s surface by specialists and nonspecialists, attempts that have led to the discovery of new impact craters around the globe. [Yet] few researches on this topic have been done in the Middle East.” Incidentally, citizens are likewise being recruited to classify craters and features on other bodies in the Solar System (e.g., the Moon Zoo project).
In his paper, Pourkhorsandi describes examples of two targets investigated thus far: “1. a circular structure with a diameter of 200 m (33°21’57”N 58°14’24”E). [However,] there is no sign of … meteoritic fragments in the region that are primary diagnostic indicators for small size impact craters.” The second target is tied to an old tale, and note that the Puka crater in Australia was identified by following-up on an old Aboriginal story. However, Pourkhorsandi states that a field study of the second target (28°24’52” N 60°34’44” E) revealed that the crater is not associated with an impactor from space.
“Beside these structures, field studies on other craters in Persia are in progress, the outcomes of which will be announced in the near future,” said Pourkhorsandi.
Pourkhorsandi underscores that numerous meteorites have been found in desert regions throughout the world, yet scant attention has been given to Persian deserts (e.g., the Lut desert). The Lut desert in Persia extends over several thousand square kilometres and is one of the hottest places on Earth (featuring land surface temperatures upwards of 70 degrees Celsius). Pourkhorsandi noted that in 2005 a ‘curious stone’ was recovered in the Lut desert and subsequent work revealed its extraterrestrial origin.
He went on to remark that, “Three recent short field trips to the central Lut desert led to the collection of several meteoritic fragments, which points to large concentrations of meteoritic materials in the area.” Some of those fragments are shown in the figure below, and the broader region is likely a pertinent place for citizen scientists to continue the hunt for impact craters in Persia.
Pourkhorsandi concluded by telling the Universe Today, “In the future we aim to expand our efforts with the help of additional people, and will direct individuals to scan other regions of the planet. Simultaneously, we have commenced a comprehensive analysis of meteorites in the Lut desert with fellow European scientists.”
Ukrainian amateur astronomer Gennady Borisov discovered a brand new comet on July 8 near the bright star Capella in the constellation Auriga. The comet was confirmed and officially christened C/2013 N4 (Borisov) on July 13. At the time of discovery, Borisov was attending the Russian-Ukrainian “Southern Night” star party in Crimea, Ukraine. He nabbed the comet – his first – using an 8-inch (20-cm) f/1.5 wide field telescope of his own design equipped with a CCD camera.
The new comet is on the faint side, appearing as a small, fuzzy patch of 13th magnitude with a brighter center. To see it you’ll need at least a 10-inch (25-cm) telescope and the fortitude to rise in the wee hours before dawn. The reason for the early hour is Borisov’s location in Auriga, a constellation that doesn’t clear the horizon until shortly before the start of morning twilight. Faintness and low altitude will combine to make Comet Borisov an enticing if challenging object for amateur astronomers.
C/2013 N4 is currently traveling through Auriga not far from the easy-to-spot naked eye star Beta and will slowly brighten as it approaches perihelion – closest point to the sun – on August 20 at a distance of 113.5 million miles (182.7 million km). Unfortunately its elongation or separation from the sun will be slowly shrinking in the coming weeks, causing the comet to drop lower in the sky as it approaches perihelion. Our fuzzy visitor misses Earth by a comfortable 192.5 million miles (310 million km) on August 11. It’s likely Comet Borisov won’t get much brighter than 12th magnitude. Astronomers are still working out the details of its orbit, so it’s possible brightness predictions could change in the near future.
Aside from how prominent or not Gennady’s comet will become, the most amazing thing is that he beat the automated surveys to the punch. These days nearly all comets and many asteroids are found by professional astronomers using robotic telescopes hooked up to sensitive cameras and computers. Large areas of the sky are covered each clear night. If a fuzzy, moving object is detected by the computer, astronomers are alerted, follow-up observations are made and the new object receives a letter, number and the survey’s name. That’s why there are a plethora of comets in the past 15 years with names like LINEAR(Lincoln Near-Earth Asteroid Survey), Pan-STARRS (Panoramic Survey Telescope & Rapid Response System), LONEOS (Lowell Observatory Near-Earth-Object Search) and others.
