Orion

Orion

[/caption]

The constellation of Orion resides on the celestial equator and is one of the most brilliant and recognized in the world. It was part of Ptolemy’s original constellation charts and remains as one of the 88 modern constellations adopted by the International Astronomical Union. Orion spans 594 square degrees of sky, ranking 26th in overall size. It contains 7 main stars in its asterism and has 81 Bayer Flamsteed stars within its confines. Orion is bordered by the constellations of Gemini, Taurus, Eridanus, Lepus and Monoceros. It is visible to all observers located at latitudes between +85° and ?75° and is best seen at culmination during the month of January.

Orion has one annual meteor shower associated with it which occurs during an eight day window around the date of October 20, with the peak on the early morning hours of that date. The Orionid meteor shower radiant – or point or origin – is near the border of the constellation of Taurus and the fall rate averages about 30 per hour visible during optimum conditions – such as a moonless night. These particular meteors are rated at very fast, with speeds recorded of up to 67 kilometers per second upon entry into the Earth’s atmosphere. The Orionids are also noted for color – the trails appearing in shades of red, blue or yellow – and leaving long, lasting trains. While the peak occurs on October 20, look for activity to begin on the morning of October 16 and last through around October 24.

Because the stellar patterns of Orion are so vivid and symmetrical, this constellation has been recognized throughout history and has a long and colorful mythology associated with it. Orion is meant to represent the celestial “Hunter” and the three bright “belt” stars are recognized around the world. Orion is often depicted as standing in the river Eridanus, holding his bow before him, with the club raised over his head – while his hunting dogs (Canis Major and Minor) trail behind and the rabbit (Lepus) hides at his feet. Some myths have Orion killed by the scorpion (Scorpius) and others have him associated with fighting the bull (Taurus) and with the Plieades. Because Orion is viewed at a different angle in the Southern Hemisphere, it is often called the “Saucepan” and cultural mythology also differs. No matter how you see this great collection of stars, you’ll find it leads to an even greater collection of deep sky objects! So many, if fact, that a simple star chart would become quickly overloaded if we were to list them all!

Let’s begin our visual and binocular tour of Orion with its brightest star, Alpha – the “a” symbol on our map. Located in the northeastern corner of Orion and about 425 light years from our solar system, Betelgeuse, like many red giant stars, it is inherently unstable – varying irregularly by as much 1.3 magnitudes in cycles up to six years in length. At its brightest, Betelgeuse can appear more luminous than Rigel (Beta) and its diameter could encompass all the inner planets and much of the asteroid belt. Due to low density, observers would have a hard time determining where space ended and the star began! Allowing for all ranges of radiation, Betelgeuse is more than 50,000 times brighter than our own Sun. Like Antares, it is a “star within a star” – its dense core region radiating with such ferocity that internal pressure drives matter away. Betelgeuse’s core has probably fused all its hydrogen and is now releasing energy through helium fusion – resulting in atoms essential to organic life (carbon and oxygen). Even though it hasn’t gone supernova yet, when it does it will outshine the Moon!

Now, hop to the southwest corner for a look at Beta Orionis – the “B” symbol on our map. Known as Rigel and located about 775 light years from Earth, this hot, blue supergiant star shines with the light of 40,000 suns. If we were to include the amount of light that Rigel produces in the ultra-violet spectrum, too it would produce up to 66,000 times as much light as Sol! But, Rigel also holds a surprise. Point even a small telescope its way and you’ll find out that Beta Orionis is a binary star. Its 7th magnitude companion is separated well away, but you’ll need to keep Rigel to the edge of the field of view to cut the brilliance in order to see it. This small companion orbits about 50 Pluto distances away from its giant companion… which is a good thing since it one day may explode!

Take a look at Gamma Orionis – the “Y” symbol on our map. Bellatrix is known as the “Amazon Star” and is about 240 light years away. While it was once believed to be associated with the other stars of Orion, we’ve learned that Bellatrix is a star in its own right – separate from the others. Historically is was used to measure stellar luminosity until it was discovered that it was an eruptive variable star! While you won’t much notice a tenth of a magnitude change in the 27th brightest star in the sky, it’s still cool to know that it’s collecting a dusty hood that fooled astronomers for many years!

Don’t forget to look at Kappa Orionis, too – the “k” symbol on our map. Even though Saiph is about the same distance away and same size as Rigel, it sure doesn’t look the same, does it? Why? Because Saiph is a much hotter star and most of its light is emitted in the ultraviolet range. It, too, is destined to lead a short, violent stellar life – ending a supernova.

For other interesting stars to take a look at in binoculars, check out U Orionis – it’s a Mira-type variable star. Most of the time U holds an average magnitude of 4.8, Mira-type regular variable is U Orionis, which usually has a brightness of 4.8 but every 368.3 days it drops down to a telescopic magnitude 13! Pi 5 Orionis is a nice visual double star, but even a small telescope and will thoroughly enjoy Sigma Orionis – a true multiple star system. Don’t forget Lambda, too! It’s also a great telescopic binary star!

Because Orion is so loaded with deep sky objects, we’ll only touch on a few of the great for binoculars and telescopes. Absolutely one of the best is Messier 42 located in the asterism of “Orion’s Sword”. Known as the Great Orion Nebula – M42 is actually a great cloud of glowing gases whose size is beyond our comprehension. More than 20,000 times larger than our own solar system, its light is mainly fluorescent. For most people, the Great Orion Nebula will appear to have a slight greenish color – the result of doubly ionized oxygen. At the fueling heart of this immense region is an area known as the Trapezium, its four easily seen stars perhaps the most celebrated multiple system in the night sky. The Trapezium itself belongs to a faint cluster of stars which are now approaching the main sequence stage in an area known as the “Huygenian Region”. Buried in this cloud of mainly hydrogen gas there are many star forming regions amidst the bright ribbons and curls. Appearing like “knots” in the structure, these are known as “Herbig-Haro objectsâ€? and are believed to be stars in their earliest states. There are also a great number of faint reddish stars and erratic variables – very young stars that may be of the accreting T Tauri type. Along with these are “flare starsâ€? whose rapid variations mean that amateur astronomers have a chance to witness new activity. While you view M42, note that the region appears very turbulent. There is a very good reason. The Great Nebula’s many different areas move at different speeds both in recession and approach. The expansion rate at the outer edges of the nebula is an indication of radiation from the very youngest stars known. Although it may be as many as 23,000 years since the Trapezium brought it to “light” it is entirely possible that new stars are still forming in M42. Don’t forget the area of nebulosity that appears slightly separate is designated as M43!

