Weekend SkyWatchers Forecast – August 29 – 31, 2008

Greetings, fellow SkyWatchers… It’s New Moon weekend and what better way to celebrate than to fly with the Swan and the Eagle?! While we’re out, we’ll drop by the Trifid, check into this week’s upcoming meteor shower activity and take a challenging walk into the world of dark nebula. Are you ready? Then it’s time to head out into the night… Together.

Friday, August 29, 2008 – While we’ve got a great dark skies night on our hands, it’s a perfect opportunity for all optics to hunt down a star forming region about a palm’s width north of the lid star (Lambda) in the Sagittarius teapot as we seek out the “Omega”…

Easily viewed in binoculars of any size and outstanding in every telescope, the 5000 light-year distant Omega Nebula was discovered by Philippe Loys de Chéseaux in 1745-46 and later (1764) cataloged by Messier as object 17 (RA 18 20 26 Dec -16 10 36). This beautiful emission nebula is the product of hot gases excited by the radiation of newly born stars. As part of a vast region of interstellar matter, many of its embedded stars don’t show up in photographs, but reveal themselves beautifully to the eye at the telescope. As you look at its unique shape, you realize many of these areas are obscured by dark dust, and this same dust is often illuminated by the stars themselves.

Often known as “The Swan,” M17 will appear as a huge, glowing check mark or ghostly “2” in the sky – but power up if you use a larger telescope and look for a long, bright streak across its northern edge with extensions to both the east and north. While the illuminating stars are truly hidden, you will see many glittering points in the structure itself and at least 35 of them are true members of this region, which spans up to 40 light-years and could form up to 800 solar masses. It is awesome…

Now let’s continue our nebula hunt as we head about a fingerwidth north and just slightly west of M8 for the “Trifid”…

M20 (RA 18 02 23 Dec -23 01 48) was discovered by Messier on June 5, 1764; much to his credit he described it as a cluster of stars encased in nebulosity. This is truly a wonderful observation since the Trifid could not have been easy given his equipment. Some 20 years later William Herschel (although he tried to avoid repeating Messier objects) found M20 of enough interest to assign separate designations to parts of this nebula – IV.41, V.10, V.11, and V.12. The word “Trifid” was first used by John Herschel to describe its beauty.

While M20 is a very tough call in binoculars, it is not impossible with good conditions to see light from an area which left its home nearly a millennium ago. Even smaller scopes will pick up the round, hazy patch of both emission and reflection, but you will need aversion to see the dark nebula which divides it; this was cataloged by Barnard as B 85. Larger telescopes will find the Trifid as one of the very few objects that actually appears much in the eyepiece as it does in photographs – with each lobe containing beautiful details, rifts and folds best seen at lower powers. Look for its cruciform star cluster and its fueling multiple star system while you enjoy this triple treat tonight!

Saturday, August 30, 2008 – Today (in 1991) celebrates Yohkoh. The Yohkoh Mission was a joint effort of both Japan and the United States to launch a satellite to monitor the Sun’s corona and study solar flares. While the mission was quite successful, on December 14, 2001, the spacecraft’s signal was lost during a total eclipse. Controllers were unable to point the satellite back toward the Sun, so its batteries discharged and Yohkoh became inoperable.

Tonight is New Moon and while the darkest skies are on our side, we’ll fly with the “Eagle” as we hop another fingerwidth north of M17 to M16 (RA 18 18 48 Dec -13 49 00) and head for one of the most famous areas of starbirth, IC 4703…

While the open cluster NGC 6611 was discovered by Chéseaux in 1745-6, it was Charles Messier who cataloged the object as M16. And he was the first to note the nearby nebula IC 4703, now commonly known as the Eagle. At 7000 light-years distant, this roughly 7th magnitude cluster and nebula can be spotted in binoculars, but at best it is only a hint. As part of the same giant cloud of gas and dust as neighboring M17, the Eagle is also a place of starbirth illuminated by these hot, high energy stellar youngsters which are only about five and a half million years old.

In small to mid-sized telescopes, the cluster of around 20 brighter stars comes alive with a faint nebulosity that tends to be brighter in three areas. For larger telescopes, low power is essential. With good conditions, it is very possible to see areas of dark obscuration and the wonderful notch where the “Pillars of Creation” are located. Immortalized by the Hubble Space telescope, they won’t be nearly as grand or as colorful as the HST saw them, but what a thrill to know they are there!

