Alone In The Dark?

This is the portion of sky in which astronomers found the Segue 1 dwarf galaxy. Can you see it? Credit: Marla Geha

[/caption]

Two years ago, Marla Geha, a Yale University astronomer, Joshua Simon from the Carnegie Institution of Washington, and their colleagues discovered something unusual while studying with the Keck II telescope and information for the Sloan Digital Sky Survey. Their observations turned up a contrasting group of stars which all appeared to be moving in unison – not just a moving cluster of similar stars which could have been torn away from the nearby Sagittarius dwarf galaxy. The team knew they were on to something, but a competing group of astronomers at Cambridge University was skeptical. Too bad… there was a dark treasure right there before their eyes.

Not to be dissuaded, Simon, Geha and their group returned to Keck and turned the photographic eye of the telescope’s Deep Extragalactic Imaging Multi-Object Spectrograph (DEIMOS) towards their target area. Even though it was only about 1,000 small, dim stars, they wanted to know how they migrated both in respect to the Milky Way and to each other. Named Segue 1, the target the team was looking at could possibly have 3,400 times more mass than can be accounted for by its visible stars… a galaxy dominated by dark matter and salted with a handful of ancient suns. If the 1,000 or so stars were all there was to Segue 1, with just a touch of dark matter, the stars would all move at about the same speed, said Simon. But the Keck data show they do not. Instead of moving at a steady 209 km/sec relative to the Milky Way, some of the Segue 1 stars are moving at rates as slow as 194 kilometers per second while others are going as fast as 224 kilometers per second.

Using the DEIMOS instrument on the Keck II telescope, astronomers could identify which stars were moving together as a group. They are circled here in green Credit: Marla Geha

“That tells you Segue 1 must have much more mass to accelerate the stars to those velocities,” Geha explained. The paper confirming Segue 1’s dark nature appeared in the May 2011 issue of The Astrophysical Journal. “The mass required to cause the different star velocities seen in Segue 1 has been calculated at 600,000 solar masses. But there are only about 1,000 stars in Segue 1, and they are all close to the mass of our Sun,” Simon said. “Virtually all of the remainder of the mass must be dark matter.”

But the information from DEIMOS didn’t stop there… It also revealed an eclectic collection of nearly primordial metal-poor stars. The researchers managed to gather iron data on six stars in Segue 1 with the Keck II telescope, and a seventh Segue 1 star was measured by an Australian team using the Very Large Telescope. Of those seven, three proved to have less than one 2,500th as much iron as the Sun. “That suggests these are some of the oldest and least evolved stars that are known,” said Simon. This is fascinating data considering investigations for stars of this type out of the Milky Way’s billions have produced less than 30. “In Segue 1 we already have 10 percent of the total in the Milky Way,” Geha said. “For studying these most primitive stars, dwarf galaxies are going to be very important.”

By subtracting out all the other objects in the image and leaving the Segue I member stars, the “darkest galaxy” emerges. Credit: Marla Geha

By confirming Segue 1’s massive concentration of dark matter, other types of research into this dark galaxy’s lifestyle now become more dedicated. The space-based Fermi Gamma Ray Telescope has also been looking its way in hopes of catching a gamma-ray event created by the collision and annihilation of pairs of dark matter particles. So far the Fermi telescope has not detected anything of the sort, which isn’t entirely surprising and doesn’t mean the dark matter isn’t there, said Simon.

“The current predictions are that the Fermi telescope is just barely strong enough or perhaps not quite strong enough to see these gamma rays from Segue 1,” Simon explained. So there are hopes that Fermi will detect at least the hint of a collision. “A detection would be spectacular,” said Simon. “People have been trying to learn about dark matter for 35 years and not made much progress. Even a faint glow of the predicted gamma rays would be a powerful confirmation of theoretical predictions about the nature of dark matter.”

Let’s hope Segue 1 isn’t alone in the dark.

Original News Source: Keck Observatory Science News.

Voorwerpje… And Away!

