Age of the Moon

Artist’s impression of the impact that caused the formation of the Moon. Credit: NASA/GSFC

[/caption]
How old is the Moon? Almost the entire Solar System formed 4.6 billion years ago, when the solar nebula collapsed. But astronomers think that the Moon formed later than that, when a Mars-sized protoplanet smashed into the Earth. The debris from the collision splashed into orbit around the Earth and then reformed into the Moon, which still orbits us today.

So when did this happen?

Astronomers think this collision happened about 4.53 billion years ago, about 30-50 million years after the rest of the Solar System formed. This was relatively soon after the formation of the Solar System, and well before the time when life formed on Earth. Our planet was probably still mostly a molten ball of rock, and the impact of the Moon did little to change that. This is the dominant theory of how the Moon formed, but there are others. It’s possible that the Moon was captured by the Earth’s gravity, or it just formed in place around the Earth after the formation of the Solar System.

Evidence for this collision was found by the astronauts of the Apollo Moon landing missions. They turned up lunar rocks that have oxygen isotope compositions which are nearly the same as the Earth. This means that portions of the Moon were once part of the Earth. Scientists announced their findings in 1969 in the journal Science, saying that the Moon was at least 4 billion years old.

More recent research measured tungsten content in rocks returned from the moon. Tungsten-182 is what you get when hafnium-182 decays. So the scientists measured the ratios of tungsten to hafnium to determine exactly when the moon formed. This is where the number 4.527 billion years (give or take 10 million years).

One problem with this technique is that it’s based on the relative age of meteorites used to determine how old the Solar System is. If that research is incorrect, these estimates for the age of the Moon might be incorrect too.

We have written many articles about the Moon for Universe Today. Here’s an article about the giant impactor theory, and here’s an article about how scientists link the formation of the Earth and the Moon.

Here’s an article that talks about how the age of the Moon was determined. And some history from Stony Book labs, the people who analyzed the first moon rocks.

You can listen to a very interesting podcast about the formation of the Moon from Astronomy Cast, Episode 17: Where Did the Moon Come From?

References:
http://www.armaghplanet.com/pdf/AstroTopics/Solar%20System/Deeptime.pdf
http://pubs.usgs.gov/gip/geotime/age.html

‘Little’ Gamma Ray Bursts Really Do Exist

Artist impression of a GRB. Credits: ESA, illustration by ESA/ECF

[/caption]

Gamma-ray bursts (GRBs) are powerful blasts of energy that flash across the Universe. For a brief time, they are the brightest objects in the gamma-ray sky. Astronomers estimate that about 1,400 GRBs per year occur but because no one knows when and where they are going to appear, only a part of them happen to be detected. ESA’s Integral gamma-ray observatory detects about 10 GRBs a year, and those are of the big burst variety. But the spacecraft has observed several low-luminosity gamma-ray bursts, confirming the existence of an entire population of weaker bursts that have hardly been noticed so far. These aren’t just bursts from far away, but just weak bursts that are relatively close by. And astronomers are beginning to think these weak or faint variety of GRBs might be the most common.

When studying Integral’s gamma-ray burst data, Prof. Lorraine Hanlon from the School of Physics, University College Dublin, Ireland, and her colleagues, realized that some of the faintest bursts have distinctive gamma-ray emissions, and also present faint afterglows in the lower-energy X-ray and visible wavelengths.

Since, in general, GRBs are colossal explosions of energy triggered by the collision of very massive and compact objects such as neutron stars or black holes, or by the explosion of incredibly powerful supernovae, or hypernovae, one may think that these bursts are perceived as faint just because they take place very far away from us, in the remote corners of the Universe.

However, Prof. Hanlon and colleagues noticed that these faint bursts, just at the sensitivity threshold of IBIS, seem to originate in our cosmic neighborhood, within the nearby clusters of galaxies.

Distribution of faint GRBs. Credits: S. Foley/UCD
Distribution of faint GRBs. Credits: S. Foley/UCD

“If the bursts we have studied are so ‘close’ in cosmological terms, it means that they are faint from the beginning,” says Hanlon. “From this we can deduce that the processes triggering them could be less energetic than those generating the more powerful bursts we are more used to observing.”

The study team suggests that the faint bursts may be generated by the collapse of a massive star that does not present the characteristics of a supernova, or by the merger of two white dwarfs (small and dense stars about the size of Earth), or by the merger of a white dwarf with a neutron star or a black hole.