By dint of persistence, a smart plan and a keen eye, Gennady Borisov has made his mark in the sky. For that he deserves a well-deserved congratulations and round of applause!
Amateurs who wish to plot the comet on a star map using a star charting software program can get Comet Borisov’s orbital elements HERE. To follow the latest developments, check out Leonid Elenin’s blog. You might recall it was Elenin in 2010 who discovered famed comet C/2010 X1 (Elenin), blamed for everything from earthquakes to future world catastrophes. Instead, the comet proved so friable, it disintegrated as it approached the sun. Let’s see how Comet Borisov fares.
Understanding the formation of stars and galaxies early in the Universe’s history continues to be somewhat of an enigma, and a new study may have turned our current understanding on its head. A recent survey used archival data from four different telescopes to analyze hundreds of galaxies. The results provided overwhelming evidence that radio jets protruding from a galactic center enhance star formation – a result that directly contradicts current models, where star formation is hindered or even stopped.
All early galaxies consist of intensely luminous cores powered by huge black holes. These so-called active galactic nuclei, or AGN for short, are still the topic of intense study. One specific mechanism astronomers are studying is known as AGN feedback.
“Feedback is the astronomer’s slang term for the way in which an AGN – with its large amount of energy release – influences its host galaxy,” Dr. Zinn, lead researcher on this study, recently told Universe Today. He explained there is both positive feedback, in which the AGN will foster the main activity of the galaxy: star formation, and negative feedback, in which the AGN will hinder or even stop star formation.
Current simulations of galaxy growth invoke strong negative feedback.
“In most cosmological simulations, AGN feedback is used to truncate star formation in the host galaxy,” said Zinn. “This is necessary to prevent the simulated galaxies from becoming too bright/massive.”
Zinn et al. found strong evidence that this is not the case for a large number of early galaxies, claiming that the presence of an AGN actually enhances star formation. In such cases the total star formation rate of a galaxy may be boosted by a factor of 2 – 5.
Furthermore the team showed that positive feedback occurs in radio-luminous AGN. There is strong correlation between the far infrared (indicative of star formation) and the radio.
Now, a correlation between the radio and the far infrared is no stranger to galactic astronomy. Stars form in extremely dusty regions. This dust absorbs the starlight and re-emits it in the far infrared. The stars then die in huge supernova explosions, causing powerful shock-fronts, which accelerate electrons and lead to the emission of strong synchrotron radiation in the radio.
This correlation however is a stranger to AGN studies. The key lies in the radio jets, which penetrate far into the host galaxy itself. A “jet which is launched from the AGN hits the interstellar gas of the host galaxy and thereby induces supersonic shocks and turbulence,” explains Zinn. “This shortens the clumping time of gas so that it can condense into stars much more quick and efficiently.”
This new finding conveys that the exact mechanisms in which AGN interact with their host galaxies is much more complicated than previously thought. Future observations will likely shed a new understanding of the evolution of galaxies.
Watch the sky closely in the dawn or dusk hours, and you’ll likely see a moving “star” or two sliding by. These are satellites, or “artificial moons” placed in low Earth orbit. These shine via reflected sunlight as they pass hundreds of kilometres overhead.
Many folks are unaware that you can see satellites with the naked eye. I always make an effort to watch for these during public star parties and point them out. A bright pass of the International Space Station if often as memorable as anything that can be seen through the eyepiece. But after this revelation, “the question” soon follows- “What satellite is that?”
Welcome to the wonderful and highly addictive world of satellite tracking. Ground observers have been watching the skies since Sputnik 1 and the first satellite launch in October 1957. Armies of dedicated volunteers even participated in tracking the early launches of the Space Age with Operation Moonwatch.
The Internet has offered a wealth of information for satellite hunters. Every time I write about “how to spot the ISS,” someone amazes me with yet another new tracker App that I hadn’t heard of. One of my favorites is still Heavens-Above. It’s strange to think that we’ve been visiting this outstanding website daily for a decade and a half now. Heavens-Above specializes in satellites, and will show you a quick listing of passes for brighter satellites once configured with your location. A nifty “quick check” for possibly resolving a mystery satellite is their link for “Daily Predictions for brighter satellites” Which will generate a list of visible passes by time.