Sunday, August 31 – Tonight we will begin entering the stream of the Andromedid meteor shower, which peaks off and on for the next couple of months. For those of you in the northern hemisphere, look for the lazy “W” of Cassiopeia to the northeast. This is the radiant – or relative point of origin – for this meteor stream. At times, this shower has been known to be spectacular, but let’s stick with an accepted fall rate of around 20 per hour. These are the offspring of Biela’s Comet, one that split apart in 1846 leaving radically different streams – much like 73/P Schwassman-Wachmann in 2006. These meteors have a reputation for red fireballs with spectacular trains, so watch for them in the weeks ahead.

While there’s still no Moon to interfere with the dark – let’s take another, more challenging, look at the “dark” as we head toward open cluster NGC 6520…

Located just slightly more than a fingerwidth above Gamma Sagittarii and 5500 light-years away, NGC 6520 (RA 18 03 24 Dec –27 53 00) is a galactic star cluster which formed millions of years ago. Its blue stars are far younger than our own Sun, and may very well have formed from what you don’t see nearby – a dark, molecular cloud. Filled with dust, Barnard 86 literally blocks the starlight coming from our galaxy’s own halo area in the direction of the core. To get a good idea of just how much light is blocked by B 86, take a look at the star SAO 180161 on the edge. Behind this obscuration lies the densest part of our Milky Way! This one is so dark that it’s often referred to as the “Ink Spot.”

While both NGC 6520 and B 86 are about the same distance away, they don’t reside in the hub of our galaxy, but in the Sagittarius Spiral Arm. Seen in binoculars as a small area of compression, and delightfully resolved in a telescope, you’ll find this cluster is on the Herschel “400” list and many others as well. Enjoy this rare pair tonight!

This week’s awesome images are: M17 – Credit: Hillary Mathis, N.A.Sharp, REU program/NOAO/AURA/NSF, M20 – NOAO/AURA/NSF, Yohkoh – Credit: NASA, M16 – Credit: Bill Schoening/NOAO/AURA/NSF and NGC 6520 and B 86 – Credit: Palomar Observatory, courtesy of Caltech. Thank you!!

Astronomers Locate High Energy Emissions from the Crab Nebula

Crab Nebula. Credit: NASA/ESA

[/caption]

Scientists studying the Crab Nebula have discovered high energy gamma rays around the rotation-powered pulsar, the neutron star at the center of this enigmatic nebula. Neutron stars accelerate particles to immense energies, typically one hundred times more than the most powerful accelerators on Earth. Scientists have been uncertain exactly how these systems work and where the particles are accelerated. But by using the gamma-ray telescope on the European Space Agency’s INTEGRAL spacecraft orbiting Earth, astronomers have detected polarized gamma-rays emitting from near the pulsar.

The Crab Nebula was created by a supernova explosion which was seen from Earth by early Chinese and Arab astronomers on July 4, 1054. The explosion left behind a pulsar or rotating neutron star with a nebula of radiating particles around it.

The Crab Pulsar. This image combines optical data from Hubble (in red) and X-ray images from Chandra X-ray Observatory (in blue).
The Crab Pulsar. This image combines optical data from Hubble (in red) and X-ray images from Chandra X-ray Observatory (in blue).

The neutron star contains the mass of the Sun squeezed into a volume of about 10 km radius, rotating very fast – about 30 times a second – thereby generating magnetic fields and accelerating particles. But until now, astronomers didn’t know exactly where the particles were accelerated.
Looking into the heart of the pulsar with Integral’s spectrometer (SPI), the researchers made a detailed study of over 600 observations to assess the polarization – or the alignment – of the waves of high-energy radiation originating from the Crab.

They saw that this polarized radiation is aligned with the rotation axis of the pulsar. So they concluded that a significant portion of the electrons generating the high-energy radiation must originate from a highly-organized structure located very close to the pulsar, very likely directly from the jets themselves. The discovery allows the researchers to discard other theories that locate the origin of this radiation further away from the pulsar.

Credits: NASA/CXC/ASU/J. Hester et al.(for the Chandra image); NASA/HST/ASU/J. Hester et al. (for the Hubble image)
Credits: NASA/CXC/ASU/J. Hester et al.(for the Chandra image); NASA/HST/ASU/J. Hester et al. (for the Hubble image)

Professor Tony Dean of the University’s School of Physics and Astronomy, and one of the researchers, commented that the discovery of such alignment – also matching with the polarization observed in the visible band – is truly remarkable. “The findings have clear implications on many aspects of high energy accelerators such as the Crab,” he added.

