Artist's conception of the snow line in TW Hydrae. Credit: Bill Saxton/Alexandra Angelich, NRAO/AUI/NSF
There’s an excellent chance of frost in this corner of the universe: astronomers have spotted a “snow line” in a baby solar system about 175 light-years away from Earth. The find is cool (literally and figuratively) in itself. More importantly, however, it could give us clues about how our own planet formed billions of years ago.
“[This] is extremely exciting because of what it tells us about the very early period in the history of our own solar system,” stated Chunhua Qi, a researcher with the Harvard-Smithsonian Center for Astrophysics who led the research.
“We can now see previously hidden details about the frozen outer reaches of another solar system, one that has much in common with our own when it was less than 10 million years old,” he added.
The real deal enhanced-color picture of TW Hydrae is below, courtesy of a newly completed telescope: the Atacama Large Millimeter/submillimeter Array in Chile. It is designed to look at grains and other debris around forming solar systems. This snow line is huge, stretching far beyond the equivalent orbit of Neptune in our own solar system. See the circle? That’s Neptune’s orbit. The green stuff is the snow line. Look just how far the green goes past the orbit.
The carbon monoxide line on TW Hydrae as seen by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope. The circle represents the equivalent orbit of Neptune when comparing it to our own solar system. Credit: Karin Oberg, Harvard University/University of Virginia
Young stars are typically surrounded by a cloud of gas and debris that, astronomers believe, can in many cases form into planets given enough time. Snow lines form in young solar systems in areas where the heat of the star isn’t enough to melt the substance. Water is the first substance to freeze around dust grains, followed by carbon dioxide, methane and carbon monoxide.
It’s hard to spot them: “Snow lines form exclusively in the relatively narrow central plane of a protoplanetary disk. Above and below this region, stellar radiation keeps the gases warm, preventing them from forming ice,” the astronomers stated. In areas where dust and gas are more dense, the substances are insulated and can freeze — but it’s difficult to see the snow through the gas.
In this case, astronomers were able to spot the carbon monoxide snow because they looked for diazenylium, a molecule that is broken up in areas of carbon monoxide gas. Spotting it is a “proxy” for spots where the CO froze out, the astronomers said.
Here are some more of the many reasons this is exciting to astronomers:
Snow could help dust grains form faster into rocks and eventually, planets because it coats the grain surface into something more stickable;
Carbon monoxide is a requirement to create methanol, considered a building block of complex molecules and life;
The snow was actually spotted with only a small portion of ALMA’s 66 antennas while it was still under construction. Now that ALMA is complete, scientists are already eager to see what the telescope will turn up the next time it gazes at the system.
Trying to explain the topology of the Universe is really complicated… for humans. But it clearly comes naturally to Zogg the Alien from Betelgeuse. In this 10-minute video, the plucky alien vividly describes how we could have a Universe which is flat and finite, but doesn’t have an edge. How we could travel in one direction and return to our starting point, never bumping into the outside of the Universe.
What is the Universe expanding into? Nothing, it’s just expanding.
Dig a little further through Zogg’s YouTube channel, and you’ll see a great collection of explainers on eating, vision; and even esoteric topics like imagination and beauty.
I’d love to see more in this series Zogg… hint, hint.
A hypothetical Vulcanoid asteroid in orbit about the Sun. ( Artist's impression in the Public Domain).
One of the most fascinating stories in modern astronomy involves the pursuit of a world that never was.
Tomorrow marks the 135th anniversary of the total solar eclipse of July 29th, 1878. With a maximum totality of 3 minutes 11 seconds, this eclipse traced a path across western Canada and the United States from the territory of Montana to Louisiana.
A curious band of astronomers also lay in wait along the path of totality, searching for an elusive world known as Vulcan.
Long before Star Trek or Mr. Spock, Vulcan was a hypothetical world thought to inhabit the region between the planet Mercury and the Sun.
The tale of Vulcan is the story of the birth of modern predictive astronomy. Vulcan was a reality to 18th century astronomers- it can be seen and the astronomy textbooks and contemporary art and culture of the day. Urbain J.J. Le Verrier proposed the existence of the planet in 1859 to explain the anomalous precession of the perihelion of the planet Mercury. Le Verrier was a voice to be taken seriously — he had performed a similar feat of calculation to lead observers to the discovery of the planet Neptune from the Berlin Observatory on the night of September 23, 1846. Almost overnight, Le Verrier had single-handedly boosted astronomy into the realm of a science with real predictive power.
