Fold Mountains

Mount Everest from Kalapatthar. Photo: Pavel Novak

[/caption]
Some of the most dramatic mountains in the world are fold mountains. These are created when two of the Earth’s tectonic plates crash together – like in a head-on car crash. The edges of the two plates buckle and fold, and the peaks of these folds are mountains. Entire mountain ranges, thousands of kilometers long, are created during these slow motion collisions between tectonic plates.

Some famous examples of fold mountains are the Himalayan mountains in Asia and the Rocky Mountains in North America. Consider the fact that the Earth’s tectonic plates are moving very slowly, just a few centimeters every year. These folding collisions play out in incredibly slow motion, taking millions of years. The Indian subcontinent crashed into Asia 24 million years ago, and since then it has built up the Himalayan mountains – the tallest mountains in the world. In fact, the Himalayans are still growing.

Want to make your own folded mountain range? Take two flat strips of modeling clay and put them side to side. Then slowly push one strip into the other and you’ll see how one or both will crumple up under the pressure. You’ll make your own mini mountain range.

We have written many articles about mountains for Universe Today. Here’s an article about different types of mountains.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

Types of Mountains

Mount Everest from Kalapatthar. Photo: Pavel Novak

[/caption]
One feature of the Earth that you can’t miss are its mountains. But did you know there are different types of mountains? The different mountain types are formed in different ways, through tectonic plates crunching into each other, or sliding past one another, or even from magma coming up out of the Earth. The mountains are different in their appearance, and in their formation. Let’s take a look at each of the major mountain types.

Fold Mountains
The most common type of mountain in the world are called fold mountains. When you see vast mountain ranges stretching on for thousands of kilometers, those are fold mountains. Fold mountains are formed when two of the Earth’s tectonic plates collide head on; like two cars crashing together. The edges of each tectonic plate crumple and buckle, and these create the mountains. Some examples of fold mountain ranges include the Rocky Mountains in North America, and the Himalayan Mountains in Asia.

Fault-Block Mountains
Fault-block mountains (or just “block mountain“) are created when faults or cracks in the Earth’s crust force materials upward. So instead of folding, like the plate collision we get with fold mountains, block mountains break up into chunks and move up or down. Fault-block mountains usually have a steep front side and then a sloping back side. Examples of fault-block mountains include the Sierra Nevada mountains.

Dome Mountains
Dome mountains are created when a large amount of magma pushes up from below the Earth’s crust, but it never actually reaches the surface and erupts. And then, before it can erupt, the source of the magma goes away and the pushed up rock cools and hardens into a dome shape. Since the dome is higher than its surroundings, erosion works from the top creating a circular mountain range.

Volcanic Mountains
Here’s a fairly familiar kind of mountain. Volcanic mountains are created when magma from beneath the Earth makes its way to the surface. When does get the surface, the magma erupts as lava, ash, rock and volcanic gases. This material builds up around the volcanic vent, building up a mountain. Some of the largest mountains in the world were created this way, including Mauna Loa and Mauna Kea on the Big Island of Hawaii. Other familiar volcanoes are Mt. Fuji in Japan and Mt. Rainier in the US.

Plateau Mountains
Plateau mountains are actually formed by the Earth’s internal activity; instead, they’re revealed by erosion. They’re created when running water carves deep channels into a region, creating mountains. Over billions of years, the rivers can cut deep into a plateau and make tall mountains. Plateau mountains are usually found near folded mountains.

We have written many articles about mountains for Universe Today. Here’s an article about a massive mountain range seen on Titan, and the search for a mountain of eternal sunlight on the Moon.

Here are more article about mountains:

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

Sources:
http://en.wikipedia.org/wiki/List_of_mountain_types
http://www.wvgs.wvnet.edu/www/geology/geolf001.htm
http://library.thinkquest.org/05aug/00184/Mountain%20Ranges%20Page.htm

Brown Dwarfs Could Be More Common Than We Thought

In 2007, something strange happened to a distant star near the centre of our galaxy; it underwent what is known as a ‘microlensing’ event. This transient brightening didn’t have anything to do with the star itself, it had something to do with what passed in front of it. 1,700 light years away between us and the distant star, a brown dwarf crossed our line of sight with the starlight. Although one would think that the star would have been blocked by the brown dwarf, its light was actually amplified, generating a flash. This flash was created via a space-time phenomenon known as gravitational lensing.