Looking at the time, direction, and brightness of a pass is crucial to satellite identification. No equipment is needed to start the hunt for satellites tonight, just a working set of eyes and information. We sometimes use a set of Canon image-stabilized 15x 45 binoculars to hunt for satellites too faint to see with the naked eye. We’ve seen the “Tool Bag” lost during an ISS EVA a few years back, as well as such “living relics” of the early Space Age as Canada’s first satellite Alloutte-1, and the Vanguards (Yes, they’re STILL up there!) using binocs.
The trick to catching fainter satellites such as these is to “ambush” them. You’ll need to note the precise time that the selected satellite is going to pass near a bright star. Clicking on a selected satellite pass in Heavens-Above will give you a local sky chart with a time-marked path. I use a short wave portable AM radio tuned to WWV out of Fort Collins, Colorado for an accurate audible time signal. Just sit back, listen to the radio call out the time, and watch for the satellite to pass through the field of view near the target star.
Another great site for more advanced trackers is CALSky. Like Heavens-Above, CALSky will give you a customized list for satellite passes over your location. One cool extra feature on CALSky is the ability to set alerts for passes of the ISS near bright planets or transiting the Sun or Moon. These are difficult events to capture, but worth it!
A great deal of what’s up there is space junk in the form of discarded hardware. Many satellites are on looping elliptical orbits, only visible to the naked eye when they are near perigee. Many satellites are located out at geosynchronous or geostationary orbits 35,786 kilometres distant and are invisible to the naked eye all together. These will often show up as streaks in astrophotos. An area notorious for geosynchronous satellites exists near the direction of M42 or Orion Nebula. During certain times of year, satellites can be seen nearby, nodding slowly north to south and back again. Around the March and September equinox seasons, geostationary satellites can be eclipsed by the shadow of the Earth. This can also cause communications difficulties, as many geo-sats also lie sunward as seen from the Earth around these times of year.
Probably one of the simplest satellite trackers for casual users is Space Weather’s Satellite Flybys page. North American users simply need to enter a postal code (worldwide users can track satellites via entering “country-state-city”) and a list of passes for your location is generated.
It’s a basic truism of satellite tracking that “aircraft blink; satellites don’t”. Know, we’re going to present an exception to this rule.
Some satellites will flash rhythmically due to a tumbling motion. This can be pretty dramatic to see. What you’re seeing is an expended booster, a cylinder tumbling due to atmospheric drag end-over-end. Some satellites can flash or flare briefly due to sunlight glinting off of reflective surfaces just right. Hubble, the ISS and the late NanoSail D2 can flare if conditions are just right.
The most dramatic of these are Iridium flares. The Iridium constellation consists of 66 active satellites used for satellite phone coverage in low-Earth orbit. When one of their three refrigerator-sized antennas catch the Sun just right, they can flare up to magnitude -8, or 40 times brighter than Venus. CALSky and Heavens-Above will also predict these events for your location.
Didn’t see a predicted satellite pass? Light pollution or bright twilight skies might be to blame. Keep in mind, passes lower to the horizon also fall prey to atmospheric extinction, as you’re looking through a thicker layer of the air than straight overhead. Some satellites such as the ISS or the USAF’s X-37B spy space plane even periodically boost or modify their orbits, throwing online prediction platforms off for a time.
I use a free tracking platform created by Sebastian Stoff known as Orbitron. Orbitron lets you set your observing location and tailor your view for what’s currently over head. You can run simulations and even filter for “visual only” passes, another plus. I also like Orbitron’s ability to run as a stand-alone system in the field, sans Internet connection. Just remember, for it to work properly, you’ll need to periodically update the .txt file containing the Two-Line Element (TLE) sets. TLE’s are data element sets that describe the orbital elements of a satellite. Cut and paste TLEs are available from Heavens-Above and Celestrak.