Now, let’s check out the “Running Man” in a large telescope. Located just a half a degree north of M42/43, this tripartite nebula consists of three separate areas of emission and reflection nebulae that seem to be visually connected. NGCs 1977, 1975 and 1973 would probably be pretty spectacular if they were a bit more distant from their grand neighbor! This whispery soft, conjoining nebula’s fueling source is multiple star 42 Orionis. To the eye, a lovely triangle of bright nebulae with several enshrouded stars makes a wonderfully large region for exploration. Can you see the “Running Man” within?

Ready for some open star clusters for your binoculars and telescopes? Hop about four fingerwidths southeast of Betelgeuse for NGC 2186. This large, loose open cluster is well suited to larger binoculars or small telescopes and contains around 50 or so members that range in magnitude from 9 to 11. Look for many distinct pairings! NGC 2186 has been a study area for astronomers and is known to contain circumstellar disks, which may be either newly-forming solar systems or just regenerated materials left over from formation. The next hop is just northwest of apparent double Kappa Orionis. NGC 2194 is also a Herschel object and at magnitude 8.5 is well suited to smaller scopes. This rich galactic cluster can be well resolved in larger scopes and the similar magnitude members make it a delightful spray of stars.

Now, let’s look at some galactic star clusters that belong to different catalogs. The first three are known as “Dolidzes” and your marker star is Gamma Orionis. The first is an easy hop of about one degree northeast of Gamma – Dolidze 21. Here we have what is considered a “poorâ€? open cluster. Not because it isn’t nice – but because it isn’t populous. It is home to around 20 or so low wattage stars of mixed magnitude with no real asterism to make it special. The second is about one degree northwest of Gamma – Dolidze 17. The primary members of this bright group could easily be snatched with even small binoculars and would probably be prettier in that fashion. Five very prominent stars cluster together with some fainter members that are, again, poorly constructed. But it includes a couple of nice visual pairs. Low power is a bonus on this one to make it recognizable. The last is about two degrees north of Gamma – Dolidze 19. Two well-spaced roughly 8th magnitude stars stand right out with a looping chain of far fainter stars between them and a couple of relatively bright members dotted around the edges. With the very faint stars added in, there are probably three dozen stars all told and this one is by far the largest concentration of this “Do” trio.

Now let’s have a look at a deceptive open cluster located in Barnard’s Loop around 2 degrees northeast of bright nebula M78. While billed at a magnitude of roughly 8, NGC 2112 might be a binocular object, but it’s a challenging one. This open cluster consists of around 50 or so stars of mixed magnitudes and only the brightest can be seen in small aperture. Add a little more size in equipment and you’ll find a moderately concentrated, small cloud of stars that is fairly distinguishable against a stellar background. Also known as Collinder 76, this unusual cluster resides in the galactic disc – an area of mostly very old, metal poor stars. It is believed that NGC 2112 is of a more intermediate age, based on recent photometric and spectroscopic data.

Are you ready for a challenge? Then take advantage of dark sky time to head to the eastern-most star in the belt – Zeta Orionis. Alnitak resides at a distance of some 1600 light-years, but this 1.7 magnitude beauty contains many surprises – like being a triple system. Fine optics, high power and steady skies will be needed to reveal its members. About 15′ east and you will see that Alnitak also resides in a fantastic field of nebulosity which is illuminated by our tripartite star. NGC 2024 is an outstanding area of emission that holds a rough magnitude of 8 – viewable in small scopes but requiring a dark sky. So what’s so exciting about a fuzzy patch? Look again, for this beauty is known as the Flame Nebula.

Larger telescopes will deeply appreciate this nebula’s many dark lanes, bright filaments and unique shape. For the large scope, place Zeta out of the field of view to the north at high power and allow your eyes to re-adjust. When you look again, you will see a long, faded ribbon of nebulosity called IC 434 to the south of Zeta that stretches for over a degree. The eastern edge of the “ribbonâ€? is very bright and mists away to the west, but look almost directly in the center for a small dark notch with two faint stars to the south. You have now located one of the most famous of the Barnard dark nebulae – B33. B33 is also known as the Horsehead Nebula. It’s a very tough visual object – the classic chess piece shape is only seen in photographs – but those of you who have large aperture can see a dark “nodeâ€? that is improved with a filter. B33 itself is nothing more than a small area cosmically (about 1 light-year in expanse) of obscuring dark dust, non-luminous gas, and dark matter – but what an incredible shape. If you do not succeed at first attempt? Do not give up. The “Horsehead” is one of the most challenging objects in the sky and has been observed with apertures as small as 150mm.

Now challenge yourself to a 6th magnitude open cluster just northwest of the top star in Orion’s bow (RA 04 49 24 Dec +10 56 00) as we have a look at NGC 1662. Discovered on this night in 1784 and cataloged as H VII.1 by Sir William Herschel, it won’t make the popular lists because it’s nothing more than a double handful of stars…or is it? Studied extensively for proper motion, this galactic cluster may have once held more stars earlier in its lifetime. Enjoy its bright blue and gold members and mark your notes for locating a binocular deep sky object!

Orion is filled with many more great deep sky objects, so get a good star chart and go hunting with the “Hunter”!

Sources:
Wikipedia
Chandra Observatory
Star chart courtesy of Your Sky.

Astronomers Now Looking For Exomoons Around Exoplanets

An artist impression of an exomoon orbiting an exoplanet, could the exoplanet's wobble help astronomers? (Andy McLatchie)

[/caption]It looks like astronomers have already grown tired of taking direct observations of exoplanets, been there, done that. So they are now pushing for the next great discovery: the detection of exomoons orbiting exoplanets. In a new study, a British astronomer wants to use a technique more commonly associated with the indirect observation of exoplanets. This technique watches a candidate star to see if it wobbles. The wobble is caused by the gravitational pull of the orbiting exoplanet, revealing its presence.

Now, according to David Kipping, the presence of exomoons can also be detected via the “wobble method”. Track an exoplanet during its orbit around a star to see its own wobble due to the gravitational interaction between the exoplanet/exomoon system. As if we needed any more convincing that this is not already an ‘all kinds of awesome’ project, Kipping has another motivation behind watching exoplanets wobble. He wants to find Earth-like exomoons with the potential for extraterrestrial life…

If you sat me in a room and asked me for ten years over and over again: “If you were an astronomer, and you had infinite funds, what would you want to discover?“, I don’t think I would ever arrive at the answer: the natural satellites orbiting exoplanets.” However, now I have read an article about it and studied the abstracts of a few papers, it doesn’t seem like such a strange proposition.

David Kipping, an astronomer working at the University College London (UCL), has acquired funding to investigate his method of measuring the wobble of exoplanets to reveal the presence of exomoons, and to measure their mass and distance from the exoplanet.

Until now astronomers have only looked at the changes in the position of a planet as it orbits its star. This has made it difficult to confirm the presence of a moon as these changes can be caused by other phenomena, such as a smaller planet,” said Kipping. “By adopting this new method and looking at variations in a planet’s position and velocity each time it passes in front of its star, we gain far more reliable information and have the ability to detect an Earth-mass moon around a Neptune-mass gas planet.”