“The detection of polarized radiation in space is very complicated and rare, as it requires dedicated instrumentation and an in-depth analysis of very complex data”, said Chris Winkler, Integral Project Scientist at ESA.

The paper ‘Polarized gamma-ray emission from the Crab’ is published this week in Science.

More information about the Integral Spacecraft.

Sources: ESA

Atlantis Takes First Steps To Hubble

Atlantis rolls over to the Vehicle Assembly Building. Credit: NASA

[/caption]

Space shuttle Atlantis was rolled over the the Vehicle Assembly Building after hunkering down in the Orbiter Processing Facility at Kennedy Space Center during Tropical Storm Fay. In the VAB, Atlantis will be attached to its external fuel tank and twin solid rocket boosters. NASA announced that Atlantis will be moved out to Launch Pad 39A next Saturday, August 30 to prepare for launch on the STS-125 mission to service the Hubble Space Telescope one last time, targeted for an Oct. 8 liftoff.

The mobile launcher platform will bring Atlantis to he pad, atop a crawler-transporter. The crawler will travel slower than 1 mph during the 3.4-mile journey. The process is expected to take approximately six hours.

Repairs to Launch Pad 39A’s flame trench wall were completed Aug. 5 after crews installed a steel grid structure and covered it in a heat-resistant material. The pad’s north flame trench was damaged when bricks tore away from the wall during the May 31 launch of space shuttle Discovery.

NASA has several videos about the final Hubble servicing mission. Find them here.

Phoenix Digs Deep for 90th Day on Mars

Deep trench dug by Phoenix. Credit:NASA/JPL/Caltech/U of AZ

[/caption]

The next sample of Martian soil being grabbed for analysis is coming from a trench about three times deeper than any other trench NASA’s Phoenix Mars Lander has dug. On Tuesday, August 26, the scoop on the lander’s robotic arm will pick up a sample of soil from the bottom of a trench called “Stone Soup” which is about 18 centimeters, or 7 inches deep. Tuesday will be the 90th Martian day or sol that the lander has been on the Red Planet, which was the original amount of time set for Phoenix’s primary mission. NASA has extended the mission through September, but the clock is ticking for the plucky little lander and the oncoming winter at Mars’ north polar region.

The soil sample from the deep trench will be delivered into the third cell of the wet chemistry laboratory. This deck-mounted laboratory, part of Phoenix’s Microscopy, Electrochemistry and Conductivity Analyzer (MECA), has previously used two of its four soil-testing cells.

“In the first two cells we analyzed samples from the surface and the ice interface, and the results look similar. Our objective for Cell 3 is to use it as an exploratory cell to look at something that might be different,” said JPL’s Michael Hecht, lead scientist for MECA. “The appeal of Stone Soup is that this deep area may collect and concentrate different kinds of materials.”

Stone Soup lies on the borderline, or natural trough, between two of the low, polygon-shaped hummocks that characterize the arctic plain where Phoenix landed. The trench is toward the left, or west, end of the robotic arm’s work area on the north side of the lander.

Deep Dig 3-D.  Credit:  NASA/JPL/Caltech/A of AZ
Deep Dig 3-D. Credit: NASA/JPL/Caltech/A of AZ

When digging near a polygon center, Phoenix has hit a layer of icy soil, as hard as concrete, about 5 centimeters, or 2 inches, beneath the ground surface. In the Stone Soup trench at a polygon margin, the digging has not yet hit an icy layer like that.

“The trough between polygons is sort of a trap where things can accumulate,” Hecht said. “Over a long timescale, there may even be circulation of material sinking at the margins and rising at the center.”

The science team had considered two finalist sites as sources for the next sample to be delivered to the wet chemistry lab. This past weekend, Stone Soup won out. “We had a shootout between Stone Soup and white stuff in a trench called ‘Upper Cupboard,'” Hecht said. “If we had been able to confirm that the white material was a salt-rich deposit, we would have analyzed that, but we were unable to confirm that with various methods.”

Both candidates for the sampling location offered a chance to gain more information about salt distribution in the Phoenix work area, which could be an indicator of whether or not liquid water has been present. Salt would concentrate in places that may have been wet.

While proceeding toward delivery of a sample from Stone Soup into the wet chemistry laboratory, Phoenix is also using its Thermal and Evolved-Gas Analyzer to examine a soil sample collected last week from another trench, at a depth intermediate between the surface and the hard, icy layer.

