Libra

Libra

[/caption]

Libra is a constellation of the zodiac, positioned on the ecliptic plane between between Virgo to the west and Scorpius to the east. It is a faint group of stars and not easy to recognize. Its two major stars once once represented the claws of Scorpius. How and when it came to be recognized by its present designation is unknown. Libra covers approximately 538 square degrees of sky and contains 6 stars in its asterism. There are 46 Bayer Flamsteed designated stars within Libra and it is bordered by Serpens Caput, Virgo, Hydra, Centaurus, Lupus, Scorpius and Ophiuchus. Libra can be seen by all observers at latitudes between +65° and ?90° and is best seen at culmination during the month of June.

In mythology, the Alpha and Beta stars of Libra once represented Chelae Scorpionis, the northern and southern claws of the Scorpion. Who knows exactly where and when it became depicted as a set of scales, but the Romans identified it with the scales held by Astraea, the goddess of justice. They believed the Moon was in Libra when Rome was founded and the astrological sign represented balance because this is where the Sun was housed during autumnal equinox. Oddly enough, Libra is the only astrological symbol that doesn’t depict some type of living creature.

Once you’ve located it, let’s take a binocular tour of Libra, beginning with Alpha Librae – Zubenelgenubi – the “a” symbol on our map. Despite its alpha designation, it’s not the brightest star here, but what you’ll find here is a wonderful, visual double star. Alpha Librae “The Southern Claw” is located approximately 77 light years from the Sun, and the components are easily separated with even the slightest visual aid. Look for a beautiful yellow coloration to the spectral type A3 primary star and a slight blue tinge to the far fainter type F4 companion. Zubenelgenubi is close to the ecliptic so it can be easily occulted by the Moon!

Now, hop to Beta Librae – Zubeneschamali – the “B” symbol on our map. “The Northern Claw” is actually the brightest star in Libra and also one of the furthest away at about 160 light years from Earth. Beta Librae is a blue dwarf star of spectral type B8, what would appear to be a rather ordinary main sequence star – but take a really close look in binoculars. Does it appear a little green to you? Zubeneschamali is running a high temperature – more than twice that of our own Sun – produces light with a simple spectrum. This makes it a perfect candidate for examining interstellar gas and dust which lay between us and it – but its rapid hydrogen fusion also causes it to appear a little more green than other stars. A color rarely seen in stars! What’s more, Beta Librae spins about 100 times faster than our Sun and shines about 130 brighter. Not bad for a star that not even as evolved as Sirius!

Point your binoculars further south for Sigma Librae – the “O” symbol with the little flag on our map. Its traditional name is Zubenhakrabi – a cool class M (M3) rather-luminous red giant. Located approximately 292 light years from our solar system, Sigma is rather special – a prototype of its own group of ultra-small-amplitude variables which are called Sigma Librae variable stars. What are they? Pulsing red giants, of course! It doesn’t change its brightness much, maybe only 0.16 magnitudes over a 20-day period, but knowing you’re looking at dying solar mass star, with a dead helium core, fueled by internal nuclear-burning shells of helium and hydrogen is still undeniably fascinating! What’s Zubenhakrabi future like? Chances are it will just eventually become a Mira-type variable star that will eventually shed its outer skin, leaving its now-content carbon-oxygen center to become just another of the white dwarf stars of the night!

Time to get out the telescope and head for NGC 5694 (RA 14:39:36.5 Dec -26:32:18). This 10th magnitude, irregularly shaped globular cluster was discovered by Sir William Herschel in 1784 and is one of the more remote globular clusters of the Milky Way Galaxy at a distance of about 113 thousand light years. If you find it difficult to resolve, you’d be right. Its brightest stars average about magnitude 16 and so far none of them have been discovered to be variable. Why bother if it is so dim? Because this globular cluster is a curiosity! It’s moving… and it’s moving fast. According to studies, NGC 5694 can either be a hyperbolic orbit or may be elevated into a higher energy orbit during its evolution. It is possible that NGC 5694 may have once belonged to the Magellanic Clouds. Thanks to work done by Lee (et al) who discovered one red giant star, we know that it has a “unique chemical abundance pattern” and an “an extragalactic origin”. No wonder it’s so faint….

Need a big telescope challenge? Then try NGC5792 (RA 14:58.4 Dec -01:05). At around magnitude 12, it’s going to take some dark sky to catch this nearly edge-on spiral galaxy, but it is worth your time and trouble. As part of the Herschel catalog, you’ll find a distracting star on the western edge, but very pretty spiral galaxy structure with a bright nucleus await you. At 85 million light years away, it still shows some very nice form to large aperture.