Kipping’s work appeared in the December 11th Monthly Notices of the Royal Astronomical Society and could help the search for exomoons that lie within the habitable zone. Of the 300+ exoplanets observed so far, 30 are within the habitable zones of their host stars, but the planets themselves are large gas giants, several times the size of Jupiter. These gas giants are therefore assumed to be hostile for the formation for life (life as we know it in any case) and so have been discounted as habitable exoplanets.

But what if these exoplanets in the habitable zone have Earth-like exomoons orbiting them? Could they be detected? It would appear so.

Prof. Keith Mason, Chief Executive of the Science and Technology Facilities Council (STFC), added, “It’s very exciting that we can now gather so much information about distant moons as well as distant planets. If some of these gas giants found outside our Solar System have moons, like Jupiter and Saturn, there’s a real possibility that some of them could be Earth-like.”

Watch this space for an announcement of the first Earth-like exomoon to be discovered, at the rate of current technological advancement in astronomy, we could be looking at our first Earth-like exoplanet exomoon sooner than we anticipated…

Source: New Scientist, STFC

Ophiuchus

Ophiuchus

[/caption]

The sprawling constellation of Ophiuchus sits on the celestial equator and was one of the 48 original constellations charted by Ptolemy and later adopted by the IAU. Of the 13 zodiacal constellations (constellations through which the Sun passes during the course of the year), Ophiuchus is the only one not designated as an astrological sign. It covers 948 square degrees of sky and ranks 11th in size. Ophiuchus contains 10 main stars in its asterism and has 62 Bayer Flamsteed designated stars within its confines. Ophiuchus is bordered by the constellations of Hercules, Serpens Caput, Libra, Scorpius, Sagittarius, Serpens Cauda and Aquila. It is visible to all observers at latitudes between +80° and ?80° and is best seen at culmination during the month of July.

There is one well documented annual meteor shower associated with the constellation of Ophiuchus which peaks on or about June 20 of each year – the Ophiuchids. The radiant – or point of origin – for this meteor shower is near Sagittarius border. The fall rate varies from average 8 to 20 meteors per hour, with occasionally many more. Watching on a Moonless night when the constellation is at its highest will greatly improve the amount of meteors you see!

At one time, the constellation of Ophiuchus was referred to as “Serpentarius”, whose name literally meant the “serpent bearer”. In most mythology representations, you’ll see Ophiuchus represented as a man grappling with a large snake; his body representing the division of the snake “Serpens” into two parts – Serpens Caput and Serpens Cauda. Even though divided by Ophiuchus, they still are only one constellation. It is possible the mythological figure could represent the healer Asclepius, placed close to Chirion (Sagittarius), his mentor. The man could also be the Trojan priest Laocoön, who was killed by a pair of sea serpents after warning about the Trojan Horse. It could even be Apollo wrestling with the Python to take control of the oracle at Delphi…. But no matter which figure you choose, this huge constellation holds a vast number of deep sky riches just waiting to be explored!

Let’s begin our binocular tour of Ophiuchus with its brightest star – Alpha – the “a” symbol on our map. Located about 47 light years distant from Earth, Rasalhague is an A-type giant star that’s recently exhausted its core hydrogen reserves. But, “the Head of the Serpent Collector” isn’t alone, but Rasalhague is a binary star. Power up in a telescope to look for a faint, very close companion only 0.5″ away.

Head on next to Beta Ophiuchi, the “B” symbol on our map. This K-type giant star is located about 82 light years from our solar system and its proper name is Cheleb. Also known as 44 Oph, we have something of a mystery star here. Precise radial velocity measurements taken over 8 consecutive nights in 1992 June and 2 nights in 1989 July revealed the presence of a 0.255 +/- 0.005 day period. A pulsing variable star! It’s easy to catch in binoculars, but you might want a telescope for what’s nearby…

It’s called Barnard’s Star and found due east of Beta (RA 17:57:48.5 Dec +04:41:36). Located approximately 6 light-years away from, Barnard’s Star is a very low-mass red dwarf star. In 1916, American astronomer E. E. Barnard measured its proper motion as 10.3 arc seconds per year, which remains the largest known proper motion of any star relative to the Sun. Even though it’s an ancient star at 7 to 12 billion years old, there are still possibilities of flare events – such as one that occurred in 1998. The flare was surprising because intense stellar activity is not expected around stars of such age.

Now have a look at Eta Ophiuchi – the “n” symbol on our map. This time you’ll want a telescope because Sabik is a difficult to split binary star system. Here we have two fairly unremarkable A class main sequence stars – close to equal in magnitude and not anything special if taken apart. However, together the Eta binary is strange because they orbit around a common center in a very fast and highly elliptical path.

Now put your binoculars on Deta – the “8” symbol on our map. Known as Yed Prior, you’ll quickly notice it is an optical double star with Epsilon whose name is Yed Posterior. Delta Ophiuchi is a red giant star located 170 light years from our solar system, while Epsilon is 108 light years away and a G-class giant star. These two are important, because they’ll guide you to our next two objects to the east.

For binoculars and telescopes, it’s time to enjoy some of Ophicuhus many Messier Catalog riches and we star with the giant globular clusters, M10 and M12. You’ll find Messier 10 located at RA 18:57:0 Dec -04:05:57. Discovered by Charles Messier on May 29, 1764 this awesome globular cluster hangs out about 4,300 light-years and spans about 23 light years of space. You can see it easily in binoculars, but it will require a telescope to begin resolving stars. Nearby, Messier 12 (RA 10:47:14 Dec -01:58:52) is also an all instruments type of globular cluster, but with a much looser structure. Why? A study published in 2006 revealed that M12 may have lost as many as one million of its low mass stars to the gravitational influence of the Milky Way!

Large telescopes will love Messier 19 (RA 17:02.6 Dec -26:16). It’s one of the most oblate globular clusters in the sky and thanks to the work of Harlow Shapely, we’ve learned to take a better look, because he estimated there are twice as many stars along M19’s major axis than along its minor. This rich, dense globular cluster was one of Charles Messier’s original discoveries, but Sir William Herschel was the one to resolve it into “countless stars of mag 14, 15, 16”.

Try your hand with Messier 107 (RA 16:32.5 Dec -13:03). This 20,000 light year distant globular cluster is full, too! Discovered by Pierre Méchain in April, 1782 and later added to Messier’s catalog by Helen Sayer Hogg, this one is also a resolution delight in larger telescopes. Look for some dark obscured regions. According to SEDS: the star distribution is called “very open” by Kenneth Glyn Jones, who points out that this cluster “enables the interstellar regions to be examined more easily, and globular clusters are important `laboratories’ in which to study the process by which galaxies evolve.”