For serious users, NORAD’s Space-Track is the best site for up-to-date TLEs. Space-Track requires a login and user agreement to access, but is available to satellite spotters and educators as a valuable resource. Space-Track also hosts a table of upcoming reentries, as does the Aerospace Corporation’s Center for Orbital & Reentry Debris Studies.
The SeeSat-L mailing list is also an excellent source of discussion among satellite trackers worldwide. Increasingly, this discussion is also moving over to Twitter, which is ideal for following swiftly evolving action in orbit. @Twisst, created by Jaap Meijers,will even Tweet you prior to an ISS pass!
And there’s always something new or strange in the sky for the observant. Satellites such as those used in the Naval Ocean Surveillance System (NOSS) were launched in groups, and are eerie to watch as they move in formations of 2 or 3 across the sky. These are difficult to catch, and all three of our sightings thus far of a NOSS pair have been surreptitious. And we’ve only had the camera ready to swing into action once to nab a NOSS pair;
Another bizarre satellite to catch in action is known as the Cloud-Aerosol LiDAR & Infrared Pathfinder Satellite for Observations, or CALIPSO. Part of the “afternoon A-Train” of sun-synchronous Earth observing satellites, you can catch the green LiDAR flashes of CALIPSO from the ground with careful planning, just as Gregg Hendry did in 2008-2009:
NASA even publishes a prediction table for CALIPSO lidar passes. I wonder how many UFO sightings CALIPSO has generated?
And speaking of photography, it’s easy to catch a bright pass such as the ISS on camera. Shooting a satellite pass with a wide field is similar to shooting star trails; just leave the shutter open for 10-60 seconds with a tripod mounted camera. Modern DSLRs allow you to do several test exposures prior to the pass, to get the ISO, f/stop, and shutter speed calibrated to local sky conditions.
You can even image the ISS through a telescope. Several sophisticated rigs exist to accurately track and image the space station through a scope, or you could use our decidedly low-tech but effective hand-guided method;
And that’s a brief overview of the exciting world of sat-spotting… let us know of your tales of triumph and tragedy as you sleuth out what’s going on overhead!
A burst of energetic particles from the Sun called a coronal mass ejection peppered Earth’s magnetic field yesterday afternoon sparking a modest but beautiful all-night display of the aurora borealis. Another light show may be in the offing tonight for skywatchers living in the northern U.S., Canada and northern Europe.
Pale green fingers of light splayed across the northern sky at twilight’s end came as a surprise. NOAA space weather forecasters had predicted little activity. These soon faded but a thick, fuzzy arc persisted throughout the night. It arched from horizon to horizon across the northern sky like a pallid, monochromatic rainbow. Such arcs are common. Often the aurora never gets past this stage and simmers quietly or even fades away during the night.
Not this one. Around local midnight (1 a.m. CDT) here in Duluth, Minn. small bright spots and a series of tall, faint rays punctuated the arc and over the span of a half-hour completely reshaped it into loopy rayed arcs resembling a crown.
To the eye, the brightest parts of the aurora appeared green, but the taffy-stretched rays were colorless. The camera’s sensitivity coupled with a 30-second time exposure revealed striking pinks and hints of blue. Both pink and green colors are caused by the emission of light from oxygen atoms.
Bombarded by high-speed solar wind electrons and protons, they get jazzed into higher energy states. When the atoms return to rest, each spits out a photon of green or red light. All those tiny flashes add up. Multiplied by the billions of atoms that exist even in the rarefied air at the aurora’s typical 60-150 mile (100-250 km) altitude and you get heavenly eye candy.
I started watching the northern lights at 11 from home then took a drive to darker skies. Even at dawn’s 3 a.m. start, the green arc held its own shot through with rays that occasionally towered halfway up the northern sky. While this display wasn’t a grand spectacle like some auroras, it possessed a certain majesty the same way a long, slow movement concludes a great symphony.
Chances for more of the same continues through tonight and possibly into tomorrow, so keep a watch on the northern sky before you hit the hay tonight. If you see something green and glowing it you might be in for a treat.
In another installment, I’ll share tips on how best to see the northern lights and share several excellent tools you can use for predicting when they might occur.