An 1863 photograph of Lescarbault’s country house observatory. (Wikimedia Commons image in the public domain).
The idea of Vulcan gained traction when a French doctor and amateur astronomer Edmond Lescarbault claimed to have seen the tiny world transit the Sun while viewing it through his 95 millimetre refractor on the sunny afternoon of March 26th, 1859. Keep in mind, this was an era when solar observations were carried out via the hazardous method of viewing the Sun through a smoked or oil-filled filter, or the via safer technique of projecting the disk and sketching it onto a piece of paper.
A early right-angle solar viewer from Robert Ariail collection at the South Carolina State Museum in Columbia, South Carolina. Note the vent holes in the back to dissipate heat, and word SUN stenciled on the side! (Photo by author).
A visiting Le Verrier was sufficiently impressed by Lescarbault’s observation, and went as far as to calculate and publish orbital tables for Vulcan. Soon, astronomers everywhere were “seeing dots” pass in front of the Sun. Astronomer F. A. R. Russell spotted an object transiting the Sun from London on January, 29th, 1860. Sightings continued over the decades, including a claim by an observer based near Peckeloh Germany to have witnessed a transit of Vulcan on April 4th, 1876.
Incidentally, we are not immune to this effect of “contagious observations” even today — for example, when Comet Holmes brightened to naked eye visibility in October 2007, spurious reports of other comets brightening flooded message boards, and a similar psychological phenomena occurred after amateur astronomer Anthony Wesley recorded an impact on Jupiter in 2010. Though the event that triggered the initial observation was real, the claims of impacts on other bodies in the solar system that soon followed turned out to be bogus.
Possible “target zone” for the existence of Vulcan, and later Vulcanoid asteroids. (Graphic in the public domain).
Still, reports of the planet Vulcan were substantial enough for astronomers to mount an expedition to the territory of Wyoming in an attempt to catch dim Vulcan near the Sun during the brief moments of totality. Participants include Simon Newcomb of the Naval Observatory, James Craig Watson and Lewis Swift. Inventor Thomas Edison was also on hand, stationed at Rawlins, Wyoming hoping to test his new-fangled invention known as a tasimeter to measure the heat of the solar corona.
Conditions were austere, to say the least. Although the teams endured dust storms that nearly threatened to cut their expeditions short, the morning of the 29th dawned, as one newspaper reported, “as slick and clean as a Cheyenne free-lunch table.” Totality began just after 4 PM local, as observers near the tiny town of Separation, Wyoming swung their instruments into action.
Such a quest is difficult under the best of circumstances. Observers had to sweep the area within 3 degrees of the Sun (six times the diameter of a Full Moon) quickly during the fleeting moments of totality with their narrow field refractors, looking for a +4th magnitude star or fainter among the established star fields.
Map of the path of the total solar eclipse of July 29th, 1878. (Credit: Fred Espenak/NASA/GSFC).
In the end, the expedition was both a success and a failure. Watson & Swift both claimed to have identified a +5th magnitude object similar in brightness to the nearby star Theta Cancri. Astronomer Christian Heinrich Friedrich Peters later cast doubt on the sighting and the whole Vulcan affair, claiming that “I refuse to go on a wild goose chase after Le Verrier’s mythical birds!”
And speaking of birds, Edison ran into another eclipse phenomenon while testing his device, when chickens, fooled by the approaching false dusk came home to roost at the onset of totality!
Vulcan search map for the Smithsonian Observatory’s 1900 eclipse expedition. (From the collection of Michael Zeiler@EclipseMaps, used with permission).
But such is the life of an eclipse-chaser. Albert Einstein’s general theory of relativity explained the precession of Mercury’s orbit in 1916 and did away with a need for Vulcan entirely.
But is the idea of intra-Mercurial worldlets down for the count?
The search strategy for NASA’s high-altitude mission to hunt for Vulcanoids in 2002. (Credit: NASA/Dryden).
Amazingly, the quest for objects inside Mercury’s orbit goes on today, and the jury is still out. Dubbed Vulcanoids, modern day hunters still probe the inner solar system for tiny asteroids that may inhabit the region close to the Sun. In 2002, NASA conducted a series of high altitude flights out of the Dryden Flight Research Center at Edwards Air Force Base, California, sweeping the sky near the Sun for Vulcanoids at dawn and dusk. Now, there’s a job to be envious of — an F-18 flying astronomer!