Don’t forget Messier 63 (RA 17:01.2 Dec -30:07)! It’s another globular cluster whose distortion by our own Milky Way’s influences are easily apparent in a telescope. Thanks to studies by the Chandra X-Ray Observatory, we know it contains a large number of X-ray binaries, proving that M63 has undergone core collapse.

How about Messier 14 (RA 17:37:36.1 Dec -03:14:45). Spanning across 101 light years of space and located about 30,000 light years away, this magnificent globular cluster is often overlooked. Discovered by Charles Messier on June 1, 1764, this bright ball of stars is near magnitude 7 and well within range of binoculars and small telescopes. M14 had a nova occur in 1948, but it wasn’t discovered until 1964 when the photographic plates were being surveyed. It wasn’t done with surprises either… In an area where all stars should be about the same age, a carbon star was discovered in 1997!

For challenging large telescope studies, take a look at three planetary nebulae. NGC 6309 (RA 17:14.1 Dec -12:55) is often referred to as the “Box Nebula”, for its unique structure. Far brighter NGC 6572 (RA 18:12.1 Dec +06:51) has the wonderful nickname of the “Blue Racquetball”. In his observing notes, Walter Scott Houston writes: Walter Scott Houston wrote, “My old 10-inch reflector showed the vivid green color of the object with any power more than 50x. It is interesting to note that older observers have described NGC 6572 as green, while the younger ones tend to call it vivid blue.”. I see blue… Do you? And don’t forget to try NGC 6369 (RA 17:29:20.4 Dec -23:45:35)… the “Little Ghost” is a seasonal favorite!

There’s many, many more wonderful objects just waiting in Ophiuchus for you to explore. Be sure to get a good star chart and you’ll see why the “Serpent Bearer” still stands grasping the stars… There’s so much to do!

Sources:
SEDS
Chandra Observatory
Chart Courtesy of Your Sky.

Weekend SkyWatcher’s Forecast – December 12-14, 2008

And from the crew of Apollo 8, we close with good night, good luck, a Merry Christmas and God bless all of you - all of you on the good Earth. -Frank Borman from Apollo 8, December 24, 1968

[/caption]

“And from the crew of Apollo 8, we close with good night, good luck, a Merry Christmas and God bless all of you – all of you on the good Earth.” -Frank Borman from Apollo 8, December 24, 1968

Greetings, fellow SkyWatchers! It’s Friiiiiiday and time to start the weekend in a stellar way! So what if it’s Full Moon? It’s the “Moon Before Yule” so let’s explore some of the myths that surround it and a nice double star, too. By Saturday you’ll be enjoying the Geminid Meteor Shower and just enough time to catch a planetary nebula before the Moon rises. End the weekend in a Messier kind of way as we take a look in Auriga at two of its finest. Time to get out your binoculars and telescopes and head out into the Moonrise….

Friday, December 12, 2008 – Today we honor the birth of S. W. Burnham. Born in 1838, this American astronomer spent 50 years of his life surveying the night sky for double stars. Although at the time it was believed that all visual binaries had been accounted for, Burnham’s work was eventually published as the General Catalogue of 1290 Double Stars. His keen eye and diligent study opened the doors for him at observatories such as Yerkes and Lick. His lifetime count of binaries discovered eventually reached 1340. He was also the very first to observe what would eventually be termed a “Herbig-Haro object,” and he discovered six NGC and twenty-one IC objects.

Today in 1961, OSCAR 1 was launched. The project started in 1960; the name stands for Orbital Satellite Carrying Amateur Radio. OSCAR 1 operated in orbit for 22 days, transmitting a signal in Morse Code – the simple greeting “Hi.” The success of the mission helped to promote interest in amateur radio which continues to this day!

Tonight it’s the “Full Moon before Yule.” Not only that, but the Moon is at perigee – its closest point to the Earth. While you might hear a tall tale or two about it being brighter than normal since it is also close to solstice, judge for yourself! Is it truly brighter? Or just an illusion? While you’re out, turn a telescope Selene’s way and let’s scan the surface. On the eastern limb we see the bright splash ray patterns surrounding ancient Furnerius – yet the rays themselves emanate from the much younger crater Furnerius A. All over the visible side, we see small points light up: a testament to the Moon’s violent past written in its scarred lines. Take a look now at the western limb…for the sunrise is about to advance around it.

Now, let’s take a visual journey about a fistwidth west-southwest of brilliant Aldebaran to take a look at Lambda Tauri (RA 04 00 40 Dec +12 29 25). Although it has no proper name, it is one of the very brightest of eclipsing variable stars, and was one of the first to be identified as such, in 1848. Orbiting about 13 million kilometers away from the primary star is its spectroscopic companion – so close that we can only distinguish the two stars by the changes which take place about every four days. Keep an eye on Lambda and watch as it drops sharply by almost a magnitude one night, and recovers less than 24 hours later!

Saturday, December 13, 2008 – Today in 1920, the first stellar diameter was measured by Francis Pease with an interferometer at Mt. Wilson. His target? Betelgeuse! While you’re out enjoying the Geminid Meteor Shower tonight, see if you can spot the brilliant orange giant as it rises!

How about something a little more suited to the mid-sized scope tonight? Set your sights on Alpha Fornacis and let’s head about three fingerwidths northeast (RA 03 33 15 Dec -25 52 18) for NGC 1360. In a 6″ telescope, you’ll find the 11th magnitude spectroscopic double star in the center of this planetary nebula to be very easy – but be sure to avert because the nebula itself is very elongated. Like most of my favorite things, this planetary is a rule-breaker since it doesn’t have an obvious shell structure. But why? Rather than believe it is not a true planetary, studies have shown that it could quite possibly be a very highly evolved one – an evolution which has allowed its gases to begin to mix with the interstellar medium. Although faint and diffuse for northern observers, those in the south will recognize this as Bennett 15!

Sunday, December 14, 2008 – Today was a very busy day in astronomy history. Tycho Brahe was born in 1546. Brahe was a Danish pre-telescopic astronomer who established the first modern observatory in 1582 and gave Kepler his first job in the field. And in 1962, the Mariner 2 spacecraft made a flyby of Venus and became the first successful interplanetary probe.

The Moon will rise a little later this evening, but we’re going to run ahead of it tonight and enjoy some studies in Auriga! Looking roughly like a pentagon in shape, start by identifying the brightest of these stars – Alpha Aurigae (Capella). Due south of it is the second brightest star, Beta (Menkalinan). After aiming binoculars at Beta, go north about one-third the distance between the two and enjoy all the stars!