Although lensing isn’t rare in itself (although this particular event is considered the “most extreme” ever observed), the fact that astronomers had the opportunity to witness a brown dwarf causing it means that either they were very lucky, or we have to think about re-writing the stellar physics textbooks…

By several measures OGLE-2007-BLG-224 was the most extreme microlensing event (EME) ever observed,” says Andrew Gould of Ohio State University in Columbus in a publication released earlier this month, “having a substantially higher magnification, shorter-duration peak, and faster angular speed across the sky than any previous well-observed event.”

OGLE-2007-BLG-224 revealed the passage of a brown dwarf passing in front of a distant star. The gravity of this small “failed star” deflected the starlight path slightly, creating a gravitational lens very briefly. Fortunately there were a number of astronomers prepared for the event and captured the transient flash of starlight as the brown dwarf focused the light for observers here on Earth.

From these observations, Gould and his team of 65 international collaborators managed to calculate some characteristics of the brown dwarf “lens” itself. The brown dwarf has a mass of 0.056 (+/- 0.004) solar masses, with a distance of 525 (+/- 40) parsecs (~1,700 light years) and a transverse velocity of 113 (+/- 21) km/s.

Although getting the chance to see this happen is a noteworthy in itself, the fact that it was a brown dwarf that acted as the lens is extremely rare; so rare in fact, that Gould believes something is awry.

In this light, we note that two other sets of investigators have concluded that they must have been ‘lucky’ unless old-population brown-dwarfs are more common than generally assumed,” Gould said.

Either serendipity had a huge role to play, or there are far more brown dwarfs out there than we thought. If there are more brown dwarfs, something isn’t right with our understanding of stellar evolution. Brown dwarfs may be a more common feature in our galaxy than we previously calculated…

Sources: “The Extreme Microlensing Event OGLE-2007-BLG-224: Terrestrial Parallax Observation of a Thick-Disk Brown Dwarf,” Gould et al., 2009. arXiv:0904.0249v1 [astro-ph.GA], New Scientist, Astroengine.com

Shadows Helped Form the “Pillars of Creation”

One of the Hubble Space Telescope's most famous images, the "Pillars of Creation" in the Eagle Nebula. Credit: NASA/ESA

[/caption]

How were the famous “Pillars of Creation” formed? Perhaps only the shadow knows! New research suggests that shadows hold the key to how giant star-forming structures like the “Pillars” in the Eagle Nebula take shape.

The pillars are dense columns within giant clouds of dust and gas where massive stars form. Several theories have been proposed to explain why the pillars develop around the edge of ionized gas bubbles surrounding young, very hot stars. Using computer models, a group of astronomers from the Dublin Institute of Advanced Studies has found that partially-shadowed clumps of gas tend to creep towards darker areas, causing pile-ups behind dense knots of gas and dust that screen the intense ultraviolet light emitted by the stars.

Jonathan Mackey, who is presented the results at the European Week of Astronomy and Space Science in the UK said, “We created a simulation with a random distribution of lots of dense clouds with different sizes and shapes. We found that in certain cases a number of clouds can merge together in the shadows to form structures that look very like observed pillars. They are sufficiently dense to match the observations, can form in about 150,000 years and can survive for about 100,000 years. Although this is a preliminary study, we believe our results are quite robust and will be confirmed by more detailed modeling.”
A view of the "spire" within M16, the Eagle Nebula.  Credit: NASA/ESA
The team, led by Dr. Andrew Lim, found that the configuration of clumps of gas had to be favorable for the pillars to form. Some age estimates put the Eagle Nebula pillars at no more than 100,000 years old, and models show that the shadow from a single clump would not attain the density to form a pillar in that relatively short timescale.

“Many of our models do not produce pillars that are as long and narrow as those in the Eagle Nebula, at least not at the observed gas density. It needs the right configuration of dense clumps of gas to form a long pillar. Unless the shadowed region is already very dense to begin with, it just takes too long to collect and organize the gas into a pillar,” said Lim.

The group plans to add increasing levels of realism to the model over the next couple of years, bringing in more accurate representations of the complex chemistry of interstellar gas, the effects of radiation from diffuse sources. Adding in the effects of gravity will also be important as the pillars contain dense gas condensations which are in the process of collapsing under their own weight to form the next generation of stars.

Mackey said, “Gravity is relatively unimportant when the pillars are forming, but there comes a point when they get very dense and it cannot be ignored any longer. We plan to include gravitation in future work so that we can study the next generation of stars which are forming in the pillars.”

Source: RAS

Pelean Eruption

Mount Pelee

[/caption]
Pelean eruptions, or Nuee Ardente eruptions occur when a large quantity of gas, dust, ash and lava fragments are blown out of a volcano’s central crater. This material falls back, and then travels down the side of the volcano at tremendous speeds – faster than 150 km/hour.