One of NASA’s fleet of high-performance F-18 aircraft. (Credit: NASA).
NASA’s MESSENGER spacecraft was also on the lookout for Vulcanoids on its six year trek through the inner solar system prior to orbital insertion on March 18th, 2011.
Thus far, these hunts have turned up naught. But one of the most fascinating quests is still ongoing and being carried out by veteran eclipse-chaser Landon Curt Noll.
Mr. Noll last conducted a sweep for Vulcanoids during total phases of the long duration total solar eclipse of July 22nd, 2009 across the Far East. He uses a deep sky imaging system, taking pictures in the near-IR to accomplish this search. Using this near-IR imaging technique during a total solar eclipse requires a stable platform, and thus performing this feat at sea or via an airborne platform is out. Such a rig has been successful in catching the extremely thin crescent Moon at the moment it reaches New phase.
Mr. Noll explains the aspects of an eclipse during a 2006 expedition to Libya. (Coutesy of Landon Curt Noll, used with permission).
To date, no convincing Vulcanoid candidates have been found. Mr. Noll also notes that the European Space Agency/NASA’s joint Solar Heliospheric Observatory (SOHO) spacecraft has, for all intents and purposes, eliminated the possibility of Vulcanoids brighter than +8th magnitude near the Sun. Modern searches during eclipses conducted in this fashion scan the sky between wavelengths of 780 to 1100 nanometres down to magnitude +13.5. Mr. Noll told Universe Today that “Our improved orbital models show that objects as small as 50m in diameter could reside in a zone 0.08 A.U. to 0.18 AU (1.2 to 2.7 million kilometers) from the Sun.” He also stated that, “there is plenty of ‘room’ for (Vulcanoids) in the 50 metre to 20 kilometre range.”
The modern day Vulcanoid search strategy. (Diagram courtesy of Landon Curt Noll, used with permission).
Mr. Noll plans to resume his hunt during the August 21st, 2017 total solar eclipse spanning the continental United States. Totality for this eclipse will have a maximum duration of 2 minutes and 40 seconds. Circumstances during the next solar eclipse (a hybrid annular-total crossing central Africa on November 3rd, 2013) will be much more difficult, with a max totality located out to sea of only 1 minute and 40 seconds.
Mr. Noll talks with a local reporter during the 2006 total solar eclipse expedition to Libya. (Photograph courtesy of Landon Curt Noll, used with permission).
Still, we think it’s amazing that the quest for Vulcan (or at least Vulcanoids) is alive and well and being spearheaded by adventurous and innovative amateur astronomers. In the words of Vulcan’s native fictional son, may it “Live Long & Prosper!”
One of the first photos of the possible new supernova in the nearby galaxy M74 taken by the Italian Supernova Search Project. The object is located 93" east and 135" south of the galaxy's center. Click to learn more about the search group. Credit: Fabio Martinelli
I love this galaxy. Not only does M74display a near perfect spiral form but if this latest supernova is the third to “go boom” in the galaxy in just 11 years. The new object, designated PSN J01364816+1545310, was discovered blazing near 12.4 magnitude by the Lick Observatory Supernova Search at Lick Observatory near San Jose, Calif. “PSN” stands for “possible supernova” and the long string of numbers give the object’s position in the sky using the celestial equivalents of latitude and longitude.
Update: The supernova has now been confirmed, and is now officially named SN 2013ej.
Supernova 2013ej, taken remotely on July 29, 2013 from iTelescope Network using the Siding Spring Observatory. Credit: Ernesto Guido and Nick Howes/Remanzacco Observatory.
M74 is a classic spiral galaxy with arms that appear to unwind from a bright, star-packed nucleus. Located 32 million light years away in the constellation Pisces, M74 contains about 100 billion stars. The spiral arms are dotted with dense star clusters and pink clouds of fluorescing hydrogen gas. Credit: Jim Misti
The Lick search uses a fully robotic or automated 30-inch (76 cm) telescope dedicated to scanning the skies for new supernovae. It nailed M74’s latest exploding star on July 25. Two previous supernovae flared in the galaxy – SN 2002apand SN 2003gd– and rose to 12th and 13th magnitude respectively before fading away into obscurity.