Messier 38
Messier 38
Messier 36
Messier 36

You will note two very conspicuous clusters of stars in this area, and so did Le Gentil in 1749. Binoculars will show them both in the same field, as will telescopes using lowest power. The dimmest of these clusters is M38 (RA 05 28 43 Dec +35 51 18), and it will appear vaguely cruciform in shape. At roughly 4200 light-years away, larger aperture will be needed to resolve the 100 or so fainter members. About two and a half degrees to the southeast you will see the much brighter M36 (RA 05 36 12 Dec +34 08 24). More easily resolved in binoculars and small scopes, this “jewel box” galactic cluster is quite young – and about 100 light-years closer!

Until next week… Ask for the Moon, but keep on reaching for the stars!

This week’s awesome images are: S. W. Burnham (historical image), OSCAR 1 (archival image), Earth’s Moon – Apollo 11, Credit: NASA, Lambda Tauri – Credit: Palomar Observatory, courtesy of Caltech, NGC 1360 – Credit: Palomar Observatory, courtesy of Caltech, M38 and M36 – Credit: Palomar Observatory, courtesy of Caltech. We thank you so much!

The Christmas Star – Fact or Fiction?

Three wisemen and the Christmas star?

‘Tis the season… And every year around this time people notice the brilliant ‘star’ to the west just after sunset. For astronomers, we know it’s the appearance of the planet Venus, but noticing it for the average person brings on questions about the holidays. Was the Christmas Star real?

Regardless of your faith, the story of the ‘Star of Bethlehem’ is one of the most powerful and enigmatic symbols of Christianity. For centuries, scientists, scholars and historians have debated about the nature of this biblical light that heralded an event. Was it purely a divine sign, created miraculously to mark a special birth? Or was it an astronomical event in its own right?

David Reneke, news editor of Australia’s Sky and Space Magazine, believes astronomers may have found the answer – or at least something that fits all the known facts – basing his research on the highly esteemed gospel according to Matthew, the first of the four gospels in the New Testament. It would appear to be the first written and this version places key players together in the same time period. “It’s generally accepted by most researchers that Christ was born between 3 BC and 1 AD.” says Dave. With the aid of modern astronomy software programs astronomers can reproduce the night sky exactly as it was, thousands of years ago. Humans are curious and so was Dave, so he turned back the hands of time and the stars to the time of that long ago Christmas…

“We found out something startling.” said Reneke, “It looks like the ‘Christmas star’ really did exist,”

Two thousand years ago, astronomy and astrology were considered one and the same. The motions of the heavenly bodies were used to determine the events of history, and the fate of people’s lives. Of the various groups of priests and prophets of this period, those which commanded the most respect were the Magi – whose origins are not entirely clear. Known as ‘wise men’ , we can only assume they were actually priests who relied on their knowledge of astronomy/astrology.

Armed with an approximate date, Dave assumed the ‘Star of Bethlehem’ was not just a localized event and could be observed by sky-watchers elsewhere in the world, not just by the Magi. Historical records and modern-day computer simulations indicate a rare series of planetary groupings, also known as conjunctions, during the years 3 BC and 2 BC In fact, this was one of the most remarkable periods in terms of celestial events in the last 3,000 years!

“Like the final pieces of a difficult jig-saw puzzle, our fabled biblical beacon is starting to reveal itself,” David said. “On 12 August, 3 BC, Jupiter and Venus appeared very close together just before sunrise, appearing as bright morning ‘stars.’ It would have been visible in the eastern dawn sky of the Middle East from about 3:45 to 5:20 a.m.”

But it didn’t stop there. The crowning touch came ten months later, on 17 June 2 BC, as Venus and Jupiter joined up again in the constellation Leo. This time the two planets were so close that, without the use of our modern optical aids, they would have looked like one single, brilliant star. According to Dave’s research, Jupiter was known as the “planet of Kings” and Saturn as the “Protector of the Jews”. This could easily have been interpreted as a sign that the Jewish Messiah had been, or was about to be, born. Also, Leo was thought to denote royalty and power. An interpretation? Perhaps. But, do not forget the times in which this occurred. Astronomy and astrology intermingled. This whole sequence of events could have been enough for at least three astrologers to see this as sign in the heavens and make their way Jerusalem.

“Now, this doesn’t mean that astrology works,” Reneke said. “We haven’t ruled out other possibilities for the Star of Bethlehem but it does make our search more rewarding to find a truly interesting astronomical event that happened during the most likely time for the Nativity.”

Whatever the Star of Bethlehem was, it has had more impact on humankind than any star before or since. It is also possible that the mystery of the Star will never be completely solved. For many of us though, it is the mystery itself that drives us to find the solution.

David Reneke, one of Australia’s most well known and respected amateur astronomers and lecturers, has over 40 years experience in astronomy with links to some of the world’s leading astronomical institutions. David is also the News Editor for Australia’s Sky and Space Magazine, he teaches astronomy at college level, is an invited speaker at astronomy conventions throughout Australia, a feature writer for major Australian newspapers, and is a science correspondent for ABC and commercial radio stations. In these weekly radio interviews David regularly appears on about 60 networked stations around the nation with all the latest news and on general astronomy and space discovery issues. Look for his story about the “Christmas Star” to air locally on Good Morning, America. Our thanks to Dave for sharing with us!

Octans

Octans

[/caption]

The small constellation southern circumpolar constellation of Norma was originally charted by Abbe Nicolas Louis de Lacaille who named it. It was later adopted by the IAU as one of the modern 88 constellations. Octans contains the south celestial pole and spans 297 square degrees of sky – ranking 50th in size. It has 3 primary stars in its asterism and 27 Bayer Flamsteed designated stars within its confines. Octans is bordered by the constellations of Tucana, Indus, Pavo, Apus, Chamaeleon, Mensa and Hydrus. It is visible to observers located at latitudes between +0° and ?90° and its primary stars are best seen at culmination during the month of October.

Since Octans is considered a “new” constellation, there is no mythology associated with it – only Abbe Nicolas Louis de Lacaille’s love of all things science and what Octans is meant to represent. In Lacaille’s time, the octant was used to aid in celestial navigation and it was relatively a new addition, having just come upon the scene when invented by John Hadley in 1730. It was a tool which Lacaille used, but Octans also has other scientific means, which Lacaille was well aware. In Latin, the octan is the eighth part of a circle, so its dual-edged meaning is not lost on some of us! Just as the octant was used to measure Polaris position in the circumpolar north – now the octant became “Octans” – a permanent reminder of the tool forever engraved in the circumpolar stars of the south.

Let’s begin our binocular tour of Octans with Beta – the “B” symbol on our map. At one time, Beta Octantis was another star in located in the constellation of Hydrus. It was part of the tail and was the southernmost star catalogued by Dutch navigator Frederic de Houtman. Located about 140 light years from Earth, this yellow- orange class K (K0) giant star isn’t anything special – except for it helps to point the way to Nu. Located only 69 light years away from our solar system, Nu Octantis is a wonderful star because here we have an example of what our own Sun may one day become. Right now, it has given up on hydrogen fusion, waiting quietly and just beginning to expand into a giant star. Although it will take 100 million years, it will become more than 60 times brighter and 15 times larger than it is now. Although we can’t see it, Nu also has a companion star – one that orbits almost as close as Earth is to the Sun!