Before you put away your telescope, try NGC 5903/5898 (RA 15:18.6 Dec -24:04). This binary elliptical galaxy pair is quite achievable in an 8″ telescope with dark skies and good seeing conditions. You’ll find them about three degrees northeast of Sigma, and just north of a pair of 7th magnitude stars. While northernmost NGC 5903 seems to be nothing more than a faint elliptical with a brighter concentration toward the center and an almost identical elliptical – NGC 5898 – to the southwest, you’re probably asking yourself… Why the big deal over two small ellipticals? First off, NGC 5903 is Herschel III.139 and NGC 5898 is Herschel III.138…two more to add to your studies. And second? The Very Large Array has studied this galaxy pair in the spectral lines of neutral hydrogen. The brighter of the pair, NGC 5898, shows evidence of ionized gas which has been collected from outside its galactic realm – while NGC 5903 seems to be running streamers of material toward its neighbor. A double-galaxy, double-accretion event! But there’s more… Look to the southeast and you’ll double your pleasure and double your fun as you discover two double stars instead of just one! Sometimes we overlook field stars for reasons of study – but don’t do it tonight. Even mid-sized telescopes can easily reveal this twin pair of galaxies sharing “their stuff,” as well as a pair of double stars in the same low power field of view. (Psst…slim and dim MCG 043607 and quasar 1514-241 are also here!) Ain’t it grand?

Tip the “scales” in your favor if you have a big telescope and get a good star chart. There’s lots more in Libra than you think!

Source: Wikipedia
Star Chart Courtesy of Your Sky.

Axis Tilt of Neptune

Neptune from Voyager 2. Image credit: NASA/JPL

[/caption]
For all the things different about Neptune from Earth, here’s something that’s remarkably similar. The tilt of Neptune’s axis is 28.32 degrees. Compare that to the Earth’s tilt of 23.5 degrees.

With such a similar axial tilt, Neptune has very similar seasonal variations to Earth. For half of its orbit around the Sun, Neptune’s northern pole is tilted towards the Earth, and then for the other half of its orbit, the southern pole faces the Sun.

One of the biggest effects of the seasonal variation on Neptune is the current “hotspot” at Neptune’s southern pole. While most of Neptune has an average temperature of around -200 Celsius, Neptune’s south pole is about 10 degrees warmer. This makes the south pole warm enough so that methane gas – frozen in the rest of Neptune’s atmosphere – can escape into space.

Once Neptune’s seasons reverse, the hotspot will shift back to Neptune’s north pole.

We have written many stories about Neptune for Universe Today. Here’s an article about how there could be oceans deep down within Neptune’s interior, and some movies of Neptune captured by Hubble.

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We have recorded an entire episode of Astronomy Cast just about Neptune. You can listen to it here, Episode 63: Neptune.

Life on Neptune

Neptune, captured by Voyager 2. Image credit: NASA

[/caption]
We know there’s life on Earth, but could there be live on Neptune? And if there is life on Neptune, what kind of life is it?

Wherever we find liquid water on Earth, we find life. Whether that water is thousands of meters beneath the ground, inside nuclear reactors, or inside glaciers. As long as there’s water, there’s life. Of course, it’s just microbial life – but still, life.

To find life on Neptune, the planet would need to have a source of energy that bacterial life can exploit, as well as a standing source of liquid water. At its surface, the temperature of Neptune dips down to 55 Kelvin. That’s very cold, and there’s no way liquid water could exist.

But as you travel down into Neptune’s interior, temperatures and pressures increase. And there could very well be a point inside the planet where water remains as a liquid, and life could exist inside it. Of course, this region would be hundreds of kilometers below the surface, and would be impossible for us to study. So for now, it will have to remain a mystery.

Right now, scientists don’t know if there’s any life on Neptune, and the conditions on the planet seem very hostile for life. It’s unlikely we’ll ever find any there.

We wrote a detailed article on Universe Today about the possibility that there are oceans inside Neptune and other gas giant planets.

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We have recorded an entire episode of Astronomy Cast just about Neptune. You can listen to it here, Episode 63: Neptune.

Mass of Neptune

Neptune compared to Earth. Image credit: NASA

[/caption]
The mass of Neptune is 1.02×1026 kg.