Size comparison of our Milky Way spiral galaxy with M74. The Milky Way measures about 100,000 light years across; M74 about 30,000. Credit: NASA (left) and Jim Misti
Three’s the charm as they say. A team of astronomers using a spectrograph at the Faulkes Telescope South at Siding Spring, Australia teased apart the supernova’s light and now know exactly what blew up. It appears our newcomer was originally a supergiant star at least 8 times as massive as the sun. After a relatively brief lifetime measured in the millions of years, the supergiant gobbled up the last of its fuel. With the gas gauge on “empty” and no new energy being produced in the core to hold back the force of gravity, the star imploded, sending a shockwave rocketing back in the opposite direction that tore it to bits.
When a massive star runs out of nuclear fuel in its core, the energy that has prevented the force of gravity from crushing it is gone. Gravity finally gains the upper hand causing the star to implode. A rebounding shock wave blows it to bits. Sometime a city-sized, dense stellar remnant called a neutron star remains after the blast. Credit: ESO
Called a Type II supernova explosion, the blast hurtles star stuff into space at up to 45,000 miles per second (70,000 km/sec). More amazing, a powerful supernova explosion can release as much energy as the sun during its entire 10 billion year lifetime. No wonder even small telescopes can spot these cataclysmic events from millions of light years away!
The galaxy M74, the 74th entry in 18th century astronomer Charles Messier’s catalog, is found about 1.5 degrees east-northeast of the star Eta Piscium just to the right of the small constellation Aries the Ram. The map shows the sky around 1 a.m. tomorrow morning facing east. Stellarium
As additional photos and measurements come in, amateur astronomers with 8-inch and larger telescopes will have no problem spying the supernova once the last quarter moon departs the vicinity. It’s located 93″ (1.5′) east and 135″ (more than 2′) southeast of the galaxy’s core. The map and photo will help you track it down.
This map measures only about 1/2-degree wide and shows the galaxy up close with the supernova marked SN. Selected star magnitudes from the AAVSO are shown to help you navigate to the object as well as estimate its brightness. North is up, west to the right. Map created with Chris Marriott’s SkyMap software
While M74 is relatively bright and appears spectacular in long-exposure photos, it looks like a large, dim featureless glow in smaller telescopes. Be patient and take your time to “star hop” to the supernova using the more detailed map. Matter of fact, you may want to wait until Tuesday morning or later to look. That’s when the waning moon will finally depart the area. Let’s hope our new guest remains bright.
Good luck meeting the latest star to mark the end of its life with the biggest blowout of all. For more information and photos, stop by Dave Bishop’s Latest Supernovae site.
* This article was updated at 6:30 pm CDT on 7/28/13
The Southern Delta Aquarid radiant, looking southeast at 2AM local from latitude 30 degrees north on the morning of July 30th. (Created by the author in Starry Night).
The meteor shower drought ends this weekend.
The northern summer hemisphere meteor season is almost upon us. In a few weeks’ time, the Perseids — the “Old Faithful” of meteor showers — will be gracing night skies worldwide.
But the Perseids have an “opening act”- a meteor shower optimized for southern hemisphere skies known as the Delta Aquarids.
This year offers a mixed bag for this shower. The Delta Aquarids are expected to peak on July 30th and we should start seeing some action from this shower starting this weekend.
The Moon, however, also reaches Last Quarter phase the day before the expected peak of the Delta Aquarids this year on July 29th at 1:43PM EDT/17:43 Universal Time (UT). This will diminish the visibility of all but the brightest meteors in the early morning hours of July 30th.
A cluster of meteor shower radiants also lies nearby. The Eta Aquarids emanate from a point near the asterism known as the “Water Jar” in the constellation Aquarius around May 5th. Another nearby but weaker shower known as the Alpha Capricornids are also currently active, with a zenithal hourly rate (ZHR) approaching the average hourly sporadic rate of 5. And speaking of which, the antihelion point, another source of sporadic meteors, is nearby in late July as well in eastern Capricornus.
The Delta Aquarids are caused by remnants of Comet 96P/Machholz colliding with Earth’s atmosphere. The short period comet was only discovered in 1986 by amateur astronomer Donald Machholz. Prior to this, the source of the Delta Aquarids was a mystery.