Original News Source: University of Arizona’s Phoenix News

Weekend SkyWatcher’s Forecast – August 22-24, 2008

Bug Nebula

[/caption]Greetings, fellow SkyWatchers! Are you ready for a relatively Moon-less weekend? For telescope observers, we’ll travel south and capture the cosmic firefly – the “Bug Nebula”. If you have binoculars, take them out as we journey back 2000 years in time to look at the magnificent M25. For those who like a challenge? Try your luck at being a “Snake” charmer. Even if you just relax in a lawn chair and stare at the stars, you’re in luck because the Northern Iota Aquarid meteor shower is in town for a visit, too! Step out the back door, face south, and let’s journey into the night…

Friday, August 22, 2008 – With the Moon long gone from early evening skies, let’s have a look tonight at NGC 6302, a very curious planetary nebula located around three fingerwidths west of Lambda Scorpii: it is better known as the “Bug” nebula (RA 17 13 44 Dec -37 06 16).

With a rough visual magnitude of 9.5, the Bug belongs to the telescope – but it’s history as a very extreme planetary nebula belongs to us all. At its center is a 10th magnitude star, one of the hottest known. Appearing in the telescope as a small bowtie, or figure 8 shape, huge amounts of dust lie within it – very special dust. Early studies showed it to be composed of hydrocarbons, carbonates and iron. At one time, carbonates were believed associated with liquid water, and NGC 6302 is one of only two regions known to contain carbonates – perhaps in a crystalline form.

Ejected at a high speed in a bi-polar outflow, further research on the dust has shown the presence of calcite and dolomite, making scientists reconsider the kind of places where carbonates might form. The processes that formed the Bug may have begun 10,000 years ago – meaning it may now have stopped losing material. Hanging out about 4000 light-years from our own solar system, we’ll never see NGC 6302 as well as the Hubble Telescope presents its beauty, but that won’t stop you from enjoying one of the most fascinating of planetary nebulae!

Saturday, August 23, 2008 – Do you remember August 10, 1966 when Lunar Orbiter 1 was launched? Well, on this day in history it made headlines as it sent back the very first photo of Earth as seen from space! While the photographic quality is pretty poor by today’s standards, can you imagine the media stir it caused at the time? Never before had humankind witnessed our own planet. Just think of the advances we’ve in just 42 years!

M25
M25
Tonight let’s venture about three fingerwidths northeast of Lambda Sagittarii to visit a well-known but little-visited galactic cluster – M25 (RA 18 31 42 Dec -19 07 00). Discovered by de Chéseaux and then cataloged by Messier, it was also observed and recorded by William Herschel, Elert Bode, Admiral Smythe and T. W. Webb…but was never added to the catalog of John Herschel. Thanks to J.L.E. Dreyer, it did make the second Index Catalog as IC 4725. Seen with even the slightest optical aid, this 5th magnitude cluster contains two G-type giants and well as a Cepheid variable with the designation of U. This star varies by about one magnitude in a period of less than a week. M25 is a very old cluster, perhaps 90 million years old, and the light you see tonight left the cluster over 2000 years ago. While binoculars will see a double handful of bright stars overlaying fainter members, telescopes will reveal more and more as aperture increases. At one time it was believed to have only around 30 members, later thought to have 86… But recent studies by Archinal and Hynes indicate it may have as many as 601 member stars!

Sunday, August 24, 2008 – Today in 1966 from an Earth-orbiting platform, the Luna 11 mission launched on a three day trip. After successfully achieving orbit, the mission went on to study lunar composition and nearby meteoroid streams. Also on this date in 2006, 424 members of the International Astronomical Union shocked the world as they officially declared Pluto “to no longer be a planet.” Discovered in 1930, Pluto enjoyed its planetary status for 76 years before being retired. While text books will have to be re-written and the amateur science community will continue to recognize it as a solar system body, it is now considered to be a “dwarf planet.” At least temporarily…

So far in our southern expedition we’ve mined for globular gems, had our heads in the clouds and squashed a bug. What’s left? Let’s head over to the dark side as we take a look at the “Snake”…

Snake Nebula
Snake Nebula
Barnard Dark Nebula 72 is located about a fingerwidth north of Theta Ophiuchi (RA 17 23 02 Dec -23 33 48). While sometimes dark nebulae are hard to visualize because they are simply an absence of stars, patient observers will soon learn to “see in the dark.” The trained eye often realizes the presence of unresolved stars as a type of background “noise” that most of us simply take for granted – but not E. E. Barnard. He was sharp enough to realize there were at least 182 areas of the sky where these particular areas of nothingness existed, and he correctly assumed they were nebulae which were obscuring the stars behind them.