“Past observations had already hinted the existence of faint GRBs, and thanks to Integral’s sensitivity we can now say that an entire population of them exist,” added Hanlon. “Actually, their rate may even be higher than that of the most luminous GRBs but, just because they are weaker, we may be only able to see those which are relatively close by.”

“More Integral observations in the coming years will definitively help us understand the phenomenon of faint GRBs, and to explore the nature of this newly observed population,” she concluded.

Source: ESA

The Universe Is Not Expanding Uniformly

Partial map of the Local Group of galaxies. Credit: Planet Quest

[/caption]
A few weeks ago, researchers announced the discovery of a “dark flow” of invisible matter tugging at distant galaxy clusters at the edge of the universe. Now comes more evidence of unseen and unknown forces in the cosmos, but this time its closer to home. A group of researchers have discovered that our particular part of the Universe — out to a distance of 400 million light years — is not expanding uniformly in all directions as expected. To be exact, the expansion is faster in one half of the sky than in the other. “It’s as if, in addition to the expansion, our ‘neighbourhood’ in the Universe has an extra kick in a certain direction,” says Mike Hudson from the University of Waterloo in Ontario, Canada. “We expected the expansion to become more uniform on increasingly larger scales, but that’s not what we found.” If confirmed, their findings will result in a new understanding of the origin of structure in the universe and possible revisions to the standard cosmological model.

Hudson and two other scientists have been conducting research on large-scale cosmic flows and the general expansion of the universe. This expansion increases the distances between galaxies steadily with time, and is called the Hubble flow. Deviations of the velocity of galaxies from the overall Hubble flow is called the “peculiar velocity.” By examining the peculiar velocities of clusters and superclusters scientists can obtain estimates of local mass concentrations that may be responsible for causing any deviations from the Hubble flow.

In particular, these researchers were attempting to address a longstanding question about the origin of the approximately 600 km/s peculiar velocity of the Local Group of galaxies, with respect to the Cosmic Microwave Background.

Using several different surveys they discovered that about 50% of the Local Group’s motion is faster than anticipated. To produce this motion, they believe there must be large unseen and unknown structures in the universe. They write, “The large value of the residual motion implies that there are significant velocities generated by very-large scale structures,” and the structures lie beyond the Local Group.

Brian McNamara, a University Research Chair in UW’s department of physics and astronomy, says Hudson is finding that much of the matter in the nearby universe moves as an ensemble with a surprisingly high speed. “If the work he and others are doing is confirmed, it will require a major revision in the way we think the universe came into being and how it evolved.”

Hudson and his colleagues have submitted a paper to the Royal Astronomical Society, and a preprint version is available here.

Sources: arXiv, University of Waterloo

Why is Venus Express Looking for Life on Earth?

Earth atmospheric molecules detected by Venus Express (ESA)

[/caption]If you are an astronomer looking for a habitable exoplanet orbiting a far-off star, what do you look for? We know from personal experience that we need oxygen and water to live on Earth, so this is a good place to start; look for exoplanets with the spectroscopic signature of O2 and H2O. But this isn’t enough. Venus has oxygen and water in its atmosphere too, so if we only used these two indicators as a measure for habitability, we would be sorely disappointed to find a water and oxygen-rich Venus-like world which has little chance of supporting life (as we know it).

In an effort to understand what a “habitable planet” looks like from afar, European Space Agency (ESA) scientists have decided to do a bit of retrospective astronomy. Venus Express, currently in orbit around Venus, is being used to look back at the blue dot we call home to help us understand what a real habitable planet looks like…

Venus Express (sister ship of ESA’s Mars Express) was launched in November 2005 to begin its seven month journey to Venus. As the spacecraft left Earth orbit, it turned around to take a picture of the blue globe with its Visible and Infrared Thermal Imaging Spectrometer (VIRTIS), but the significance of this quick observation wasn’t realised until a year after Venus Express had entered Venusian orbit. Could the robotic craft be used to watch the Earth from afar?