The Delta Aquarids have a moderate atmospheric entry velocity (for a meteor shower, that is) around an average of 41 kilometres a second. They also have one of the lowest r values of a major shower at 3.2, meaning that they produce a disproportionately higher number of fainter meteors, although occasional brighter fireballs are also associated with this shower.
Image of an early confirmed Delta Aquarid by the UK Meteor Network (@UKMeteorNetwork on Twitter) captured by their Ash Vale North camera on July 17th, 2013. (Credit: Richard Kacerek & United Kingdom Meteor Observation Network, used with permission).
The Delta Aquarids are also one the very few showers with a southern hemisphere radiant. It’s somewhat of a mystery as to why meteor showers seem to favor the northern hemisphere. Of the 18 major annual meteor showers, only four occur below the ecliptic plane and three (the Alpha Capricornids, and the Eta and Delta Aquarids) approach the Earth from south of the equator. A statistical fluke, or just the product of the current epoch?
In fact, the Delta Aquarids have the most southern radiant of any major shower, with a radiant located just north of the bright star Fomalhaut in the constellation Piscis Austrinus near Right Ascension 339 degrees and Declination -17 degrees. Researchers have even broken this shower down into two distinct northern and southern radiants, although it’s the southern radiant that is the more active during the July season.
Together, this loose grouping of meteor shower radiants in the vicinity is known as the Aquarid-Capricornid complex. The Delta Aquarids are active from July 14th to August 18th, and unlike most showers, have a very broad peak. This is why you’ll see sites often quote the maximum for the shower at anywhere from July 28th to the 31st. In fact, you may just catch a stray Delta Aquarid while on vigil for the Perseids in a few weeks!
The shower was first identified by astronomer G.L. Tupman, who plotted 65 meteors associated with the stream in 1870. Observations of the Delta Aquarids were an off-and-on affair throughout the early 20th century, with many charts erroneously listing them as the “Beta Piscids”. The separate northern and southern radiants weren’t even untangled until 1950. The advent of radio astronomy made more refined observations of the Delta Aquarids possible. In 1949, Canadian astronomer D.W.R. McKinley based out of Ottawa, Canada identified both streams and pinned down the 41 km per second velocity that’s still quoted for the shower today.
Further radio studies of the shower were carried out at Jodrell Bank in the early 1950’s, and the shower gave strong returns in the early 1970’s for southern hemisphere observers even with the Moon above the horizon, with ZHRs approaching 40. The best return for the Southern Delta Aquarids in recent times is listed by the International Meteor Organization as a ZHR of about 40 on the morning of July 28th, 2009.
A study of the Delta Aquarids in 1963 by Fred Whipple and S.E. Hamid reveal striking similarities between the Delta Aquarids and the January Quadrantids & daytime Arietid stream active in June. They note that the orbital parameters of the streams were similar about 1,400 years ago, and the paths are thought to have diverged due to perturbations from the planet Jupiter.
Observing the Delta Aquarids can serve as a great “dry run” for the Perseids in a few weeks. You don’t need any specialized gear, simply find a dark site, block the Moon behind a building or hill, and watch.
Photographing meteors is similar to doing long exposures of star trails. Simply aim your tripod mounted DSLR camera at a section of sky and take a series of time exposures about 1-3 minutes long to reveal meteor streaks. Images of Delta Aquarids seem elusive, almost to the point of being mythical. An internet search turns up more blurry pictures of guys in ape suits purporting to be Bigfoot than Delta Aquarid images… perhaps we can document the “legendary Delta Aquarids” this year?
– Read more of the fascinating history of the Delta Aquarids here.
– Seen a meteor? Be sure to tweet it to #Meteorwatch.
“We will hand out our medals to all the athletes who will win gold on that day, because both the meteorite strike and the Olympic Games are the global events,” stated Chelyabinsk Region Culture Minister Alexei Betekhtin in a Ria Novosti report.
The reported sports that will receive these medals include:
Women’s 1,000 meter and men’s 1,500 meter short track;
Artist's concept of a GOES spacecraft in orbit. (Credit: NOAA.gov).
It’s sometimes tough being a satellite in Earth orbit these days.
An interesting commentary came our way recently via NASA’s Orbital Debris Program Office’s Orbital Debris Quarterly News. The article, entitled High-Speed Particle Impacts Suspected in Two Spacecraft Anomalies, highlights a growing trend in the local space environment.