Unlike bright emission and reflection nebulae, these dark clouds are interstellar masses of dust and gas which remain unilluminated. We would probably not even know they were there except for the fact they eradicate star fields we know to be present! It is possible one day they may form stars of their own, but until that time we can enjoy these objects as splendid mysteries – and one of the most fascinating of all is the “Snake.” Put in a widefield eyepiece and relax… It will come to you. Barnard 72 is only a few light-years in expanse and a relatively short 650 light-years away. If at first you don’t see it, don’t worry. Like many kinds of objects, spotting dark nebulae takes some practice.

While you’re out, watch for the peak of the Northern Iota Aquarid meteor shower. Even though the official peak isn’t until tomorrow night, with no Moon to interfere and deep sky to enjoy, you might catch a bright streak! Wishing you clear skies and good luck…

This week’s awesome image are: NGC 6302: The Bug Nebula – Credit: Don Goldman, Lunar Orbiter’s first photo – Credit: NASA, M25 – Hillary Mathis, Vanessa Harvey, REU program/NOAO/AURA/NSF and B 72: The Snake Nebula – Credit: Tom McQuillan/Adam Block/NOAO/AURA/NSF. Thank you!!

The Cepheus Flare Lights the Entrance to Wolf’s Cave – Cederblad 201 and van den Bergh 152 by Kent Wood

Cederblad 201 and van den Bergh 152 by Kent Wood

[/caption]

If glancing at this image takes your attention immediately, it should. Not only is it ethereally beautiful and aesthetically pleasing – but it’s shrouded in bizarre cosmological coincidences. Not only do we see a dazzling array of multi-colored stars, but within this single area of space is a hidden an ancient planetary nebula, a reflection nebula, a dark dust cloud, a Bok globule, a peculiar low-mass protostar, the edges of a massive X-ray bubble and the fringes of a supernova remnant. Hold on to the light of the Cepheus Flare and let’s step inside Wolf’s Cave…

In the northern fringe of Cepheus lay an enigmatic gathering of cosmic dust clouds that first gained the attention of astronomers in 1908 when Max Wolf and August Kopff first noticed its complex structure. Using a 28-inch reflector, Wolf took a 2.5 hour exposure of the dusty area which he described as a “long, dark lacuna” and positively identified the reflection nebula cataloged as Sh2-155. His assistant, Kopff, using the same photographic plate, was the first to note the Bok globule which later became cataloged by E.E. Barnard as B175.

Those were wonderful years for astronomy – years when poetic descriptions were still acceptable to the general consensus and Wolf dubbed the area the “Cave Nebula”. But this isn’t a spelunker’s dream, because the radiation emitted from the nearby bright, young OB star would would obliterate any explorer into this thick knot of interstellar dust. But there was one traveler, who dared – a main sequence star whose course took it through the dust maul at nearly 12 km per second. Running headlong into the obscuring mass at nearly supersonic speeds, the star slammed into Bok globule B175, sending shockwaves rippling through the structure and producing collisional excitation and ultraviolet pumping. The result of this cosmic crash was, of course, noted by Wolf in 1908 on his photographic records, but it was while searching high above the Milky Way’s galactic plane in 1934 that this dusty molecular cloud was was spied by Edwin Hubble and became known as the Cepheus Flare.

Together, reflection nebula Cederblad 201 and Bok globule B175 are referred to as van den Berg 152, and sometimes called Lynds Bright Nebula 524. Yet, it is Cederblad 201 itself that so interests modern science. Why? According to studies done by Goicoechea (et al) with the Spitzer Space Telescope, “We present the detection and characterization of a peculiar low-mass protostar (IRAS 22129+7000) located 0.4 pc from the Cederblad 201. The cold circumstellar envelope surrounding the object has been mapped through its 1.2 mm dust continuum emission with IRAM 30 m/MAMBO. The deeply embedded protostar is clearly detected with Spitzer. Given the large near- and mid-IR excess in its spectral energy distribution, but large submillimeter-to-bolometric luminosity ratio (it) must be a transition Class 0/I source and/or a multiple stellar system. Targeted observations of several molecular lines from CO, 13CO, C18O, HCO+, and DCO+ have been obtained. The presence of a collimated molecular outflow mapped with the CSO telescope in the CO line suggests that the protostar/disk system is still accreting material from its natal envelope. Indeed, optically thick line profiles from high-density tracers such as HCO+ show a redshifted absorption asymmetry reminiscent of inward motions. We construct a preliminary physical model of the circumstellar envelope (including radial density and temperature gradients, velocity field, and turbulence) that reproduces the observed line profiles and estimates the ionization fraction. The presence of both mechanical and (nonionizing) far-ultraviolet (FUV) radiative input makes the region an interesting case to study triggered star formation.”