Now, have a look at Delta – the figure “8” shape – in your binoculars. Guess what? If you were standing on Saturn, Delta would be the pole star! But, since we’re not, we’ll take a look at Sigma – the “o” symbol. This faint beauty is about as close to the southern pole star as we can get. Sigma Octantis is a yellow subgiant star which just left the main sequence and is about to expand into a red giant star. It’s about twice as large as our Sun and about 270 light years away.

For a nice binocular site, take a look at visual triple star – the Gammas. It’s the “Y” symbol on our map. Or try a visual double star when you get a double slice of Pi, located just above Delta. That only leaves poor R Octantis – a variable star.

For a real big telescope challenge, try the closest NGC object to the southern pole – NGC 2573 (RA 04:41:42 Dec -89:20:04). Polarissima Australis is a faint galaxy – close to magnitude 14! Believe it or not, it was discovered by was discovered by Sir John Herschel at the Cape of Good Hope with an 18″ f/13 speculum telescope and has been the recent target of investigations looking for gamma ray bursters.

Sources:
Wikipedia
University of Illinois
University of Wisconsin

Star Chart courtesy of Your Sky.

Geminid Meteor Shower Peaks On December 13

Geminids by Bob Yen / APOD.

[/caption]

Are you ready for one of the most hauntingly beautiful displays of celestial fireworks around? Then be on hand on the night of December 13 through the morning of December 14… Because the Geminids are coming to town!

Somewhere in England in the year 1862, Robert Greg and B.V. Marsh were busy sky watching. Across the sea, so was Professor Alex Twining in the United States. Both were doing independent studies on a little known meteor shower that looked like it was going to become an annual event and the count was on. In those years, the activity was prodigious, the meteor stream didn’t produce more than a few per hour, but as studies increases, so did the intensity. In fifteen years, astronomers realized they were on to a full blown meteoroid stream which was producing up to 14 per hour and increasing annually. By 1900 the rate had increased to over 20; and by the 1930s, up to 70 per hour. In the late 1990’s observers recorded an outstanding 110 per hour during a moonless night – but just what’s to blame for this sharp rise in activity?

Most meteor showers are historic – documented and recorded for hundreds of years – and we know them as originating with cometary debris. But when astronomers began looking for the Geminids’ parent comet, they found none. It wasn’t until October 11, 1983 that Simon Green and John K. Davies, using data from NASA’s Infrared Astronomical Satellite, detected an object (confirmed the next night by Charles Kowal) that matched the orbit of the Geminid meteoroid stream. But this wasn’t a comet… it was an asteroid. Originally designated as 1983 TB, but later renamed 3200 Phaethon, this apparently rocky solar system member has a highly elliptical orbit that places it within 0.15 AU of the Sun during every solar system tour. But asteroids can’t fragment like a comet – or can they? The original hypothesis placed Phaethon’s orbit within the asteroid belt. This means it may have collided with one or more asteroids, creating rocky debris.

While this theory sounded good, but the more we studied the more we realized the meteoroid “path” occurred when Phaethon neared the Sun. So now our asteroid is behaving like a comet, yet it doesn’t develop a tail. So what exactly is this “thing?” Well, we do know that 5.1 kilometer diameter Phaethon orbits like a comet, yet has the spectral signature of an asteroid. By studying photographs of the meteor showers, scientists have determined that the meteors are denser than cometary material, yet not as dense as asteroid fragments. This leads them to believe Phaethon is probably an extinct comet which has gathered a thick layer of interplanetary dust during its travels, yet retains the ice-like nucleus. We know that it doesn’t outgas so the mystery deepens even more.

In July 1996 the plot thickened even more when astronomers discovered something in the asteroid belt which may have affected 3200 Phaeton – another comet-like asteroid named Elst-Pizarro. On 1996 photographic plates, it displayed a tail, but no coma. Another Phaeton-like mystery? Possibly. Asteroid Elst-Pizarro pretty much makes its home in the main asteroid belt where asteroid-asteroid collisions are bound to happen and when Phaeton passes through every 17 months, the same could have happened to it. Until we are able to take physical samples of this “mystery,” we may never fully understand what Phaethon is, but we can fully appreciate the annual display it produces!

Thanks to the wide path of the stream, folks the world over get an opportunity to enjoy the show of the Geminids. The traditional peak time is as soon as the constellation of Gemini appears, around mid-evening. The radiant for the shower is near the bright star Castor – but meteors can originate from many points in the sky. From around 2 AM until dawn (when our local sky window is aimed directly into the stream) it is possible to see about one “shooting star” every 30 seconds. The most successful of observing nights are ones where you are comfortable, so be sure to use a reclining chair or pad on the ground while looking up… And dress warmly! Although the rising Moon will greatly interfere, please get away from light sources when possible – it will triple the amount of meteors you see.

Remember, even if you only spot just a few Geminids each one you see is a wonderful, unique mystery. They are tiny dust particles that measure no more than 10 microns across. What makes them special? Cometary fragments are about 0.3 gm/cc in density while Geminid particles measure more on the 2 to 3 gm/cc, end of the scale. More like rocks than ice. Enjoy the incredible and mysterious Geminids!

Geminid Photo by Bob Yen / APOD

Norma

Norma

[/caption]

The small constellation of Norma is located south of the ecliptic plane. It was originally charted by Abbe Nicolas Louis de Lacaille who named it “Norma et Regula”. It was later adopted by the International Astronomical Union as one of the 88 modern constellations and its name shortened to Norma. It covers approximately 165 square degrees of sky and ranks 77th in size. Norma has 2 main stars in its asterism and 13 Bayer Flamsteed designated stars within its confines. It is bordered by the constellations of Scorpius, Lupus, Circinus, Triangulum Australe and Ara. Norma is visible to all observers positioned at latitudes between +30° and ?90° and is best seen at culmination during the month of July.

The constellation of Norma has one annual meteor shower associated with it – the Gamma Normids. Activity begins on or about March 11 each year, lasting through March 21 with a peak date of March 16. This meteor shower only produces 5 to 9 meteors per hour at maximum and has only been studied within the last 50 years, so activity rates are sporadic and understudied.

Since Norma is considered a “new” constellation, there is no mythology associated with it – only Abbe Nicolas Louis de Lacaille’s love of all things science and what Norma is meant to represent. Originally named Norma et Regula, this dim collection of stars in Lacaille’s native language would have been “L’Équerre et La Règle”, meaning “The Set Square and The Ruler”. While it is difficult to visualize a set of drafting tools from this set of stars, Norma’s brighter stars do produce a few nice angles that will help guide you to some of its many deep sky riches.