These eruptions are also known as pyroclastic flows, and they’re one of the most dangerous kinds of eruptions that volcanoes can do. Material blasted out in a Pelean eruption can tear through populated areas, killing thousands of people.

Pelean eruptions got their name from Mont Pelee, the volcano that caused tremendous destruction on Martinique, Lesser Antilles in 1902. The Pelean eruption and following pyroclastic flows killed more than 30,000 people in the worst volcanic disaster of the 20th century. The town of St. Pierre was effectively wiped off the map by a series of powerful eruptions.

We have written many articles about volcanoes for Universe Today. Here’s an article about Plinian eruptions, and here’s an article about Strombolian eruptions.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

Volcano Dangers

View north into the summit crater of Redoubt volcano where recent eruptions have removed a significant portion of the glacial ice. A remnant shelf of ice remains on the west (right) side of crater, and in this view, fumaroles are rising from near the ice/wall-rock contact. Image Creator: Payne, Allison

[/caption]
Volcanoes make bad neighbors. Between 1900 and 1986, volcanoes have killed an average of 845 people every year. And volcanoes have so many ways to kill you, from the hot lava flows and clogging ash to the rock bombs and toxic fumes. Let’s take a look at dangerous volcanoes, and their associated volcanic dangers.

One of the most familiar aspects of a volcanic eruption are the lava flows. You might be surprised to know that lava flows are actually one of the least dangerous ways that volcanoes can try to kill you. Lava flows rarely move faster than walking speed, so you can easily outrun and avoid them. Buildings, roads and trees aren’t so lucky; however, and can be destroyed by the crushing weight and burning temperature of a lava flow.

Poisonous volcanic gases are a danger from volcanoes too. During an eruption, volcanoes can release vast amounts of water vapor, carbon dioxide and sulfur dioxide. If you encounter a cloud of pure carbon dioxide, you can suffocate without air. Other volcanic gases are poisonous and people have even been killed by acidic gases (ouch).

During an explosive eruption, volcanic ash is hurled up to 45 km in the air. Several cubic kilometers of ash can rain down around the volcano, covering everything in a thick layer of ash. It might look a bit like snow, but it’s rock, and very heavy. Just a few centimeters of volcanic ash is heavy enough to collapse buildings and kill crops.

You also have to watch out for rocks hurled out of volcanoes during an eruption. These volcanic bombs can be meters across and be hurled hundreds of meters and even kilometers away from the volcanic vent. Imagine a rock the size of a house falling from the sky.

But the volcano danger that kills more people every year is known as a pyroclastic flow. In some eruptions, hot rock and gas flow down the side of the volcano at speeds greater than 700 km/hour. A wall of material as hot as 1,000 degrees C plunges down the side of the volcano and can travel hundreds of kilometers away from the vent, destroying anything in its path. This is what destroyed the ancient Roman town of Pompeii.

Volcanoes are beautiful sights, but they have their dangers too, so be careful.

We have written many articles about volcanoes for Universe Today. Here’s an article about lightning around Redoubt volcano in Alaska.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

References:
http://www.geo.mtu.edu/volcanoes/hazards/primer/
http://www.appstate.edu/~abbottrn/vlcns/

What are Active Volcanoes?

Strombolian eruption

Geologists classify volcanoes into three distinct groups: dormant, extinct and active volcanoes. Dormant volcanoes haven’t erupted in a long time, but they could again; extinct volcanoes have erupted for thousands of years and might be dead. Active volcanoes, on the other hand, erupted recently, and they’re probably going to erupt again soon.

There are approximately 500 active volcanoes in the world today, not including those underneath the oceans. In fact, as you read these words, there are probably 20 volcanoes erupting right now. Between 50-70 volcanoes are erupting every year, 160 have erupted in the last decade. And there are about 550 that have erupted since the beginning of recorded history.

The definition of an active volcano is difficult to pin down, since single volcanoes can have networks of volcanic vents across their flanks. And Iceland, there can be eruptions along volcanic fields hundreds of kilometers long. At Mexico’s Michoacan-Guanajuanto field, there are 1,400 cinder cones, maars and shield volcanoes coming from a single magma chamber.

And these are just the volcanoes on land. Scientists estimate that 3/4 of the lava that reaches the Earth’s surface happens underwater at the submarine midocean ridges.

So when does a volcano become dormant or extinct? A volcano is active if it’s currently erupting or showing signs of unrest. The Smithsonian Global Volcanism Program defines an active volcano as having erupted within the last 10,000 years. A volcano finally goes extinct when there’s no lava supply in the magma chamber beneath the volcano.