UGC 7342 in H-Alpha - Credit: Galaxy Zoo

[/caption]It’s 28 pages long and it has been submitted to the Monthly Notices of the Royal Astronomical Society. It’s filled with exciting new discoveries. What is it? Try the Galaxy Zoo’s latest findings… the Great Voorwerpje Round-up!

“Eighteen thousand candidate active galactic nuclei. One hundred ninety-nine Zooites. A hundred fifty-four possible galaxies with clouds, of which 49 became targets for spectra. And finally, nineteen certified Voorwerpjes – giant clouds of gas ionized by a central active nucleus, like Hanny’s Voorwerp but smaller (and sometimes not all that much smaller) and dimmer.” says Bill Keel. “Of these clouds, many (including the largest) are new discoveries.”

The Galaxy Zoo has been on the hunt and what they’ve found has proved to be very exciting to the team. Says Keel: “About half of these have gas too highly ionized too far from the nucleus to account for by the nucleus we see (even including far-infrared results to tell how much radiation is being absorbed by dust), so they may be additional, less dramatic instances of the AGN fading over time spans of 100,000 years or so. This large fraction suggests that at least Seyfert nuclei may constantly be brightening and fading over times of a few hundred thousands years (a time span about which we’ve previously had almost no information).”

Their images include those taken with filters that isolate [O III] or Ha emission – even subtracting ordinary starlight. In one such image of UGC 7342, they could trace gas out to twice the estimated size of the Milky Way! This could mean the presence of an AGN. “Starlight doesn’t have enough far-ultraviolet or X-rays to make gas that highly ionized, but an active galactic nucleus does. Furthermore, the ratios of these lines let us estimate how intense this radiation is when it reaches a cloud.” comments Keel. “Even though UGC 7342 is pretty chewed up because of an interaction with at least one companion, the gas motions aren’t as chaotic as they might be – the gas isn’t orbiting retrograde or anything.”

Their research is shedding new light on Voorwerpje mysteries – giving consistencies to ionized clouds located in galaxies which are interacting or merging – and accounting for tidal disturbances. Preliminary findings also show a symmetry as well, where around 50% of the galaxies studied show two ionized clouds on opposite sides.

“Of course, we want to know more. Answers tend to multiply questions. Hubble observations are scheduled, and (with a little luck) X-ray measurements with ESA’s XMM-Newton observatory. We’ve managed to interest some of the people at ASTRON in the Netherlands in using the Westerbork array to examine the cold hydrogen around these galaxies.” says Keel. “In addition, we’re doing new observations of various samples of active and “nonactive” galaxies to look for fainter, and maybe older, gas clouds. Special thanks to everyone who participated in this project, either through the targeted hunt or the complementary forum search for clouds in galaxies not listed as AGN. Stay tuned!”

You can bet we will…

Original Story Source: Zooniverse Blog.

Applying the Titius-Bode Rule to Exoplanet Systems

55 Cancri. Image credit: NASA/JPL

One of the key methods employed in the practice of the sciences is the search for patterns. Their discovery often hints at something important to which we should pay attention if we want to understand a principle. This can be from simple things like the cycles of the sky throughout the year that trace out our motion in the solar system to the patterns of spectral lines that allow astronomers to measure the universe. Back on our solar system scale, one such apparent pattern that stood steadfast until 1846, was the Titius-Bode rule. This rule noted that the distance of the planets from the sun seemed to follow a pattern described by the equation a = 0.4 + 0.3 × 2n where n was the planet number in order of distance from the Sun. This pattern held very well for the first 7 planets, so long as one included the asteroid Ceres, or the asteroid belt itself, as planet #5. Yet the discovery of Neptune and Pluto discredited this pattern as a mere coincidence, mathematical happenstance and numerology, as the Titius-Bode rule severely underpredicted their distances.

Some still wonder if there wasn’t something more to the rule and orbital resonances didn’t have some sort of subtle effect that was being overlooked and made the rule more of a law, at least for innermost planets. With the rapid discovery of planets around other stars, astronomers are once again looking to see if there might just be some sort of truth to this pattern.

