Hubble Sees an Epic Merger of Three Galaxies

A spectacular trio of merging galaxies in the constellation Boötes takes center stage in this image from the NASA/ESA Hubble Space Telescope. These three galaxies are set on a collision course and will eventually merge into a single larger galaxy, distorting one another’s spiral structure through mutual gravitational interaction in the process. An unrelated foreground galaxy appears to float serenely near this scene, and the smudged shapes of much more distant galaxies are visible in the background. Image Credit: ESA/Hubble & NASA, M. Sun

When is 50,000 light-years only a small distance? When three galaxies are that close to one another. At that range, they’re fiercely interacting.

In the case of the three galaxies referred to as SDSSCGB 10189, they’re 50,000 light-years apart and growing closer as they merge into a single massive galaxy.

Continue reading “Hubble Sees an Epic Merger of Three Galaxies”

Speedrunning Star Formation in the Cygnus X Region

Cygnus X is a massive star formation region about 4600 light-years away. New research shows star formation occurring very rapidly. Image Credit: By NASA - http://www.nasa.gov/mission_pages/spitzer/multimedia/pia15253.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=19475200

Stars are born in molecular clouds, massive clouds of hydrogen that can contain millions of stellar masses of material. But how do molecular clouds form? There are different theories and models of that process, but the cloud formation is difficult to observe.

A new study is making some headway, and showing how the process occurs more rapidly than thought.

Continue reading “Speedrunning Star Formation in the Cygnus X Region”

59 New Planets Discovered in Our Neighborhood

An artist’s concept of a high-resolution image of an Earth-size planet in the cool range of the habitable zone of a nearby M dwarf. © José A. Caballero (CAB, CSIC-INTA), Javier Bollaín (Render Area)

The hunt for habitable extrasolar planets continues! Thanks to dedicated missions like Kepler, TESS, and Hubble, the number of confirmed extrasolar planets has exploded in the past fifteen years (with 5,272 confirmed and counting!). At the same time, next-generation telescopes, spectrometers, and advanced imaging techniques are allowing astronomers to study exoplanet atmospheres more closely. In short, the field is shifting from the process of discovery to characterization, allowing astronomers to more tightly constraint habitability.

Finding potentially-habitable “Earth-like” planets around these fainter stars is the purpose of the Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs (CARMENES), located at the Calar Alto Observatory in Spain. In a study that appeared in Astronomy & Astrophysics today, the CARMENES Consortium published data (Data Release 1) data from about 20,000 observations taken between 2016 and 2020. Among the measurements obtained from 362 nearby cool stars, the DR1 contained data on 59 new planets.

Continue reading “59 New Planets Discovered in Our Neighborhood”

Clouds of Carbon Dust Seen When the Universe was Less Than a Billion Years Old

This view of nearly 10,000 galaxies is called the Hubble Ultra Deep Field. It shows some galaxies in the early Universe, (which appear as red blobs). Credit: NASA/ESA/HUDF
This view of nearly 10,000 galaxies is called the Hubble Ultra Deep Field. It shows some galaxies in the early Universe, (which appear as red blobs). Credit: NASA/ESA/HUDF

The Milky Way Galaxy contains an estimated one hundred billion stars. Between these lies the Interstellar Medium (ISM), a region permeated by gas and dust grains. This dust is largely composed of heavier elements, including silicate minerals, ice, carbon, and iron compounds. This dust plays a key role in the evolution of galaxies, facilitating the gravitational collapse of gas clouds to form new stars. This galactic dust is measurable by how it attenuates starlight from distant galaxies, causing it to shift from ultraviolet to far-infrared radiation.

However, the origin of various dust grains is still a mystery, especially during the early Universe when heavier elements are thought to have been scarce. Previously, scientists believed that elements like carbon took hundreds of millions of years to form and could not have existed before about 2.5 billion years after the Big Bang. Using data obtained by the JWST Advanced Deep Extragalactic Survey (JADES), an international team of astronomers and astrophysicists report the detection of carbonaceous grains around a galaxy that existed roughly 1 billion years after the Big Bang.

Continue reading “Clouds of Carbon Dust Seen When the Universe was Less Than a Billion Years Old”

Cosmic Conjunction: Jupiter Meets Venus on March 1st

Jupiter vs Venus
Jupiter meets Venus from 2015. Image credit: Roger Hutchison.

The two brightest planets pass less than half a degree apart at dusk during a spectacular conjunction on the night of March 1st.

It has begun. Once every 12 to 18 months or so, I start fielding “what are those two bright objects in the sky?” questions. They’re none other than the third and fourth brightest natural objects in the sky (behind the Sun and the Moon), the planets Jupiter and Venus. If skies are clear, you can see them get ever closer together from one night to the next, as they meet up during a spectacular conjunction on the night of March 1st/2nd.

Continue reading “Cosmic Conjunction: Jupiter Meets Venus on March 1st”

All of Jupiter's Large Moons Have Auroras

Artist's concept of aurorae on Ganymede - auroral belt shifting may indicate a subsurface saline ocean. Credit: NASA/ESA

Jupiter is well known for its spectacular aurorae, thanks in no small part to the Juno orbiter and recent images taken by the James Webb Space Telescope (JWST). Like Earth, these dazzling displays result from charged solar particles interacting with Jupiter’s magnetic field and atmosphere. Over the years, astronomers have also detected faint aurorae in the atmospheres of Jupiter’s largest moons (aka. the “Galilean Moons“). These are also the result of interaction, in this case, between Jupiter’s magnetic field and particles emanating from the moons’ atmospheres.

Detecting these faint aurorae has always been a challenge because of sunlight reflected from the moons’ surfaces completely washes out their light signatures. In a series of recent papers, a team led by the University of Boston and Caltech (with support from NASA) observed the Galilean Moons as they passed into Jupiter’s shadow. These observations revealed that Io, Europa, Ganymede, and Callisto all experience oxygen-aurorae in their atmospheres. Moreover, these aurorae are deep red and almost 15 times brighter than the familiar green patterns we see on Earth.

Continue reading “All of Jupiter's Large Moons Have Auroras”

What Would Happen if the Solar System Gained a Super-Earth?

This illustration shows the super-Earth exoplanet 55 Cancri e with its star. What would our Solar System be like if it was home to a super-Earth like this one? Credit: NASA/JPL

In this era of exoplanet discovery, astronomers have found over 5,000 confirmed exoplanets, with thousands more awaiting confirmation and many billions more waiting to be discovered. These exoplanets exist in a bewildering spectrum of sizes, compositions, orbital periods, and just about every other characteristic that can be measured.

Learning about them has also shed light on our Solar System. We used to think of it as an archetypal arrangement of planets since it’s all we had to go on. But now we know we might be the outlier because we have no Super-Earth.

Continue reading “What Would Happen if the Solar System Gained a Super-Earth?”