The tale begins with GOES 13 located in geostationary orbit over longitude 75° West. Launched on May 24th, 2006 atop a Delta IV rocket, GOES 13 is an integral part of the U.S. National Oceanic and Atmospheric Administration (NOAA’s) Geostationary Operational Environmental Satellite network.
The problems began when GOES-13 began to suffer an “attitude disturbance of unknown origin” on May 22nd of this year, causing it to drift about two degrees per hour off of its required nadir (the opposite of zenith) pointing.
The anomaly was similar to a problem encountered by the NOAA 17 spacecraft on November 20th, 2005. At the time, the anomaly was suspected to be due to a micrometeoroid impact. The Leonid meteors, which peak right around the middle of November, were a chief suspect. However, NOAA 17 suffered a second failure 18 days later, which was later traced down to a hydrazine leak from its errant thrusters.
GOES-13 has weathered hard times before. Back in December of 2006, GOES-13’s Solar X-Ray Imager suffered damage after being struck by a solar flare shortly after initial deployment. GOES-13 also began returning degraded imagery in September 2012, forcing it into backup status for Hurricane Sandy.
GOES-13 was restored to functionality last month. Current thinking is that the satellite was struck by a micrometeorite. No major meteor showers were active at the time.
Loss of a GOES satellite would place a definite strain on our weather monitoring and Earth observing capability. Begun with the launch of GOES-1 in 1975, currently six GOES satellites are in operation, including one used to relay data for PeaceSat (GOES-7) and one used as a communications relay for the South Pole research station (GOES-3).
The GOES program cost NOAA billions in cost overruns to execute. The next GOES launch is GOES-R scheduled in 2015.
But the universe seems to love coincidences.
NEE-01 Pegaso before deployment. (Credit: Wikimedia Commons image in the Public Domain).
Less than 26 hours after the GOES 13 anomaly, Ecuador’s first satellite, NEE-01 Pegaso began to have difficulties keeping a stable attitude. The event happened shortly after passage near an old Soviet rocket booster (NORAD designation 1986-058B) which launched Kosmos 1768 on August 2nd, 1986. The U.S. Joint Space Operations Center had warned the fledgling Ecuadorian Space Agency that conjunction was imminent, but of course, there’s not much that could’ve been done to save the tiny CubeSat.
Although the main mass passed Pegaso at a safe distance, current thinking is that the discarded booster may have left a cloud of debris in its wake. Researchers have tracked small “debris clouds” around objects it orbit before- the collision of Iridium 33 and the defunct Kosmos 2251 on February 10th, 2009 left a ring of debris in its wake, and the Chinese anti-satellite test carried out on January 11th, 2007 showered low-Earth orbit with debris for years to come.
The loss represents a blow to Ecuador and their first bid to become a space-faring nation. Launched less than a month prior atop a Long March 2D rocket, Pegaso was a small 10 centimetre nanosatellite equipped with solar panels and dual infrared and visible Earth imaging systems.
A translation from the Ecuadorian Space Agencies site states that;
“The NEE-01 survived the crash and remains in orbit; however it has entered uncontrolled rotation due to the event.
Due to this rotation, (the satellite) cannot point its antenna correctly and stably to the Earth station and although still transmitting and running, the signal cannot be decoded. The Ecuadorian Civilian Space Agency is working tirelessly to stabilize the NEE-01 and recover the use of their signal.
The PEGASUS aired for 7 days your signal to the world via EarthCam, millions could see the Earth seen from space in real time, many for the first time, the files in those 7 days have been published after transmission.”
Ecuador plans to launch another CubeSat, NEE 02 Krysaor later in 2013. A carrier has not yet been named.
While both events suffered by the GOES-13 and NEE-01 Pegaso satellites were unrelated, they underscore problems with space junk and space environmental hazards that are occurring with a higher frequency.
Gabbard diagram displaying a sample disintegration of a Long March 4 booster in 2000. (Credit: the NASA Orbital Debris Office).
Such is the modern hazardous environment of low Earth orbit that new satellites must face. With a growing amount of debris, impact threats are becoming more common. The International Space Station must perform frequent debris avoidance maneuvers to avoid hazards, and more than once, the crew has waited out a pass in their Soyuz escape modules should immediate evacuation become necessary. Punctures from micro-meteoroids or space junk have even been seen recently on the ISS solar panel arrays.