One of the most well populated and well studied exo-planetary systems is 55 Cancri. In 2008, a paper was published in the Mexican Journal of Astronomy and Astrophysics attempting to apply the Titius-Bode rule to this system. In that study, the classical rule could not fit, but, from the five planets known at the time, the researchers were able to fit a similar exponential function to the system. With their fit, they found that, much like our own solar system, there was a “missing planet” for what should be the 5th from the parent star. The fit predicted it should lie at a distance of roughly two AU. However, since the paper was published, the orbital characteristics of the system have been revised significantly, throwing off the predictions of the 2008 study.

However, another paper was recently written, updating the fit for the 55 Cnc system. This time, to make the fit work well, the author was forced to assume the possibility of four undiscovered planets. If they were to exist, one of them should exist at a distance of 1.5 AU which, for that system may place it in the habitable zone.

But what of other planetary systems? Presently, there have been few other systems that are sufficiently explored to begin to explore such potential relations. One paper, released in 2010, noted that, at that time, only 15 systems were known with three or more planets. While some appeared, superficially, to have some sort of patterning, the authors declined to speculate on whether or not there was any deeper meaning since, with so little data, a line would be quite easy to fit.

So for now, it’s another game of patience as astronomers continue probing more systems and discovering more planets. If, at some point, a planet were discovered that was predicted by a Titius-Bode relation, it would support the underlying principle that something was sorting the planets in a regular manner. But then again, that’s what they said when Ceres and Neptune were discovered.

Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin

South Polar Region of Vesta - Enhanced View. NASA's Dawn spacecraft obtained this image centered on the south pole of Vesta with its framing camera on July 18, 2011. The image has been enhanced to bring out more surface details. It was taken from a distance of about 6,500 miles (10,500 kilometers) away from the protoplanet Vesta. The smallest detail visible is about 1.2 miles (2.0 km). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Enhanced and annotated by Ken Kremer

[/caption]

NASA’s Dawn Asteroid Orbiter is now spiraling down ever closer to the protoplanet Vesta – since arriving on July 16 – and capturing magnificent new high resolution images of the huge impact basin at the South Pole that dominates the surface. See enhanced image here.

The Dawn team just released a new image taken by the framing camera on July 18 as the orbiter flew from the day side to the night side at an altitude of 10,500 kilometers above Vesta, the second most massive body in the main Asteroid Belt between Mars and Jupiter.

NASA's Dawn spacecraft obtained this image centered on the south pole with its framing camera on July 18, 2011. It was taken from a distance of about 6,500 miles (10,500 kilometers) away from the protoplanet Vesta. The smallest detail visible is about 1.2 miles (2.0 km). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“I find this picture very dramatic !” exclaimed Dr. Marc Rayman, Dawn Chief Engineer from the NASA’s Jet Propulsion Laboratory in Pasadena, Calif., in an interview with Universe Today.

Dawn acquired this image after it had flown past the terminator and its orbit began taking it over the night side of Vesta.”

“After having this view, the spacecraft resumed gradually spiraling around its new home, heading for survey orbit where it will begin intensive observations of Vesta,” Rayman told me.

Dawn will reach the initial science survey orbit in early August, approximately 1700 miles above the battered surface. Vesta turns on its axis once very five hours and 20 minutes.

Vesta suffered an enormous cosmic collision eons ago that apparently created a gigantic impact basin in the southern hemisphere and blasted enormous quantities of soil, rocks and dust into space. Some 5% of all meteorites found on Earth originate from Vesta.

“The south pole region was declared to be a large impact basin after the Hubble Space Telescope (HST) data and images were obtained,” elaborated Prof. Chris Russell, Dawn Principal Investigator from UCLA.

“Now that we have higher resolution images we see that this region is unlike any other large impact on a small body but much of our experience here is on icy bodies of similar size,” Russell told me.

Dawn’s new images of Vesta taken at close range from just a few thousand miles away, now vastly exceed those taken by Hubble as it circled in Earth orbit hundreds of millions of miles away and may cause the science team to reevaluate some long held theories.

“The team is looking forward to obtaining higher resolution data over this region to look for confirmatory evidence for the impact hypothesis. They are not yet willing to vote for or against the HST interpretation. Needless to say the team got very excited by this image,” said Russell.