Star formation? Not surprising deep inside the cave of a molecular cloud, but – if you’ll pardon the pun – the plot thickens. The entire complex is about 1400 light years away from us at the perimeter of yet another massive molecular cloud and at the same time it is situated on the frontier of a massive X-ray bubble located between the constellations of Cepheus and Cassiopeia. And that’s not all. Thanks to hydrogen-alpha imaging, the whisper thin strands of an ancient supernova remnant near Cederblad 201 have also been detected.

Like a radioactive roomba, the interstellar dust is being swept up as the expanding debris field moves toward where the Cepheus Flare lights the entrance to Wolf’s Cave. These shocked molecular gas filaments were discovered in 2001 by John Bally and Bo Reipurth and belong to SNR 110.3+11.3 – a unfathomably huge supernova remnant positioned only 1300 light years way – one of the closest known. Add to that the output of ancient planetary nebula Dengel-Hartl 5 and the celestial stew thickens even more. It is estimated all the elements will combine in about a thousand years and the product could very well ignite an incredible burst of star formation.

But, a thousand years is merely a blink of an eye in the grand scheme of things, isn’t it? According to the 2007 studies done of the Wolf’s Cave region by Edwin Bergin and Mario Tafalla; “Cold dark clouds are nearby members of the densest and coldest phase in the Galactic interstellar medium, and represent the most accessible sites where stars like our Sun are currently being born. Newly discovered IR dark clouds are likely precursors to stellar clusters. At large scales, dark clouds present filamentary mass distributions with motions dominated by supersonic turbulence. At small, subparsec scales, a population of subsonic starless cores provides a unique glimpse of the conditions prior to stellar birth. Recent studies of starless cores reveal a combination of simple physical properties together with a complex chemical structure dominated by the freeze-out of molecules onto cold dust grains. Elucidating this combined structure is both an observational and theoretical challenge whose solution will bring us closer to understanding how molecular gas condenses to form stars.”

Carbonates from the planetary nebula, dust, exciting energy, photoelectric heating, polycyclic aromatic hydrocarbons, molecular gas… Where will it all end? What we do know is massive, bright star clusters are created from the giant molecular clouds. Will the Cepheus Torch one day ignite a brilliant stellar display from the mouth of Wolf’s Cave? I wonder…

The awesome photo for this story was provided by AORAIA member, Kent Wood. We thank you for the use of this splendid image!

Rocket Explodes With NASA Experiments on Board

This ATK rocket exploded shortly after liftoff on Friday. Credit: Jacob Owen | NASA Wallops Flight Facility

[/caption]

Update: NASA said at a press conference this morning that launch officials were forced to destroy the rocket less than 30 seconds after it’s 5:10 a.m. launch. The rocket had veered off-course, although they couldn’t say how far, and they had to terminate the flight at about 12,000 feet.

A suborbital rocket carrying experiments conducted by NASA exploded early Friday morning 27 seconds after launch on Wallops Island in Virginia. The ATK (Alliant Tech Systems) rocket lifted off with no apparent problems at 5:10 a.m. NASA said no property damage or injuries have occurred, but there were conflicting reports as to whether debris had been sighted on land. NASA said it believes that most of the debris landed in the Atlantic Ocean.

NASA said the debris potentially could be hazardous. People who spot debris are being asked to call Wallops Emergency Operations Center at 757-824-1300.

“NASA is very disappointed in this failure but has directed its focus on protecting public safety and conducting a comprehensive investigation to identify the root cause,” the agency said in a statement. NASA is assembling a multidiscipline team, along with ATK of Salt Lake City, Utah to begin the investigation promptly.

The payload was a 5-in-1 experiment on hypersonic flight, air breathing engines and a rocket recovery system.

Source: NASA

Ride a Maglev Rocket to Space Hotel in 2012

Space Spa on Galactic Suite Hotel. Credit: Galactic Suite

[/caption]

The space tourism company Galactic Suite already has 38 reservations made by tourists who, the company says, in 2012 will travel on board a magnetically levitated spacecraft to an orbiting luxury hotel, complete with a floating spa, pictured here. The trip, which costs 3 million Euros, will provide four days in orbit 450 kilometers above the earth and includes 18 weeks of training on a Caribbean island for the tourists to prepare for their spaceflight. The Galactic Suite Spaceport is being built on the island and features the first maglev rocket where the spacecraft will accelerate to speeds up to 1,000 km/h (620 mph) in 10 seconds and lift off from a vertical runway.