Plans are on the drawing board to deal with space junk, involving everything from “space nets” to lasers and even more exotic ideas. Probably the most immediate solution that can be implemented is to assure new payloads have a way to “self-terminate” via de-orbit at the end of their life span. Solar sail technologies, such as NanoSailD2 launched in 2010 have already demonstrated this capability.
Expect reentries also pick up as we approach the peak of solar cycle #24 at the end of 2013 and the beginning of 2014. Increased solar activity energizes the upper atmosphere and creates increased drag on low Earth satellites.
It’s a brave new world “up there,” and hazards, both natural and man-made, are something that space faring nations will have to come to terms with.
-Read and subscribe to the latest edition of NASA’s Orbital Debris Quarterly News for free here.
The gibbous Moon rising rising over the Andes Mountains in Chile. (Credit: @WladimirPulgarG/Flickr).
“Once more into the breach, my dear friends…”
Such a quip may be deemed appropriate as we endured the media onslaught this past weekend for the third and final perigee Full Moon of 2013.
Tonight, on Monday, July 22nd, the Moon reaches Full at 18:15 Universal Time (UT)/4:15 PM EDT. This is only 21.9 hours after reaching perigee, or the closest point in its orbit at 358,401 kilometres from the Earth on the Sunday evening at 20:28 UT. Continue reading “Super-Moon Monday: The 3rd (& Final?) Act”
Painting of The Meteor of 1860 by Hudson River School artist Frederic Church. (Credit: Frederic Church courtesy of Judith Filenbaum Hernstadt).
“Year of meteors! Brooding year!”
-Walt Whitman
July 20th is a red letter date in space history. Apollo 11, the first crewed landing on the Moon, took place on this day in 1969. Viking 1 also made the first successful landing on Mars, seven years later to the day in 1976.
A remarkable astronomical event also occurred over the northeastern United States 153 years ago today on the night of July 20th, known as the Great Meteor Procession of 1860. And with it came a mystery of poetry, art and astronomy that was only recently solved in 2010.
A meteor procession occurs when an incoming meteor breaks up upon reentry into our atmosphere at an oblique angle. The result can be a spectacular display, leaving a brilliant glowing train in its wake. Unlike early morning meteors that are more frequent and run into the Earth head-on as it plows along in its orbit, evening meteors are rarer and have to approach the Earth from behind. In contrast, these often leave slow and stately trains as they move across the evening sky, struggling to keep up with the Earth.
The Great Meteor Procession of 1860 also became the key to unlock a 19th century puzzle as well. In 2010, researchers from Texas University San Marcos linked the event to the writings of one of the greatest American poets of the day.
Photograph of Walt Whitman taken by Mathew Brady circa 1860 (Library of Congress image in the Public Domain)..
Walt Whitman described a “strange, huge meteor-procession” in a poem entitled “Year of Meteors (1859-60)” published in his landmark work Leaves of Grass.
English professor Marilynn S. Olson and student Ava G. Pope teamed up with Texas state physics professors Russell Doescher & Donald Olsen to publish their findings in the July 2010 issue of Sky & Telescope.
As a seasoned observer, Whitman had touched on the astronomical in his writings before.
The event had previously been attributed over the years to the Great Leonid Storm of 1833, which a young Whitman would’ve witnessed as a teenager working in Brooklyn, New York as a printer’s apprentice.
Researchers noted, however, some problems with this assertion.
The stanza of contention reads;
Nor forget I sing of the wonder, the ship as she swam up my bay,
Well-shaped and stately, the Great Eastern swam up my bay, she was 600 feet long,
Her moving swiftly surrounded by myriads of small craft I forget not to sing;
Nor the comet that came unannounced out of the north flaring in heaven,
Nor the strange huge meteor-procession dazzling and clear shooting over our heads.
(A moment, a moment long, it sail’d its balls of earthly light over our heads,
Then departed, dropt in the night, and was gone.)
In the poem, the sage refers to the arrival of the Prince of Wales in New York City on October 1860. The election of Abraham Lincoln in November of that same year is also referred to earlier in the work. Whitman almost seems to be making a cosmic connection similar to Shakespeare’s along the lines of “When beggars die, no comets are seen…”
Path of the Meteor Procession of 1860 as depicted in the newspapers of the day. (From the collection of Don Olson).