That’s a pretty big number. If you wrote it out, it would be 102,000,000,000,000,000,000,000,000 kg. That’s still hard to wrap your brain around, so let’s give you some context. The mass of the Earth is 6 x 1024 kg. In other words, the mass of Neptune is 17 times the mass of the Earth.

Neptune is actually more massive than Uranus. Uranus has only 14.5 times the mass of Earth, while Neptune has 17 times the mass of Earth.

Of course, the mass of Neptune is pretty tiny compared to some of the more massive objects in the Solar System. Neptune has only 5% the mass of Jupiter, and you could have 19,400 Neptunes to match the mass of the Sun.

We have written many stories about Neptune on Universe Today. Here’s an article about how it might have used its mass to capture Triton.

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We have recorded an entire episode of Astronomy Cast just about Neptune. You can listen to it here, Episode 63: Neptune.

Pictures of Neptune

Neptune from Voyager 2. Image credit: NASA/JPL

Here is a collection of all the best pictures of Neptune captured by Voyager 2, Hubble and Earth-based telescopes. Unfortunately, only one spacecraft, Voyager 2, has ever visited Neptune up close, so all the closeup images of Neptune were captured over the course of just a few days as Voyager 2 swept by the planet in 1989.


[/caption]
This is a classic picture of Neptune captured by NASA’s Voyager 2 spacecraft during its 1989 flyby of Neptune. The NASA spacecraft had already visited Jupiter, Saturn and Uranus during its trip, and Neptune was the final stop on its grand tour of the planets before speeding off into deep space. You can see a giant storm raging on the surface of Neptune, which scientists have named Neptune’s Great Dark Spot.


Neptune and its Great Dark Spot. Image credit: NASA/JPL
Neptune and its Great Dark Spot. Image credit: NASA/JPL

Here’s an amazing pic of Neptune captured by Voyager 2. In this image, the planet’s Great Dark Spot is much more visible. You can also see a white storm around the rim of the great dark spot, which scientists call a “scooter”.


Neptune seen by Hubble. Image credit: Hubble
Neptune seen by Hubble. Image credit: Hubble

This Neptune photo was captured by the mighty Hubble Space Telescope. It shows just how powerful and sensitive Hubble is. Keep in mind that Neptune is 4.5 billion kilometers away from Earth. Another interesting feature is the fact that the dark spot seems to be missing in this image of Neptune.


Clouds above Neptune. Image credit: NASA/JPL
Clouds above Neptune. Image credit: NASA/JPL

This amazing Neptune pic shows distinct clouds hovering above Neptune’s lower cloud deck. You can even see shadows cast onto the surface of Neptune by these clouds. Astronomers think that the clouds are made of methane gas. This image of Neptune was captured by NASA’s Voyager 2 during its 1989 Neptune flyby.


Neptune's largest Moon, Triton. Image credit: NASA/JPL
Neptune's largest Moon, Triton. Image credit: NASA/JPL

This is an incredible image of Neptune’s largest moon Triton, which was also seen by Voyager during its 1989 flyby of Neptune and its moons. It was captured at an altitude of 146,000 km above the surface of Triton.


Neptune seen from Earth. Image credit: Keck
Neptune seen from Earth. Image credit: Keck

And finally, here’s a Neptune picture captured from Earth. It was taken by the Keck II telescope in Hawaii. This is one of the largest telescopes in the world, and it’s equipped with an adaptive optics instrument that allows the telescope to remove the blurring effects of the Earth’s atmosphere.

Gravity on Neptune

Neptune compared to Earth. Image credit: NASA

[/caption]
Neptune is a gas planet, so it doesn’t have a solid surface. If you tried to walk on the surface of Neptune, you’d sink right in. But let’s say you could walk on Neptune. How strong is the gravity on Neptune? How heavy would you feel?

The surface gravity of Neptune is 1.14 times the gravity on Earth. In other words, if you could actually walk on Neptune, you would feel only a little heavier than if you were walking on Earth. If you weighed 100 kg on Earth, you would weight 114 kg on Neptune. Compare that to the much lower gravity you would feel on the Moon (16.5%) or Mars (37.6%).

Neptune has much more mass than Earth. In fact, it has a mass of 17 times the mass of the Earth. You would think that would make the gravity much more extreme. But it also has a much larger size. The diameter of Neptune is 3.8 times the diameter of Earth. This brings the gravity on Neptune down to a very comfortable 114% the gravity of Earth.

Except for the non-solid part, walking on Neptune would feel very comfortable.