Giuseppe Piccioni, Venus Express VIRTIS Co-Principal Investigator, in Italy, has been heading a sustained campaign of Earth observations using the VIRTIS instrument orbiting a planet 0.3 AU closer to the Sun. Although Venus has often been referred to as “Earth’s sister planet” the difference couldn’t be more stark. With atmospheric pressures some hundred times that of the Earth, with a choking cocktail of poisonous gases and high surface temperatures, Venus is hardly conducive for life. Earth, on the other hand, has a bountiful ecosystem where life has thrived for over three billion years. However, Piccioni is aware that if viewed from a distance, both Earth and Venus contain some of the basic ingredients for life; how can we be sure distant exoplanets are more Earth-like or more Venus-like? After all, planet habitability doesn’t seem to depend on just oxygen and water.

We see water and molecular oxygen in Earth’s atmosphere, but Venus also shows these signatures. So looking at these molecules is not enough,” says Piccioni. So, in an attempt to seek out other forms of life, the Italian astronomer is looking toward Earth to pick out more subtle signals for the presence of life on alien worlds.

Earth’s oxygen and water as detected by Venus Express (ESA)
Earth’s oxygen and water as detected by Venus Express. The simulated images of Earth are to show which side of the planet was facing Venus at the time; in actuality Earth would appear as a one-pixel dot (ESA)
Venus Express can observe Earth about three times a month, and over the last two years, VIRTIS has captured 40 terrestrial images for analysis. The light captured from these Earth observations cover spectral wavelengths from visible through to near-infrared, but when viewed from Venus, the Earth appears only as a small dot, no bigger than a single pixel in Venus Express’ cameras. Far from being a hindrance, this small dot will help future exoplanet hunters.

Although there are no surface features, this small dot still holds a lot of information. By splitting the light observed into its component wavelengths, the composition of the terrestrial atmosphere can be analysed. Therefore, spectroscopic signals from plant life could be detected for example. “Green plants are bright in the near infrared,” said David Grinspoon, a Venus Express Interdisciplinary Scientist from the Denver Museum of Nature & Science, Colorado, who suggested the programme of sustained Earth observation. “We want to know what can we discern about the Earth’s habitability based on such observations. Whatever we learn about Earth, we can then apply to the study of other worlds,” he added.

Exoplanet hunters are finding more and more alien worlds orbiting stars many light years away, it is only a matter of time before we have the technological ability to image the one-pixel spot of an Earth-like world. By understanding how our habitable planet looks from Venus, we can begin to understand whether these exoplanets are indeed “Earth-like” in every sense of the word…

Source: ESA

Here’s an article about the famous blue dot image of Earth.

Far Side of the Moon

Question: What is the far side of the Moon?

Answer: Did you ever notice that the Moon always looks the same? Sure, it waxes and wanes from a new moon to a full moon, but the bright and dark patches on the Moon always look the same. In fact, these features are so familiar that people call it the Man in the Moon.

This is because the Moon always points the same face towards the Earth. The Moon does actually rotate on its axis, it’s just that the amount of time it takes to make a complete orbit around the Earth matches the amount of time it takes to complete one rotation. In both cases, this is 27.3 days.

So, when you hear people refer to the far side of the Moon, they’re talking about the part of the Moon that always faces away from the Earth. Until we sent spacecraft into orbit around the Moon to take pictures, nobody on Earth had ever seen what the far side of the Moon looks like.

But why does this happen? Over the few billions years since its formation, the Moon has become tidally locked with the Earth. In the distant past, the Moon had different rotation and orbital speeds, and it showed all of its sides to our planet. But the gravity of the Earth tugged at the irregular shapes on the Moon, causing it to slow its rotation down until it was exactly the same length as its orbit.

The Earth, on the other hand, has so much mass that the force of gravity from the Moon pulling on Earth can’t overcome its rotational speed. The Moon does create the tides, though, and causes the ground to rise and fall – it’s just such a small amount that you can’t feel it.

Sometimes people mistakenly call this the dark side of the Moon. But there is no dark side of the Moon. Think about it, when we’re seeing a new moon, that’s because the familiar part that we can always see is in shadow. But at that point, the far side will be bathed in sunlight.

365 Days of Astronomy Podcast

Hopefully you’ve heard about the International Year of Astronomy — a year long celebration in 2009 of the 400th anniversary of Galileo’s first look through the telescope. One part of that celebration is the 365 Days of Astronomy Podcast. There will be one podcast per day, every day, for all 365 days of 2009. The podcasts will be 5 to 10 minutes in duration, and will be available through the 365 Days of Astronomy website and an RSS feed. The 365 Days team has just put out a trailer encouraging everyone to listen every day:

Want to be part of the project?

