Soon Every Spacecraft can Navigate the Solar System Autonomously Using Pulsars

If you want to know where you are in space, you’d better bring along a map. But it’s a little more complicated than riding shotgun on a family road trip.

Spacecraft navigation beyond Earth orbit is usually carried out by mission control. A series of radio communication arrays across the planet, known as the Deep Space Network, allows operators to check in with space probes and update their navigational status. The system works, but it could be better. What if a spacecraft could autonomously determine its position, without needing to phone home? That’s been a dream of aerospace engineers for a long time, and it’s getting close to fruition.

Pulsars are the key.

Continue reading “Soon Every Spacecraft can Navigate the Solar System Autonomously Using Pulsars”

Astronomers Come Closer to Understanding How Mercury Formed

Artist's concept of the MESSENGER spacecraft on approach to Mercury. Credit: NASA/JPL

Simulations of the formation of the solar system have been largely successful. They are able to replicate the positions of all the major planets along with their orbital parameters. But current simulations have an extreme amount of difficulty getting the masses of the four terrestrial planets right, especially Mercury. A new study suggests that we need to pay more attention to the giant planets in order to understand the evolution of the smaller ones.

Continue reading “Astronomers Come Closer to Understanding How Mercury Formed”

Astronomers Detect a Second Planet Orbiting Two Stars

Artist's impression of Kepler-16b, the first planet known to definitively orbit two stars - what's called a circumbinary planet. The planet, which can be seen in the foreground, was discovered by NASA's Kepler mission. Credit: NASA/JPL-Caltech/T. Pyle

Planets orbiting binary stars are in a tough situation. They have to contend with the gravitational pull of two separate stars. Planetary formation around a single star like our Sun is relatively straightforward compared to what circumbinary planets go through. Until recently, astronomers weren’t sure they existed.

Continue reading “Astronomers Detect a Second Planet Orbiting Two Stars”

Astronomers are Working on a 3D map of Cosmic Dawn

The HERA radio telescope consists of 350 dishes pointed upward to detect 21-centimeter emissions from the early Universe. Credit: HERA Partnership

The frontiers of astronomy are being pushed regularly these days thanks to next-generation telescopes and scientific collaborations. Even so, astronomers are still waiting to peel back the veil of the cosmic “Dark Ages,” which lasted from roughly 370,000 to 1 billion years after the Big Bang, where the Universe was shrouded with light-obscuring neutral hydrogen. The first stars and galaxies formed during this same period (ca. 100 to 500 million years), slowly dispelling the “darkness.” This period is known as the Epoch of Reionization, or as many astronomers call it: Cosmic Dawn.

By probing this period with advanced radio telescopes, astronomers will gain valuable insights into how the first galaxies formed and evolved. This is the purpose of the Hydrogen Epoch of Reionization Array (HERA), a radio telescope dedicated to observing the large-scale structure of the cosmos during and before the Epoch of Reionization located in the Karoo desert in South Africa. In a recent paper, the HERA Collaboration reports how it doubled the array’s sensitivity and how their observations will lead to the first 3D map of Cosmic Dawn.

Continue reading “Astronomers are Working on a 3D map of Cosmic Dawn”

Future Space Telescopes Could be 100 Meters Across, Constructed in Space, and Then Bent Into a Precise Shape

Graphic depiction of Bend-Forming of Large Electrostatically Actuated Space Structures. Credit: Zachary Cordero

It is an exciting time for astronomers and cosmologists. Since the James Webb Space Telescope (JWST), astronomers have been treated to the most vivid and detailed images of the Universe ever taken. Webb‘s powerful infrared imagers, spectrometers, and coronographs will allow for even more in the near future, including everything from surveys of the early Universe to direct imaging studies of exoplanets. Moreover, several next-generation telescopes will become operational in the coming years with 30-meter (~98.5 feet) primary mirrors, adaptive optics, spectrometers, and coronographs.