Dawn will orbit Vesta for one year before heading to its final destination, the Dwarf Planet Ceres.

Simulated View of Vesta from Dawn on July 23, 2011. Credit: NASA

Read my prior features about Dawn
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta
Dawn Closing in on Asteroid Vesta as Views Exceed Hubble
Dawn Begins Approach to Asteroid Vesta and Snaps First Images
Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

Cosmic Bullseye: Auriga’s Wheel

Hoag's Object Credit: HST

[/caption]

One of the strangest types of galaxies are those known as ring galaxies. Examples of these include Hoag’s Object (shown above), the Cartwheel Galaxy, and AM 0644-741. These unusual shapes are cause by a galactic collision in which a smaller galaxy plunges nearly straight through the center of a larger galaxy. The gravitational disturbance caused a wave of star formation to ripple out from the center. In most cases, the intruder galaxy is long gone, but a serendipitous discovery as part of a larger survey recently turned up another of these objects, this time with the collisional partner still making its getaway.

Prior to this discovery, astronomers recognized only 127 ring galaxies, most of which are in the relatively nearby universe (< 1 billion lightyears). The lifetime of the ring structure is generally short lived and will dissipate once the density wave leaves the galaxy but while it persists, such galaxies give astronomers a wonderful chance to study the star formation the process triggers. In particular, it helps astronomers understand stellar evolution since the age of the stars becomes linked to the radius from the center; the newest stars are the furthest out where the ring is currently condensing new ones from the interstellar medium, and older ones lie towards the center where the density wave began.

The new ring galaxy was discovered by astronomers from the Max Planck Institute for Astronomy in Germany as part of a study to explore the Milky Way’s thick disk. The discovery images were taken in 2007 using the recently damaged Subaru telescope.

Auriga's Wheel Credit: Blair Conn et al.
Auriga's Wheel as seen in the g (left) and r (right) filters from Subaru. Credit: Blair Conn et al.

When the team noticed the rare galaxy in their image they tentatively dubbed it “Auriga’s Wheel”, they turned to the Gemini North telescope to obtain spectroscopy for the object. The redshift of these objects would allow astronomers to explore their distance and confirm that they were likely interacting and not simply a chance alignment. When the data was analyzed, the galaxies were found to lie together at a distance of nearly 1.5 billion lightyears making this a new record holder for furthest ring galaxy for which spectroscopic data has been obtained.

But aside from the temporary place in the record books, the pair is interesting in other ways. Modeling of the interaction as well as the spectroscopic data allowed the team to estimate the propagation of the ring to be at ~200 km/sec which would make it 50 million years since the collision occurred. The image also clearly shows the galaxy that plunged through the center of the more massive, disk galaxy and a distinct trail of gas and dust connects the two. Additionally, both galaxies appear to have Active Galactic Nuclei, which is rare for ring galaxies. However, it is not clear whether the activity was a result of the collision or a property of the individual galaxies prior to the interaction.

Caught In The Web… Space Spider!

IC 342's dust structures show up vividly in red, in this infrared view from Spitzer. Image credit: NASA/JPL-Caltech

[/caption]

Look, he’s crawling up my wall… Black and hairy, very small… Now he’s up above my head… Hanging by a little thread. Nope. It’s not Boris the Spider, it’s spiral galaxy IC 342 and it’s hanging out in the constellation of Camelopardalis. Thanks to NASA’s Spitzer Space Telescope, we’re able to peer through the dust clouds and sneak a peek at this arachnid appearing beastie.

Residing at an approximate distance of 10 million light-years, this impressive grand design spiral is difficult for details because it’s located directly behind the disk of the Milky Way from our point of view. Tiny particles of interstellar dust, which measure just a fraction of a micron across, approximate the blue wavelength of light. These vast areas composed of silicates, carbon, ice, and/or iron compounds dim the light in a process called extinction – but using infrared vision can even the score. Line-of-sight stars from our galaxy appear blue/white and the blue haze around the galaxy’s nucleus is from IC 342’s collective starlight. Its gangly arms glow a soft crimson and clumps of newly forming stars radiate red.