Want to learn more about the gravity on the Moon, or the gravity on Mars?

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We have recorded an entire episode of Astronomy Cast just about Neptune. You can listen to it here, Episode 63: Neptune.

How Far is Neptune from Earth?

Neptune, captured by Voyager 2. Image credit: NASA

[/caption]
Here’s a quick answer: Neptune is approximately 4.4 billion km away from the Earth.

Have you ever wondered how far Neptune is from the Earth? It’s actually a bit of a trick question. That’s because the distance between Neptune and Earth is constantly changing, depending on where they are in their orbits around the Sun.

It gets even more complicated, because both Earth and Neptune follow the Sun on elliptical orbits. They both have a closest point to the Sun, called perihelion, and a distant point, called aphelion.

So, the closest point occurs when Earth and Neptune are on the same side of the Sun. Earth is at its most distant point from the Sun, and Neptune is at its closest. At this point, Earth and Neptune are separated by only 4.301 billion kilometers.

At their most distant point, Earth and Neptune are on opposite sides of the Sun, at the most distant points on their orbits. At this point, Earth and Neptune are separated by 4.553 billion kilometers.

If you’re interested, here’s an article that lists how far away all the planets are from the Sun and Earth.

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We have recorded an entire episode of Astronomy Cast just about Neptune. You can listen to it here, Episode 63: Neptune.

Density of Neptune

Composition of Neptune. Credit: NASA

[/caption]
The density of Neptune is 1.638 g/cm3.

Just to give you some comparison, the density of water is 1 g/sm3. In other words, if you had a bathtub big enough, Neptune would sink into it. This is different for Saturn which has a density of less than 1. While Neptune sinks, Saturn would float. Of course, both planets are much less dense than Earth, with a density of 5.51 g/cm3.

Want to calculate the density of Neptune on your own? It’s pretty simple math. Just take the mass of Neptune, and divide it by its volume.

The mass of Neptune is 1.0243×1026 kg, and the volume of Neptune is 6.254×1013 km3. Divide the two, and convert to grams per cubic centimeter, and you’ll get the density of Neptune: 1.638 g/cm3.

We have written many stories about Neptune on Universe Today. Here’s an article about how there might be liquid oceans deep within Neptune. And here’s an article with cool videos of Neptune captured by Hubble.

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We have recorded an entire episode of Astronomy Cast just about Neptune. You can listen to it here, Episode 63: Neptune.

Diameter of Neptune

Neptune compared to Earth. Image credit: NASA

[/caption]
The diameter of Neptune is approximately 49,500 km. This makes Neptune the 4th largest planet in the Solar System, after Jupiter, Saturn and Uranus.

I say approximately because the diameter of Neptune changes depending on where you measure it. Neptune is rotating on its axis, completing a full day once every 16 hours or so. This rapid rotation flattens Neptune out slightly so that the diameter measured from pole to pole is less than the equatorial diameter.

Neptune’s polar diameter is 48,682 km. While its equatorial diameter is 49,528 km. In other words, points on the equator are 423 km more distant from the center of Neptune than the poles.

Want some comparison? The diameter of Neptune is about 3.9 times the diameter of Earth.

We have written many stories about Neptune for Universe Today. Here’s an article about how Neptune’s south pole is the warmest part of the planet.

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We have recorded an entire episode of Astronomy Cast just about Neptune. You can listen to it here, Episode 63: Neptune.

How Long is a Day on Neptune?

Rotation of Neptune. Image credit: Hubble

[/caption]
A day on Neptune is 16 hours, 6 minutes and 36 seconds.

Wait, not so fast! Here’s the problem. Neptune isn’t a single solid object like the terrestrial planets, so different parts of the planet rotate at different speeds. This is a process that astronomers call differential rotation. Neptune’s equatorial zone takes about 18 hours to complete a rotation – that’s slower than the planet’s averate 16.1 hour rotation period. And the polar regions can take just 12 hours to rotate; much more quickly than the average.

This big difference in rotational rate between the equatorial regions and the planet’s poles means that Neptune has a strong latitudinal wind shear. This helps to generate the strongest winds in the Solar System. Astronomers have clocked winds on Neptune going as fast as 2,400 km/hour (1,500 miles/hour).

We have done several stories about Neptune on Universe Today. Here’s an article about movies of Neptune captured by Hubble. These show its rotation.

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We have recorded an entire episode of Astronomy Cast just about Neptune. You can listen to it here, Episode 63: Neptune.