The planets are slowly returning into view this month, bashfully peeking out from behind the Sun in the dawn & dusk sky. This month offers a bonanza of photogenic conjunctions, involving the Moon, planets and bright stars.
The action begins tonight on July 8th, as the waxing crescent Moon joins the planet Venus in the dusk sky. The razor thin Moon will be a challenge on Monday night, as it just passed New on the morning of the 8th at 3:14AM EDT/7:14 Universal Time (UT). The record for spotting the thin crescent with the naked eye currently stands at 15 hours and 32 minutes, completed by Stephen O’Meara on May 1990. Binoculars help considerably in this endeavor. Wait until 15 minutes after local sunset, and then begin patiently sweeping the horizon.
Mr. Thierry Legault completed an ultimate photographic challenge earlier today, capturing the Moon at the precise moment of New phase!
This week marks the start of lunation 1120. The Moon will be much easier to nab for observers worldwide on Tuesday night, July 9th for observers worldwide. The sighting of the waxing crescent Moon will also mark the start of the Muslim month of Ramadan for 2013. Due to the angle of the ecliptic in July, many northern hemisphere observers may not spot the Moon until Wednesday night on July 10th, about 6.7 degrees south west of -4.0 magnitude Venus.
Did you know? There are Guidelines for the Performance of Islamic Rites for Muslims aboard the International Space Station. It’s interesting to note that the timing of the rituals follows the point from which the astronaut originally embarked from the Earth, which is exclusively the Baikonur Cosmodrome in Kazakhstan for the foreseeable future of manned spaceflight.
Malaysia’s first astronaut, Sheikh Muszaphar Shukor observed Ramadan aboard the International Space Station in 2007.
From there, the crescent Moon fattens, meeting up with Saturn and Spica on the evenings of July 15th and 16th. The Moon will actually occult (pass in front of) the bright star Spica on the evening of July 15/16th at ~3:33UT/11:33PM EDT (on the 15th) for observers in Central America and western South America. The rest of us will see a near miss worldwide.
This is the 13th in a cycle of 18 occultations of Spica by our Moon spanning 2012-2013. Spica is one of four stars brighter than magnitude +1.4 that lie close enough to the ecliptic to be occulted by our Moon, the others being Antares, Regulus and Aldebaran. Saturn will lie 3 degrees from the Moon on the evening of July 16th.
Can you nab Spica and Saturn near the Moon with binoculars in the daytime around the 15th? It can be done, using the afternoon daytime Moon as a guide. Crystal clear skies (a rarity in the northern hemisphere summertime, I know) and physically blocking the Sun behind a building or hill helps.
The waxing gibbous Moon will also occult +2.8 Alpha Librae for South Africa on July 17th around 17:09UT & +4.4th magnitude Xi Ophiuchi for much of North America on the night of July 19th-20th.
And speaking of Regulus, the brightest star in the constellation Leo lies only a little over a degree (two Full Moon diameters) from Venus only the evenings of July 21st & the 22nd. 77.5 light years distant, Regulus is currently over 100 times fainter at magnitude +1.4. Can you squeeze both into the field of view of your telescope at low power? Venus’s mythical ‘moon’ Neith lives!
Venus can even occult Regulus on rare occasions, as last occurred on July 7th, 1959 and will happen next on October 1st, 2044.
But there’s morning action afoot as well. The planets Mars and Jupiter have emerged from solar conjunction on April 18th and June 19th, 2013 respectively, and can now be seen low in the dawn skies about 30 minutes before sunrise.
Mars approaches Jupiter in the dawn until the pair is only 0.79 degrees (about 48 arc minutes) apart on Monday, July 22nd. Mars shines at magnitude +1.6 and shows a tiny 3.9” disk, while Jupiter displays a 32.5” disk shining at magnitude -1.9 on this date. Conjunction occurs at about 7:00 UT/3:00 AM EDT, after which the two will begin to race apart. Mercury is visible beginning its morning apparition over 5 degrees to the lower right of the pair (see above).