The “comet that came unannounced” is easily identified as the Great Comet of 1860. Also referred to as Comet 1860 III, this comet was discovered on June 18th of that year and reached +1st magnitude that summer as it headed southward. The late 19th century was rife with “great comets,” and northern hemisphere observers could look forward to another great cometary showing on the very next year in 1861.
The Great Comet of 1861 as drawn by G. Williams on June 30th, 1861. (From Descriptive Astronomy by George Chambers, 1877)
There are some problems, however with the tenuous connection between the stanza and the Leonids.
The 1833 Leonids were one of the most phenomenal astronomical events ever witnessed, with estimates of thousands of meteors per second being seen up and down the U.S. Eastern Seaboard the morning of November 13th. Whitman himself described the event as producing;
“…myriads in all directions, some with long shining white trains, some falling over each other like falling water…”
Keep in mind, many startled townsfolk assumed their village was on fire on that terrifying morning in 1833, as Leonid bolides cast moving shadows into pre-dawn bedrooms. Churches filled up, as many thought that Judgment Day was nigh. The 1833 Leonids may have even played a factor in sparking many of the religious fundamentalist movements of the 1830s. We witnessed the 1998 Leonids from Kuwait, and can agree that this meteor shower can be a stunning sight at its peak.
But Whitman’s poem describes a singular event, a “meteor-procession” very different from a meteor shower.
Various sources have tried over the years to link the stanza to a return of the Leonids in 1858. A note from Whitman mentions a “meteor-shower, wondrous and dazzling (on the) 12th-13th, 11th month, year 58 of the States…” but keep in mind, “year 1” by this reckoning is 1776.
A lucky break came for researchers via the discovery of a painting by Frederic Church entitled “The Meteor of 1860.” This painting and several newspaper articles of the day, including an entry in the Harpers Weekly, collaborate a bright meteor procession seen across the northeastern U.S. from New York and Pennsylvania across to Wisconsin.
Such a bright meteor entered the atmosphere at a shallow angle, fragmented, and most likely skipped back out into space. Similar meteor processions have been observed over the years over the English Channel on August 18th, 1783 & across the U.S. Eastern Seaboard and Canada on February 9th, 1913.
On August 10th, 1972, a similar bright daylight fireball was recorded over the Grand Tetons in the western United States. Had the Great Meteor Procession of 1860 come in at a slightly sharper angle, it may have triggered a powerful airburst such as witnessed earlier this year over Chelyabinsk, Russia the day after Valentine’s Day.
The 1860 Meteor Procession is a great tale of art, astronomy, and mystery. Kudos to the team of researchers who sleuthed out this astronomical mystery… I wonder how many other unknown stories of historical astronomy are out there, waiting to be told?
This photo was taken on January 22, 2012 in Fairbanks North Star Borough County, Alaska, US, using a Nikon D5000. The explodey look is due to perspective from looking right up the magnetic field lines. The aurora in the middle of the explosion is pointing straight down at the camera. Credit: Jason Ahrns
A military program to investigate auroras in the north appears to have been suspended.
The High Frequency Active Auroral Research Program (HAARP)’s website (dead link here) is not available right now, and there’s been some media speculation about the program’s future. So far, though, our attempts to learn more about the situation have turned up little information.
When Universe Today reached out to Keeney, however, he declined comment. We also got in touch with the public affairs officials at Kirtland Air Force Base, who said no one was immediately available for an interview and provided this statement:
A screenshot of Google Earth, with ionosphere overlayed (Google)
“HAARP is currently in contract negotiations and our policy is not to comment on current contract negotiations,” stated Marie M. Vanover, the director of Kirtland public affairs. “HAARP’s website is expected to be reopened and populated with the new and current information within 2-3 weeks.”
The program is jointly managed by the U.S. Air Force Research Laboratory and the U.S. Naval Research Laboratory to investigate activity in the ionosphere, the region of the Earth’s atmosphere where auroras occur. It includes an array of dozens of antennas that, media reports say, energize parts of the ionosphere.
HAARP is also the target of many conspiracy theories, ranging from warnings that it would trigger a change in the Earth’s magnetic poles to accusations that it is actually a weapon prototype. You can read more about the unproven allegations in this 2009 Wired article.
We’ll keep you posted on the facility’s status as we hear more.