Galactic Suite Spaceport.  Credit:  Galactic Suite
Galactic Suite Spaceport. Credit: Galactic Suite

After reaching approximately the speed of sound, the spaceship will detach from its maglev carrier and accelerator, and will ascend to orbit using rocket or air-breathing engines. The maglev accelerator will then brake to a stop and return to its starting point for the next launch. The launch track will be about 3 kilometers long.

According to Xavier Claramunt and Marsal Gifra, founders of Galactic Suite, “Maglev launch assist technology will enable space tourists to travel to our space resorts in orbit on a commercial basis. The most expensive part of any space travel to low-Earth orbit is the first few seconds – getting off the ground. This technology is cost competitive with other forms of space transportation, environmentally friendly and inherently safe”.

The stay at the hotel will “offer a mixed programme of reflection and exercise to seize the unique physical conditions encountered in space,” said Claramunt.

One of the most innovative experiences that tourists can experience is the bathroom in zero gravity. Galactic Suite has developed the space spa. Inside the spa, tourists can float with 20 liters of water bubbles. According to Galactic Suite materials, “The tourist, already trained to avoid the effects of water in a state of weightlessness, can play with the bubble dividing it into thousands of bubbles in a never-ending game. In addition, the transparent sphere may be shared with other guests.”

Galactic Suite is a private space tourism company, founded in Barcelona in 2006. The company hopes to make space tourism available to the general public and “will combine an intensive program of training astronauts to relax with a programme of activities on a tropical island as a process preparation to space travel.”

Source: Galactic Suite press release

Sloan Digital Sky Survey: Changing How Scientists – and the Public – Do Astronomy

The 2.5 meter SDSS telescope at Apache Point Observatory in New Mexico. Credit: SDSS

Recently we’ve had articles on Universe Today that have discussed the outer Milky Way Galaxy, dark matter, and the discovery of a new minor planet. These articles have a common thread: The discoveries all come from the Sloan Digital Sky Survey (SDSS). If you aren’t familiar with SDSS, it encompasses a comprehensive survey lasting more than eight years, which has so far covered more than one-quarter of the sky.

Using a dedicated 2.5 meter telescope equipped with a 125- megapixel digital camera and spectrographs that can observe 640 stars and galaxies at a time, the SDSS has created terabytes of data that include thousands of deep, multi-color images. It’s also measured the distances to nearly one million galaxies and over 100,000 quasars to create the largest ever three-dimensional maps of cosmic structure.

The SDSS archive represents a thousand-fold increase in the total amount of data that astronomers have collected to date. But almost equally impressive is the easy-to-use interface that allows anyone in the world to access the SDSS data online. Whether you are a research astronomer looking for information to help solve a cosmological puzzle or an armchair astronomy enthusiast who just likes looking at pretty pictures of the universe, SDSS is at your disposal.

Astronomers gathered in Chicago earlier this week to celebrate the accomplishments and look ahead to the future of SDSS. “What amazes me is the huge range of the discoveries that have come from SDSS data,” said SDSS-II Director Richard Kron, an astronomer at the University of Chicago and Fermilab. “We designed it primarily as a survey to map the distribution of galaxies and quasars, but it’s also had a huge impact on the study of stars, the structure of our own Galaxy, and even solar system objects.”

SDSS has found new dwarf companion galaxies to the Milky Way, confirmed Einstein’s prediction of cosmic magnification, and observed the largest known structures in the universe. The new survey, SDSS-III, will continue to expand our horizons with new studies of the structure and origins of the Milky Way Galaxy and the nature of dark energy.

SDSS was undertaken to update the database of information about the sky with current technology. The previous comprehensive guide to the heavens was the Palomar Sky Survey that was conducted in the 1950’s and used glass photographic plates to store the data.

Not only has SDSS updated the technology, but it has changed the way astronomers do business. Astronomers who are doing research or have a question can look at the existing data in SDSS rather than having to pore through the sky, taking their own data with hard-to-get telescope time.

Dr. Pamela Gay, professor at Southern Illinois University Edwardsville and host of the Astronomy Cast podcast said SDSS not only helps her research, but enhances her work in the classroom. “It’s a wonderful project,” she said. “I’m at a small state university and while I did my dissertation on galaxies, when I landed at a state school, I thought I’d never be able to do this (study galaxies) again because I don’t have access to a large telescope. But because of the Sloan Digital Sky Survey, and because of the easy to use tools where I can say to my undergraduate students, ‘go find all the data on these clusters,’ it’s possible for people at small schools to do amazing, amazing research and explore the entire universe.”