Jupiter will reach opposition and reenter the evening sky on January 5th, 2014, while Mars won’t do the same until April 8th of next year. Weird factoid alert: neither Jupiter or Mars reach opposition in 2013! What effect does this have on terrestrial affairs? Absolutely none, well unless you’re a planetary imager/observer…
Mars also reaches its most northern declination of 2013 of 24 degrees in the constellation Gemini on July 16th at 7:00 AM EDT/11:00 UT. Mars can wander as far as declination 27 degrees north, as last happened in 1993.
Finally, are you observing from southern Mexico this week and up for a true challenge? The asteroid 238 Hypatia occults a +7.4 magnitude star from 10:13-10:49 UT on July 10th in the constellation Pisces for up to 29 seconds. This event will be bright enough to watch with binoculars- check out our best prospects for asteroid occultations of stars in 2013 here and here.
Good luck, clear skies, and be sure to post those astro-pics in the Universe Today’s Flickr community!
Do you feel like you’re in the firing gallery? These sunspots are practically square-on to Earth right now. Although they haven’t shown much sign of erupting, if they did our planet would be right in the line of fire if a flare or stream of solar particles erupted.
These groups (known as 1785 and 1787) are so big that they are easily visible in amateur telescopes. 1785 alone is more than 11 Earth-diameters across, according to SpaceWeather.com! Just make sure you have the proper solar filters in place before you gaze at these dark smudges.
“Sunspots” — so called because they appear as dark smudges on the face of the sun — are areas of intense magnetic activity on the sun (thousands of times stronger than that of Earth’s magnetic field.)
At times, these regions can get so intense that the energy builds up and releases in the form of a flare and/or a coronal mass ejection — a burst of gas and magnetism that hurls solar material away from the sun.
If these flares hit the area of the Earth, a bunch of things can happen. Particles can flow along Earth’s magnetic lines and lead to the creation of aurora, or Northern/Southern lights. (Here’s an aurora that happened in June.) More severe storms can short out satellites or disable power lines.
“Could it be the calm before the storm?” SpaceWeather.com asked on its homepage, before giving forecasts of strong types of flares: “NOAA forecasters estimate a 55% chance of M-flares and a 10% chance of X-flares on July 8.”
We’ll keep our eyes peeled and let you know if something interesting happens. In the meantime, these pictures came from Universe Today readers, and we’d love to see your images, too! Feel free to add your snapshots to our Flickr page.
Update, 2:39 EDT: Among the pictures in our Flickr pool is this new stunner below from Ron Cottrell of Oro Valley, Arizona. “These sunspots are so magnificent that I get striking detail with my small 40mm Hydrogen-alpha telescope,” he wrote us.
Rise above Earth with a telescope, and one huge obstacle to astronomy is removed: the atmosphere. We love breathing that oxygen-nitrogen mix, but it’s sure not fun to peer through it. Ground-based telescopes have to deal with air turbulence and other side effects of the air we need to breathe.
Enter adaptive optics — laser-based systems that can track the distortions in the air and tell computers in powerful telescopes how to flex their mirrors. That sparkling picture above came due to a new system at the Gemini South telescope in Chile.
It’s one of only a handful pictures released, but astronomers are already rolling out the superlatives.
“GeMS sets the new cool in adaptive optics,” stated Tim Davidge, an astronomer at Canada’s Dominion Astrophysical Observatory.
“It opens up all sorts of exciting science possibilities for Gemini, while also demonstrating technology that is essential for the next generation of ground-based mega-telescopes. With GeMS we are entering a radically new, and awesome, era for ground-based optical astronomy.”
Other telescopes have adaptive optics, but the Gemini Multi-Conjugate Adaptive Optics System (GEMS) has some changes to what’s already used.
It uses a technique called “multi-conjugate adaptive optics”. This increases the possible size of sky swaths the telescope can image, while also giving a sharp view across the entire field. According to the observatory, the new system makes Gemini’s eight-meter mirror 10 to 20 times more efficient.
The next step will be seeing what kind of science Gemini can produce from the ground with this laser system. Some possible directions include supernova research, star populations in galaxies outside of the Milky Way, and studying more detail in planetary nebulae — the remnants of low- and medium-mass star.