It’s small wonder the core of IC 342 appears so spooky. According to research, it has undergone a recent burst of star formation activity and is close enough to have gravitationally influenced the evolution of the local group of galaxies and the Milky Way. Can you observe Boris yourself? Absolutely. You’ll find this magnitude 9 critter located along the galactic equator at RA 03h 46m 48.5s – Dec +68 05′ 46″. But beware… Its low surface brightness means you’ll need a rich field telescope and good, dark skies.

Creepy, crawly… Creepy, crawly… Creepy, creepy, crawly, crawly…

Original News Source: JPL / Spitzer News.

Elliptical Galaxies Don’t Act Their Age…

The galaxy NGC 5557 clearly exhibits extremely extended and faint tidal streams spanning more than 1.2 million light-years from left to right on this image from the MegaCam mounted on the Canada-France-Hawaii Telescope. Image by P.-A. Duc 2011 (c) CEA/CFHT

[/caption]

Thanks to images taken with the MegaCam camera mounted on the Canada-France-Hawaii Telescope (CFHT, CNRC/CNRS/University of Hawaii), researchers are beginning to see that elliptical galaxies just aren’t acting their age. Their initial studies are showing signs of recent merging – meaning that many could be as much as five times younger than previously thought.

We’ve been studying massive elliptical galaxies for a long time and their stripped down stellar population has always led astronomers to assume most were in the 7 to 10 billion year old age bracket. However, astronomers from CNRS, CEA, CFHT, and the Observatoire de Lyon – all members of the Atlas3D international collaboration – have been sneaking a peak at the galactic fountain of youth. According to observations done on two elliptical galaxies (NGC 680 & NGC 5557), it would appear they’ve undergone a spiral galaxy merger… one that’s happened as recently as 1 to 3 billion years ago.

“Such age estimate is based on the presence of ultra faint filaments in the distant outskirts of the galaxies. These features called tidal streams in the astronomers parlance are typical residuals from a galaxy merger.” says the CFH team. “They are known not to survive in this shape and brightness for more than a few billion years, hence the new age estimate of the resulting elliptical galaxies. These structures were detected for the first time thanks to a very-deep imaging technique boosting the capabilities of CFHT’s wide-field optical imager MegaCam.”

A sample of elliptical galaxies from the Atlas3D survey current collection, all showing clear signs of a recent collision. Image by P.-A. Duc 2011 (c) CEA/CFHT

The Atlas3D team isn’t stopping with these results and they’re looking at a survey of more than one hundred elliptical galaxies close to the Milky Way. When the samples are gathered and compared, they’ll look for more faint extended features that could spell a recent merger. It could mean we need to rethink our standard model for elliptical galaxies formation!

Maybe even ask ’em for ID…

Original News Source: CFH News.

Pan-STARRS Discovers two Super Supernovae

Artist illustration of a supernova. Image credit: ESO

[/caption]

Supernovae are the brightest phenomenon in the current universe. As massive stars die as supernovae, they briefly outshine the rest of the stars in their galaxy and are visible, at least once the light gets there, from across the universe. Until recently, astronomers thought they pretty much had supernovae figured out; they could either form from the direct collapse of a massive core or the tipping over the Chandrasekhar limit as a white dwarf accreted neighbor. These methods seemed to work well until astronomers began to discover “ultra-luminous” supernovae beginning with SN 2005ap. The usual suspects could not produce such bright explosions and astronomers began looking for new methods as well as new ultra-luminous supernovae to help understand these outliers. Recently, the automated sky survey Pan-STARRS netted two more.

Since 2010, the Panoramic Survey Telescope & Rapid Response System (Pan-STARR) has been conducting observations atop Mount Haleakala and is controlled by the University of Hawaii. Its primary mission is to search for objects that may pose a threat to Earth. To do this, it repeatedly scans the northern sky, looking at 10 patches per night and cycling through various color filters. While it has been very successful in this area, the observations can also be used to study objects that change on short timescales such as supernovae.