Let’s start off our binocular tour of Norma with the “Y2” symbol on our map – Gamma 1 and Gamma 2 Normae. In a constellation which has no alpha or beta designations, fourth magnitude Gamma 2 is the brightest star here. The yellow giant star is located about 125 light years from Earth, but in binoculars you’ll notice another companion – Gamma 1. This is an optical double star because Gamma 1 is 1500 light years away!

For a true binary star, hop north to Epsilon Normae – the backwards “3” symbol on our map. Comprised of a 4.5 magnitude primary star and a 7.5 magnitude secondary, Epsilon is spaced widely enough apart to be split with steady binoculars and easily with a small telescope. Oddly enough, when it comes to this fixed position binary star, both components are also spectroscopic binary stars, too… Making this a quadruple star system!

Now, hop south for Iota 1 Normae – but bring a telescope. This 4.6 magnitude A7 subgiant star is located 271 light years from our solar system and its 11th magnitude companion has a close separation of 11″. This pair orbit each other very quickly, making a full revolution in just about 26 years.

Ready for a little variability? Then let’s start with Mu Normae – the “u” symbol. Mu is suspected of being an Alpha Cygni variable, with a magnitude range of 4.87 at brightest to a minimum of 4.98. This A type supergiant star doesn’t quite pulse like Cepheid – it exhibits non-radial pulsations during its brightness changes which may last from several days to several weeks! To follow a variable star whose changes are hugely apparent, take a look at R Normae. Here we have a Mira-type variable. It might take 507 for its changes to occur, but when they do, R will go from being an easy to spot in binoculars magnitude 6.5 to a need a telescope and star chart to find it magnitude 13.9!

Now, identify Kappa Normae – because it’s a guidestar to two awesome open clusters. In average 10X50 binoculars, if you place Kappa to the top of the field of view, you’ll easily see NGC 6067 (RA 16:13.2 Dec -54:13) to the north. Possessing about 100 stars spread in 13 arc minute field, this magnitude 5.6 cluster resolves beautifully in a telescope. It contains its share of Cepheid variables, too, but look for a wonderful bar-like structure with a concentration at one end. It’s bright, rich and very photogenic! Would you like to look at one more variable star?

With Kappa still at the top of your field of view, you’ll spy another open cluster to the south. Now, here’s a bonus, because you’ll find variable star S Normae locate right smack dab in the middle of open star cluster NGC 6087 (RA 16:18.9 Dec -57:54). At a combined magnitude of about 5.5, this galactic star cluster is meant for binoculars and telescopes of every size. At its heart beats S Normae, a well-known Cepheid that range in brightness from magnitude 6.1 to magnitude 6.8 magnitude every 9.75 days like clockwork. This particular cluster has been used as a cepheid calibrator to judge reddening influences down the main sequences in these type of clusters. Besides, it’s pretty!

A great mid-sized telescope object is open cluster NGC 6134 (RA 16:27:46 Dec -49:09:06). At around magnitude 7, this rich open cluster spans a generous 7 arc minutes and displays its stellar finery. Home to Delta-Scuti variables and rich in metal content, you’ll like this one, because it will give you an opportunity to look for a rare variable blue straggler star discovered there in 2001!

Larger telescopes are needed to spot NGC 6031 (RA 16:07:35.0 Dec -54:00:54.0) to the northwest of Kappa, though. Now approaching magnitude 9, this open cluster is far more sparsely arrange and definitely less populated. At around 2 arc minutes in size, this relatively young galactic cluster is nearly solar in its metal content and a nice challenge for your lists.

How about a challenging globular cluster? Then try your hand at NGC 5946 (RA 15:35:28.5 Dec -50:39:34). Located more than 34,000 light years from our Sun, this 10th magnitude globular was discovered on July 7, 1834 by John Herschel. At class IX, it’s a loose structure, but a great challenge. Why does it look like it has fallen apart? Maybe because it has. This particular one has undergone core collapse!

Last on our list for Norma is Collinder 299 (RA 16 18 42 Dec -55 07 00). This sparse open cluster will be hard to distinguish from the background stars, but use the lowest magnification you have available. We’re looking at a very old open cluster and one that has its stars chemically tagged along with other disk stars to help “unravel the dissipative history of the Galactic disk”.

There are many other great objects in Norma to have a look at, too… So grab a detailed star chart and get “normalized”….

Sources: SEDS, Wikipedia
Chart Courtesy of Your Sky.

Time Magazine Top 10 Scientific Discoveries of 2008: Space and Physics Dominate

Direct observation of an exoplanet orbiting the star Fomalhaut - Number 6 in the top 10 (NASA/HST)

[/caption]2008 has been an astounding year of scientific discovery. To celebrate this fact, Time Magazine has listed the “Top 10 Scientific Discoveries” where space exploration and physics dominate. Other disciplines are also listed; including zoology, microbiology, technology and biochemistry, but the number 1 slot goes to the most ambitious physics experiment of our time. Can you guess what it is? Also, of all our endeavours in space, can you pick out three that Time Magazine has singled out as being the most important?

As we approach the end of the year, ready to welcome in 2009, it is good to take stock and celebrate the mind-blowing achievements mankind has accomplished. Read on for the top 10 scientific discoveries of 2008

The best thing about writing for a leading space news blog is that you gain wonderful overview to all our endeavours in astronomy, space flight, physics, politics (yes, space exploration has everything to do with politics), space commercialization and science in general. 2008 has been such a rich year for space exploration; we’ve landed probes on other worlds, studied other worlds orbiting distant stars, peered deep into the quantum world, learnt profound things about our own planet, developed cutting-edge instrumentation and redefined the human existence in the cosmos. We might not have all the answers (in fact, I think we are only just beginning to scratch the surface of our understanding of the Universe), but we have embarked on an enlightening journey on which we hope to build strong foundations for the next year of scientific discovery.

In an effort to assemble some of the most profound scientific endeavours of this year, Time Magazine has somehow narrowed the focus down to just 10 discoveries. Out of the ten, four are space and physics related, so here they are:

6. Brave New Worlds: First direct observations of exoplanets

Infrared observations of a multi-exoplanet star system HR 8799 (Keck Observatory)
Infrared observations of a multi-exoplanet star system HR 8799 (Keck Observatory)
In November, we saw a flood of images of alien worlds orbiting distant stars. On the same day, Hubble publicised strikingly sharp images of an exoplanet orbiting a star called Fomalhaut (pictured top) and then a ground-based Keck-Gemini campaign made the first direct observations of a multi-exoplanet system around a star called HR8799 (pictured left). A few days later, yet another image came in from another research group at the European Southern Observatory, spotting the very compact orbit of an exoplanet around the star Beta Pictorus.