Even with these impressive instruments, astronomers and cosmologists look forward to an era when even more sophisticated and powerful telescopes are available. For example, Zachary Cordero 
of the Massachusetts Institute of Technology (MIT) recently proposed a telescope with a 100-meter (328-foot) primary mirror that would be autonomously constructed in space and bent into shape by electrostatic actuators. His proposal was one of several concepts selected this year by the NASA Innovative Advanced Concepts (NIAC) program for Phase I development.

Continue reading “Future Space Telescopes Could be 100 Meters Across, Constructed in Space, and Then Bent Into a Precise Shape”

Astronomers Prepare to Launch LuSEE Night, A Test Observatory on the Far Side of the Moon

Artist's illustration of a radio telescope inside a crater on the Moon. Credit: NASA JPL

Astronomers have not yet been able to map large portions of the radio emissions from our universe because of interference from the Earth itself. A team of astronomers hopes to change that, beginning with the LuSEE Night mission to the far side of the Moon. It will launch in 2025 and chart a new pathway to Lunar observatories.

Continue reading “Astronomers Prepare to Launch LuSEE Night, A Test Observatory on the Far Side of the Moon”

Astronomers Find 25 Fast Radio Bursts That Repeat on a Regular Basis

CHIME consists of four metal "half-pipes", each one 100 meters long. Image Credit: CHIME/Andre Renard, Dunlap Institute.
CHIME consists of four metal "half-pipes", each one 100 meters long. Image Credit: CHIME/Andre Renard, Dunlap Institute.

Like Gravitational Waves (GWs) and Gamma-Ray Bursts (GRBs), Fast Radio Bursts (FRBs) are one of the most powerful and mysterious astronomical phenomena today. These transient events consist of bursts that put out more energy in a millisecond than the Sun does in three days. While most bursts last mere milliseconds, there have been rare cases where FRBs were found repeating. While astronomers are still unsure what causes them and opinions vary, dedicated observatories and international collaborations have dramatically increased the number of events available for study.

A leading observatory is the Canadian Hydrogen Intensity Mapping Experiment (CHIME), a next-generation radio telescope located at the Dominion Radio Astrophysical Observatory (DRAO) in British Columbia, Canada. Thanks to its large field of view and broad frequency coverage, this telescope is an indispensable tool for detecting FRBs (more than 1000 sources to date!) Using a new type of algorithm, the CHIME/FRB Collaboration found evidence of 25 new repeating FRBs in CHIME data that were detected between 2019 and 2021.

Continue reading “Astronomers Find 25 Fast Radio Bursts That Repeat on a Regular Basis”

Molecular Clouds Have Long Lives By Constantly Reassembling Themselves

This is a two-panel mosaic of part of the Taurus Giant Molecular Cloud, the nearest active star-forming region to Earth. The darkest regions are where stars are being born. Inside these vast clouds, complex chemicals are also forming. Image Credit: Adam Block /Steward Observatory/University of Arizona

Astronomers have recently discovered that giant clouds of molecular hydrogen, the birthplace of stars, can live for tens of millions of years despite the facts that individual molecules are constantly getting destroyed and reassembled. This new research helps place a crucial piece of understanding in our overall picture of how stars are born.

Continue reading “Molecular Clouds Have Long Lives By Constantly Reassembling Themselves”

Does Failing to Detect Aliens Mean We’ll Never Be Contacted?

Image of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Parkes radio telescope taken in 1969. (Credit: CSIRO; licensed under the Creative Commons Attribution 3.0 Unported license.)

In a recent paper submitted to The Astronomical Journal in November 2022, a scientist at the Swiss Federal Institute of Technology Lausanne quantifies how the Earth has not heard a radio signal from an extraterrestrial technological civilization over the course of approximately the last 60 years, which is when the Search for Extraterrestrial Intelligence (SETI) began listening for such signals. They also quantify the potential likelihood pertaining to when we might hear a signal, along with recommending potential strategies that could aid in the ongoing search for detecting a signal from an extraterrestrial technological civilization.

Continue reading “Does Failing to Detect Aliens Mean We’ll Never Be Contacted?”