The first of the two new supernovae, PS1-10ky was already in the process of exploding as Pan-STARRS came into operation, thus, the brightness curve was incomplete since it was discovered near peak brightness and no data exists to catch it as it brightened. However, for the second, PS1-10awh, the team caught while in the process of brightening and have a complete light curve for the object. Combining the two, the team, led by Laura Chomiuk at the Harvard-Smithsonian Center for Astrophysics, was able to get a full picture of just how these titanic supernovae behave. And what’s more, since they were observed with multiple filters, the team was able to understand just how the energy was distributed. Additionally, the team was able to use other instruments, including Gemini, to get spectroscopic information.

The two new supernovae are very similar in many regards to the other ultra-luminous supernovae discovered previously, including SN 2010gx and SCP 06F6. All of these objects have been exceptionally bright with little absorption in their spectra. What little they did have was due to partially ionized carbon, silicon, and magnesium. The average peak brightness was -22.5 magnitudes where as typical core collapse supernovae peak around -19.5. The presence of these lines allowed astronomers to measure the expansion velocity for the new objects as 40,000 km/sec and place a distance to these objects as around 7 billion light years (previous ultra-luminous supernovae like these have been between 2 and 5 billion light years).

But what could power these leviathans? The team considered three scenarios. The first was radioactive decay. The violence of supernovae explosions injects atomic nuclei with additional protons and neutrons creating unstable isotopes which rapidly decay giving off visible light. This process is generally implicated in the fading out of supernovae as this decay process withers out slowly. However, based on the observations, the team concluded that it should not be possible to create sufficient amounts of the radioactive elements necessary to account for the observed brightness.

Another possibility was a rapidly rotating magnetar underwent a rapid change in its rotation. This sudden change would throw off large large chunks of material from the surface which could, in extreme cases, match the observed expansion velocity of these objects.

Lastly, the team considers a more typical supernova expanding into a relatively dense medium. In this case, the shockwave produced by the supernova would interact with the cloud around the star and the kinetic energy would heat the gas, causing it to glow. This too could reproduce many of the observed features of the supernova, but had the requirement that the star shed large amounts of material just before exploding. Some evidence is given for this as being a common occurrence in massive Luminous Blue Variable stars observed in the nearby universe. The team notes that this hypothesis may be tested by searching for radio emission as the shockwave interacted with the gas.

Cosmic Crime Alert… LMC Is Swiping Stars!

The Milky Way’s near neighbor, the Large Magellanic Cloud (LMC), has accreted a smattering of stars from its smaller neighbor, the Small Magellanic Cloud (SMC). In this image, the LMC is shown as it appears in observations by the Spitzer Space Telescope at 3.6, 8.0, and 24 microns. Overlaid in red and blue, with colors representing the light of sight velocities (red = away, blue = towards) are the locations of stars whose origin has been traced to the SMC. These stars were discovered by a team led by NOAO astronomer Knut Olsen, through analysis of spectra obtained at the CTIO 4-m Blanco telescope. Spitzer image credit: Karl Gordon and Margaret Meixner (Space Telescope Science Institute/AURA/NASA). Compilation by K. Olsen (NOAO/AURA/NSF))

[/caption]

Using the Spitzer Space Telescope, a team of astronomers from the National Optical Astronomy Observatory (NOAO) have made a unique discovery. Our neighbor – the Large Magellanic Cloud – has been caught pilfering stars from the Small Magellanic Cloud! What caused this cosmic crime and what do we know about it? Read on…

Through the use of spectra, 5900 giant and supergiant stars in the Large Magellanic Cloud have been identified as once belonging to the nearby Small Magellanic Cloud. NOAO astronomers Knut Olsen and Bob Blum, and their collaborators Dennis Zaritsky (University of Arizona), and Martha Boyer and Karl Gordon (Space Telescope Science Institute) were hot on the trail as they ascertained a counter rotation in a small percentage of the stellar population. Although they could only take information from “line of sight” stars, this 5% was enough to give them a clue they weren’t formed where they are now located. Even their chemical signature isn’t right!