Considering there have never been any direct observations of exoplanets before November 2008–although we have known about the presence of worlds orbiting other stars for many years via indirect methods–this has been a revolutionary year for exoplanet hunters.

4. China Soars into Space: First taikonaut carries out successful spacewalk

Zhai Zhigang exits the Shenzhou-7 capsule with Earth overhead (Xinhua/BBC)
Zhai Zhigang exits the Shenzhou-7 capsule with Earth overhead (Xinhua/BBC)
Following hot on the heels of one of the biggest Olympic Games in Beijing, China launched a three-man crew into space to make history. The taikonauts inside Shenzhou-7 were blasted into space by a Long March II-F rocket on September 25th.

Despite early controversy surrounding recorded spaceship transmissions before the rocket had even launched, and then the sustained efforts by conspiracy theorists to convince the world that the whole thing was staged, mission commander Zhai Zhigang did indeed become the first ever Chinese citizen to carry out a spacewalk. Zhai spent 16 minutes outside of the capsule, attached by an umbilical cable, to triumphantly wave the Chinese flag and retrieve a test sample of solid lubricant attached to the outside of the module. His crew mate Liu Boming was also able to do some spacewalking.

Probably the most incredible thing about the first Chinese spacewalk wasn’t necessarily the spacewalk itself, it was the speed at which China managed to achieve this goal in such a short space of time. The first one-man mission into space was in 2003, the second in 2005, and the third was this year. Getting man into space is no easy task, to build an entire manned program in such a short space of time, from the ground-up, is an outstanding achievement.

2. The North Pole – of Mars: The Phoenix Mars Lander

Phoenix (NASA/UA)
Capturing the world's attention: Phoenix (NASA/UA)
Phoenix studied the surface of the Red Planet for five months. It was intended to only last for three. In that time, this robotic explorer captured the hearts and minds of the world; everybody seemed to be talking about the daily trials and tribulations of this highly successful mission. Perhaps it was because of the constant news updates via the University of Arizona website, or the rapid micro-blogging via Twitter; whatever the reason, Phoenix was a short-lived space celebrity.

During the few weeks on Mars, Phoenix discovered water, studied atmospheric phenomena, plus it characterized the regolith to find it is more “soil-like” than we gave it credit for. However, Phoenix also discovered a chemical called perchlorate that could be hazardous to life on the Martian surface, but there is a flip-side to that coin; the chemical may provide energy for basic forms of life.

Like all good adventures there were twists and turns in Phoenix’s progress, with the odd conspiracy thrown in for good measure. Even during Phoenix’s sad, slow death, the lander had some surprises in store before it slowly slipped into a Sun-deprived, low energy coma.

To give the highly communicative lander the last word, MarsPhoenix on Twitter has recently announced: “Look who made Time Mag’s Top 10 list for Scientific Discoveries in 2008: http://tinyurl.com/5mwt2l

1. Large Hadron Collider

The complexity of the Large Hadron Collider (CERN/LHC/GridPP)
The complexity of the Large Hadron Collider (CERN/LHC/GridPP)

Speaking of “capturing the hearts and minds” of the world, the Large Hadron Collider (LHC) has done just that, but not always in a positive way (although common sense seems to be winning). So, in the #1 spot of Time Magazine’s Top 10 Scientific Discoveries of 2008, the LHC is a clear winner.

In the run-up to the switch-on of the LHC in September, the world’s media focused its attention on the grandest physics experiment ever constructed. The LHC will ultimately probe deep into the world of subatomic particles to help to explain some of the fundamental questions of our Universe. Primarily, the LHC has been designed to hunt for the elusive Higgs boson, but the quest will influence many facets of science. From designing an ultra-fast method of data transmission to unfolding the theoretical microscopic dimensions curled up in space-time, the LHC is a diverse science, with applications we won’t fully appreciate for many years.

Unfortunately, as you may be wondering, the LHC hasn’t actually discovered anything yet, but the high-energy collisions of protons and other, larger subatomic particles, will revolutionize physics. I’d argue that the simple fact the multi-billion euro machine has been built is a discovery of how advanced our technological ability is becoming.

Although the first particles were circulated on that historic day on September 10th, we’ll have to wait for the first particle collisions to occur some time in the summer of 2009. Engineers are currently working hard to repair the estimated £14 million (~$20 million) damage caused by the “quench” that knocked out a number of superconducting electromagnets on September 19th.

For more, check out the Top 10 Scientific Discoveries in Time Magazine, there’s another six that aren’t related to space or physics

Venus and Mercury

Saturn, Venus and Mercury. Image credit: Jimmy Westlake

[/caption]
Venus and Mercury are the two planets that orbit closest to the Sun. Mercury orbits at an average distance of 58 million km, while Venus orbits at a distance of 108 million km. Mercury takes 88 Earth days to complete an orbit, and Venus takes 225 days to orbit the Earth.

And as you’d probably guess, Venus and Mercury are the two hottest planets in the Solar System, but not in the order that you’d think. Even though Mercury orbits closer to the Sun than Venus, it lacks an atmosphere. The side facing the Sun is baked, with a temperature of 425 degrees Celsius, the side facing away from the Sun cools down to -193 degrees Celsius. Venus, on the other hand, has an incredibly thick atmosphere and traps the heat from the Sun. No matter where you go on the planet, the temperature on the surface of Venus is always 462 degrees Celsius.

The composition of Venus and Mercury is similar, they’re both terrestrial planets made of rock and metal. Mercury is more dense than Venus and thought to consist of 60-70% metal, with the rest rock. As mentioned above, Mercury lacks an atmosphere, while Venus has the thickest atmosphere of all the terrestrial planets. The temperatures and pressures are so extreme on the surface of Venus that spacecraft only last a few hours before being crushed and baked.

Both Venus and Mercury are within the orbit of Earth. This means that they’re always located near the Sun in the sky. Sometimes they rise before the Sun, and then fade away as the Sun rises, and sometimes they’re set after the Sun. They appear as the sky darkens, and then pass below the horizon within a few minutes. You need to have a clear view to the horizon to see Mercury, and know when to go looking. Venus, on the other hand can appear quite high in the sky, and is very bright. In fact, Venus is the brightest object in the sky after the Moon.

We have written many articles about both Venus and Mercury on Universe Today. Here’s an article about new images captured of Mercury by NASA’s MESSENGER spacecraft. And here’s an article about a potential way to colonize Venus.

If you’d like more information on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We have also recorded a whole episode of Astronomy Cast that’s just about planet Mercury. Listen to it here, Episode 49: Mercury.

Venus y Mercurio

References:
NASA Solar System Exploration: Venus
NASA Solar System Exploration: Mercury