Not only will you have the chance to listen each day, but you can participate as well. The podcast episodes will be written, recorded and produced by people around the world. Each day will have a specific topic or theme based on The 365 Days of Astronomy Calendar, a daily calendar of astronomical events, themes and ideas created by the IYA.

People participating can choose their own topics, all of which will need to be approved ahead of time. For all the details head on over to the website. And if you’ve never recorded anything before, never fear. There’s even information on how to record a podcast, as well as much more.

You can also follow 365 Days of Astronomy on Twitter.

And, if you thought you’ve heard the voice on the video before, its none other than the golden voice of Mat Kaplan from Planetary Radio.

How Many Moons Does Jupiter Have?

Io Transit by Paul Haese

When it comes to the mighty Jupiter – and seeing Jupiter’s moons through a small telescope or binoculars – timing is everything. Jupiter’s satellites are constantly on the move, and almost any time you observe you’ll see at least one. The four largest of Jupiter’s moons are known as the Galileans, and go by the names of Europa, Callisto, Ganymede and Io. But which one is which and how do you know what you’re looking at?

Thanks to some very cool tools like Sky & Telescope’s Jupiter’s Moon you can tell exactly what time a Jovian event is about to happen and observe it yourself. For example:

Saturday, May 17, 2008

17:36 UT, Io’s shadow begins to cross Jupiter.
18:42 UT, Io begins transit of Jupiter.
19:54 UT, Io’s shadow leaves Jupiter’s disk.
21:00 UT, Io ends transit of Jupiter.

Io Transit by Paul Haese

What transpires will look very much like this awesome photo done by Paul Haese. Jupiter Transit events are easy to observe even with a small telescope, but it does require some techniques. First of all, you cannot simply glance in the eyepiece and see it happening with ease. It does require higher magnification and patience! The trick is to get comfortable and just watch… During your extended observing session, moments of stability will come and go and it won’t take long before you notice a phenomena that recurs. The body of Jupiter’s moons are a little more difficult to spot, but the shadow becomes very easy when you take your time and really look!

So what happens if your equipment or skies aren’t up to the task? Never fear… You’re not left out of the game. Timing is everything. Begin by observing Jupiter well in advance of the event and take note of the Galilean moon’s position. By checking every few minutes or so, you will notice when one is about to go into transit because you’ll see it near Jupiter’s limb. Keep watching… Because it will simply disappear! (This is also a great clue for larger telescopes to understand where to look and where the shadow will appear.)

While viewing through the average telescope isn’t going to be as good as what can be seen photographically, just timing and participating in an event is a wonderful opportunity to expand your astronomy knowledge and experience. Watching a Galilean moon transit Jupiter, or Jupiter’s Red Spot is something which can be done from light polluted skies and doesn’t require a lot of technical skills – just patience. Mark your calendars for 3:50 Universal Time on May 22nd when Jupiter will appear to have no moons at all! Try following the event in advance of the predicted time and report what happens. So how many moons does Jupiter have? The real answer is 63. But the question should be…

How many can you see?

This incredible image of an Io transit was done by Paul Haese, a member of MRO, using a Peltier cooled C14 and Skynyx 2-0 monochrome camera with RGB Astronomik filters. Paul’s planetary imaging skills are legendary. The UK has Damien Peach, the US has Don Parker and AU has Paul Haese! Thank you so much for sharing…

Water on Uranus

Crescent Uranus. Image credit: NASA/JPL

[/caption]
Everything we know about Uranus comes from looking through a telescope. Only one spacecraft, Voyager 2, has ever made a close flyby of the planet. Astronomers suspect there is lots of water on Uranus. Since they’ve never actually sampled the surface of the planet, how could they know?

It all comes down to density.The density of Uranus is the second least in the Solar System, after Saturn. In fact, it has a density that’s only a little higher than water. Since water is very common in the outer Solar System, astronomers suspect that the whole planet is made of mostly water. But it’s not like any water you’ve ever seen.

The temperature at the cloud tops of Uranus is 57 K (-357 F), and that temperature increases as you go down at a very predictable rate. It’s believed that the temperature at the center of Uranus is about 5,000 K. Liquid water can’t survive those kinds of temperatures without boiling away, unless you hold it under huge pressure. The water should be a vapor, but the heat and pressure turns it into a superheated liquid.