We have written many articles about volcanoes for Universe Today. Here’s an article about dormant volcanoes, and here’s an article about extinct volcanoes.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

A’a Lava

A'a lava

[/caption]
There are several different kinds of lava, depending on the chemical composition and temperature of the molten rock that erupts from a volcano. The smooth variety is called pahoehoe, and the rougher variety is known as a’a (pronounced ah-ah). A’a is a Hawaiian word meaning “stony with rough lava”.

If you’ve ever been to the Big Island of Hawaii and gone for a hike, you’ve seen a’a lava. It’s incredibly rough and jagged black rock that takes forever to walk across; and tears your shoes apart as you go.

During an eruption, a’a lava comes out of the volcano as a very thick (viscous) lava that travels very slowly. The inside of an a’a lava flow is thick and dense. Surrounding this thick dense core is a sharp spiny surface of cooling rock. These fragments of rock are carried on the top of the a’a lava flow and make a crunching grinding sound as the lava flows downhill.

Once the lava flow stops, it can take weeks or even years for the lava to harden completely. The interior dense core hardens in place with the jagged fragments surrounding it. This is why old a’a flows are so sharp and jagged.

A’a flows move slowly – you could easily outrun one – but they move fast enough to tear down buildings, cover roads, and destroy vegetation.

The smoother pahoehoe lava can turn into a’a lava as it gets further downhill. This happens because of the delicate balance of gas content in the lava, the changes in lava viscosity, and the rate of deformation as the lava flows and cools. Once this balance changes, the pahoehoe can change into a’a. Of course, a’a lava never changes back into pahoehoe.

We have written many articles about volcanoes for Universe Today. Here’s an article about lava tubes on Pavonis Mons… on Mars. And here’s an article about the dark lava floor of crater Billy.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

Magma Chamber

Strombolian eruption

[/caption]
Here on the surface of the Earth, the ground is cool and comfortable. But as you descend into the Earth, temperatures increase. By the time you get to the Earth’s mantle, temperatures can get more than 1000 degrees C. The high temperatures cause rocks to melt into magma. This magma collects together into large underground pools called magma chambers.

The molten rock in a magma chamber is under tremendous pressure. This pressure fractures the rock, and the magma seeps through these cracks, rising to the surface. When the magma finally reaches the surface, you get a volcanic eruption. What started out as magma inside the Earth becomes lava, ash, gas and volcanic rock.

Magma chambers are hard to detect. That’s because they can be deep underground. The magma chambers that scientists actually know about are only 1 to 10 km under the surface. Scientists can identify the location of magma chambers through seismology. They detect the minor earthquakes that happen as magma moves up through through the rock into and out of a magma chamber.

Once a volcano erupts, it empties out the magma chamber, causing the surrounding rock to collapse inward. If enough rock collapses, you can get a large depression at the surface of the Earth called a caldera.

In 2006, drillers in Hawaii accidently pierced into an active magma chamber. It was the first time that magma had ever been studied “in its natural habitat.” They were searching for geothermal energy sources at a depth of 2.5 km when their drill bit went into the magma chamber. Molten rock went back up the bore hole several meters and then solidified so the scientists could study it.

We have written many articles about volcanoes for Universe Today. Here’s an article about the difference between magma and lava. And here’s an article about different types of volcanoes.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

Volcanic Gas

Volcanic Gas

[/caption]
The material that erupts out of a volcano starts as magma deep underground. Much of this magma is rock, but it can also contain pockets of volcanic gas dissolved into it. As the magma rises up, these dissolved gasses begin to form tiny bubbles as the pressure gets lower. As it gets closer to the surface, the bubbles increase in number and size creating additional pressure inside the volcano.

The volcanic gas undergoes a tremendous increase in volume when the magma reaches the surface and erupts. This expansion can be the driving force of explosive eruptions.

The primary components in volcanic gas are water vapor, carbon dioxide and sulfur (either sulfur dioxide or hydrogen sulfide). But you can also find nitrogen, argon, helium, neon, methane, carbon dioxide and hydrogen. Approximately 60% of total emissions released by volcanoes is water vapor, and carbon dioxide accounts for 10 to 40% of emissions. Although that sounds like a candidate for greenhouse gases, volcanoes actually contribute only 1% of the carbon dioxide released into the atmosphere every year.

You might be surprised to know that poisonous gases were responsible for about 3% of all volcano-related deaths from 1900 to 1986. Some people were killed by acidic corrosion (ouch) while others were asphyxiated.

We have written many articles about volcanoes for Universe Today. Here’s an article about different types of volcanoes, and here’s an article about the biggest volcano in the Solar System.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.