SDSS also powers the popular Galaxy Zoo website, where anyone in the world can help classify galaxies via the internet. From the work done by the public from their home computers, Galaxy Zoo has submitted peer reviewed research articles to astronomical journals.

Visit the SDSS website to take a look at the images and discoveries made possible by this comprehensive survey. The Sky Server interface on the SDSS website provides the tools you need to start perusing the universe, and has educational activities for teachers and students as well.

Jim Gunn, SDSS Project Scientist from Princeton University, who has guided the project since its inception said that more than any single discovery, he is proud of the quality and scope of the SDSS data sets. “Visible light is where we understand the universe best, but when we began the SDSS, there were no sensitive, well characterized, visible-light catalogs that covered a large area of sky,” he said. “Now we have multi-color images of 300 million celestial objects, 3-dimensional maps and detailed properties of well over a million of them, and it’s all publicly available online. That changes everything.”

The Sun and the Moon

Solar Eclipse. Image credit: NASA

[/caption]
The Sun and the Moon are the two objects in the Solar System that influence Earth the most. Let’s take a look at all the different was we experience these two objects, how they’re similar, and how they’re mostly different.

The Size of the Sun and the Moon

In absolute terms, the Sun and the Moon couldn’t be more different in size. The Sun measures 1.4 million km across, while the Moon is a mere 3,474 km across. In other words, the Sun is roughly 400 times larger than the Moon. But the Sun also happens to be 400 times further away than the Moon, and this has created an amazing coincidence.

From our perspective, the Sun and the Moon look almost exactly the same size. This is why we can have solar eclipses, where the Moon passes in front of the Sun, just barely obscuring it from our view.

And this is just a coincidence. The gravitational interaction between the Moon and the Earth (the tides) are causing the Moon to slowly drift away from the Earth at a rate of 3.8 centimeters per year. In the ancient past, the Moon would have looked much larger than the Sun. And in the far future, the Moon will look much smaller. It’s just a happy coincidence that they look the same size from our perspective.

Gravity from the Sun and the Moon

Once again, the Sun is much larger and has a tremendous amount of mass. The mass of the Sun is about 27 million times more than the mass of the Moon. It’s this gravitational interaction that gives the Earth its orbit around the Sun, and the tiny pull of the Moon just causes the Earth to wobble a bit in its movements.

When the Sun and the Moon are pulling on the Earth from the same direction, their gravity adds up, and we get the largest spring tides. And then, when they’re on opposite sides of the Earth, their forces cancel out somewhat, and we get neap tides.

Light from the Sun and the Moon

This is a bit of a trick, since the Sun is the only object in the Solar System actually giving out light. With its enormous mass, the Sun is able to fuse hydrogen into helium at its core, generating heat and light. This light shines in the Solar System, and bounces off the Moon so we can see it in the sky.

Astronomers measure brightness using a measurement called magnitude. The star Vega was considered 0 magnitude, and the faintest star you can see with the unaided eye is about 6.5 magnitude. Venus can get as bright as -3.7, the full Moon is -12.6, and the Sun is -26.73. These numbers sound similar, but it’s a logarithmic scale, where each value is twice the amount of the previous one. 1 is twice as bright as 2, etc.

So the Sun is actually 450,000 times brighter than the Moon. From our perspective.

Composition of the Sun and the Moon

Now here’s where the Sun and the Moon differ. The Sun is almost entirely composed of hydrogen and helium. The Moon, on the other hand, was formed when a Mars-sized object crashed into the Earth billions of years ago. Lighter material from the collision collected into an object in orbit – the Moon. The Moon’s crust is primarily oxygen, silicon, magnesium, iron, calcium, and aluminium. Astronomers think the core is metallic iron with small amounts of sulfur and nickel. And it’s at least partly molten.

Here’s an article about the distance from the Earth to the Sun, and here’s a view of the Earth and the Moon, seen from Mars.

Have you ever seen that picture of the Moon and the Sun “from the North Pole”, where the Moon looks huge? It’s actually a hoax, here’s more information from Astronomy Picture of the Day.

References:
NASA SOHO
NASA Starchild: Earth’s Natural Satellites
NASA Eclipse: Measuring the Moon’s Distance
NASA: Stellar Magnitude Scale