Did you know that there might be oceans on Neptune? Here’s an article about it.

And here’s some more information about water on Uranus from the Internet. NASA has an article that talks about superheated water on Uranus.

We have recorded an episode of Astronomy Cast just about Uranus. You can access it here: Episode 62: Uranus.

Seasons on Uranus

Orbit of Uranus. Image credit: IFA

[/caption]
Uranus is one of the strangest planets in the Solar System. Something huge smashed into the planet billions of years ago and knocked it over on its side. While the other planets look like spinning tops as they make their journey around the Sun, Uranus is flipped on its side, and appears to be rolling around the Sun. And this has a dramatic effect on the seasons on Uranus.

The Earth’s tilt gives us our seasons. When the northern hemisphere is tilted towards the Sun, that’s summer. And when it’s tilted away from the Sun, that’s winter for the northern hemisphere. But on Uranus, one hemisphere is pointed towards the Sun, and the other is pointed away. The position of the poles slowly reverse until, half a Uranian year later, it’s the opposite situation. In other words, summer for the northern hemisphere lasts 42 years long, followed by 42 years of winter.

If you could stand at the north pole of Uranus (you can’t, you’d sink right in), you would see the Sun appear on the horizon, circle higher and higher for 21 years and then circle back down to the horizon over the course of another 21 years. Once the Sun went below the horizon, you would experience another 42 years of darkness before the Sun appeared again.

You would expect this bizarre configuration to give Uranus wild seasons; the day side faces the Sun and the atmosphere never rotates to the night side to cool down. The night side is in darkness, and the atmosphere never gets a chance to warm up. As the Sun first shines on a region that was cold and dark for years, it heats it up, generating powerful storms in the atmosphere of Uranus. Early observers reported seeing bands of cloud on Uranus through their telescopes, but when NASA’s Voyager 2 spacecraft arrived, it was blue and featureless. It might be that the changing seasons will bring the storms back to Uranus.

Want to learn about the seasons on other planets? Here’s are the seasons on Mars, and the seasons on Saturn.

Here’s an article from the BBC about the changing seasons on Uranus.

We have recorded an episode of Astronomy Cast just about Uranus. You can access it here: Episode 62: Uranus.

Of Overhead Projectors and Planetarium Foolishness

Overhead projector. Courtesy Alibaba.com

[/caption]

We don’t normally publish political articles here on Universe Today, but I’m going to make an exception here after watching last night’s presidential debate because a.) John McCain mentioned something about a planetarium, which is an area of interest for UT readers, and b.) McCain obviously had no idea what he was talking about. McCain, the Republican presidential nominee pointed out how Barack Obama, the Democratic nominee, has voted for almost a billion dollars of “pork barrel” projects (money for specific pet projects in their districts) and said, “He (Obama) voted for … $3 million for an overhead projector at a planetarium in Chicago, Illinois.”

First of all, there’s a big difference between an overhead projector and a planetarium projection system. Spacewriter’s Ramblings has a great explanation and pictorial description, if you have questions.

Second, if you want to be nitpicky, while Obama requested the funding, he never voted on it.

Obviously, McCain thinks this is a big issue, since this is at least the second time he’s mentioned Obama and planetariums. A few weeks ago he said that Obama has sought money for “planetariums and other foolishness.”

Foolishness! Over 110 million people around the world visit planetariums every year! They are important learning and teaching tools that encourage a science-literate population, and have inspired young people to become astronomers and astronauts, and aspire to many other science-related occupations as well.
Children enjoy the stars and planets at the Morehead Planetarium in Chapel Hill, North Carolina.

Davin Flateau says it much better than I can on his great post at his Perfect Silence blog.

Obama’s website has a list of his federal funding requests for Fiscal Year 2008, and clearly listed is “Adler Planetarium, to support replacement of its projector and related equipment, $3,000,000,” with a description that says the 40 year old projection equipment has begun to fail and since parts are no longer available, soon students and other museum-goers will be left “without this very valuable and exciting learning experience.” I don’t see that as “pork barrel” funding, but an attempt to maintain a long-standing (Adler opened in 1930) and important institution in his district.

And don’t get me going on Sarah Palin.