“Further examination of these counter-rotating stars revealed another anomaly. The chemical composition of these stars is different. They have fewer heavy elements such as iron and calcium than typical stars in the Large Magellanic Cloud.” say the team. “However, their composition closely matches that of stars in another nearby galaxy, the Small Magellanic Cloud, whose stars are also depleted in these “metals”.

Just like fingerprints, these two signatures – motion and composition – are a dead giveaway that these certain stars have been lifted by gravitational interaction. To further refine the evidence the group used the multi-object spectrometer on the Cerro Tololo Inter-American Observatory 4-meter Blanco Telescope in Chile to observe 4600 stars, and their spectra, simultaneously. When compared to 1300 other stars, a pattern begin to emerge. According to Olsen “It is not always easy to tell whether the stars in a galaxy formed in the galaxy or formed somewhere else and then were captured. Since the LMC is so close to us, we were able to observe a large number of individual stars. And to our surprise, the LMC contained a significant number of stars that must have formed elsewhere.”

Continuing their investigations with the Spitzer Space Telescope, the team is also involved with stellar evolution studies in the LMC. NOAO Deputy Director Bob Blum indicated the importance of this approach: “Using observations with the Spitzer Space Telescope, we were able to get a complete census of the stellar populations in the LMC. With the ground-based observations we could determine the properties and motions of a large sample of stars throughout that galaxy. By combining both, we were able to tell that some of the stars must have come from the neighboring SMC. This led us to a deeper understanding of how galaxies can and do interact, and change over time.”

These studies may help us to further understand high rates of star formation in areas like 30 Doradus… When we’re not just stealin’ a look.

Original News Source: NOAO News.

Zooming in on Proto-Planetary Disks

On the road to planetary formation, the first step is an accretion disk around a proto-star. Such disks, known as proplyds, are frequently detected in star forming regions like the Orion nebula providing an understanding of the early life of planetary systems. The telltale hint that they exist is the warm infrared glow of the forming (or perhaps nearly formed) star heating the gas and dust, but although many have been detected this way, few have been observed with resolution that makes out any details on the disk itself. A new study aims to help add to the understanding of these systems with spatially resolved observations of two proplyds, including one already known to be host to a multiple planet system.

The two new systems under study are HD 107146 and HR 8799. The latter of these two systems is notable for having four known planets which have been directly imaged previously. HD 107146 is relatively close to our solar system, being only 28.5 pc away. This young star is similar to the Sun in mass and composition and is estimated to be somewhere between 80 and 200 million years young. Previous studies have examined this system’s disk and revealed that it is composed of nearly as much dust as there is gas, which means that much of the gas has likely been either accreted or stripped. Although not directly detected, the earlier studies have also suggested that the system may be hiding young planets. The evidence for this comes from possible banding in the disk. This is interpreted as similar to the rings and gaps in Saturn’s system, caused by shepherding moons, except in this case, the moon’s role would be fulfilled by planets creating resonances.

The new research, led by Meredith Hughes from the University of California, Berkeley, confirmed the presence of the disk around the star and found its brightness peaked at a distance of about 100 AU from the parent star (more than twice the average orbital distance of Pluto). Overall, their observations match models with a “broad ring extending from 50 to 170 AU”.

When looking at HR 8799’s disk, the team was given four nights, but due to poor weather, only one night’s worth of data from the Submillimeter Array atop Mauna Kea. The reduced amount of data left high uncertainties in the subsequent analysis. While the team attempted to search for banding that could induced by planets, the team was unable to find any. A study published earlier this year by a team at the University of Exeter also examined the HR 8799 disk and reported a slightly brighter clump on one side. The new study finds a similar clump but cautions that, due to the still poor observations of this system, the result may be suspect. A similar case happened when astronomers studied Vega’s dust disk and reported finding clumpy structure when it was, in reality, it was nothing but statistical noise.

These results, as well as the previous ones from the Exeter team and observations from Spitzer have suggested that the dust ring extends out to as far as 250 AU, and as far inwards as 80, but it is likely the inner radius is closer to 150 AU. If the inner radius is the correct value, this places it at roughly the limit that it could be shaped by the outermost planet HR 8799b which lies at just under 70 AU.