Star on the Run

Artist illustration of a star ejected from the Large Magellanic Cloud. Image credit: ESO. Click to enlarge.
Observations with Kueyen, one of the 8.2m telescopes composing the ESO Very Large Telescope (VLT), have led to the discovery of a short-lived massive star that is moving at a very high speed through the outer halo of the Milky Way galaxy and into intergalactic space. This finding could provide evidence for a previously unknown massive black hole in the heart of the Milky Way’s closest neighbour, the Large Magellanic Cloud.

The star, named HE 0437-5439, was discovered by the Hamburg/ESO sky survey [1] , a project aimed at detecting quasars but which discovered many faint blue stars as well. Scientists [2] at the Dr. Remeis-Sternwarte (University of Erlangen-Nürnberg, Germany) and the Centre for Astrophysics Research (University of Hertfordshire, UK) found what is likely to be a hot massive main-sequence star, far out in the halo.

This came as a great surprise. Massive stars have lifetimes of only some tens or hundreds of million years, short lived for astronomical standards, but the halo does not usually host stars as young as this. In fact, it contains the oldest stars in the Milky Way that are more than ten billion years old. Massive stars are usually found in or near star forming regions in the Galactic disc such as the famous Orion nebula: HE 0437-5439 is indeed similar to the trapezium stars that make the Orion nebula shine.

Data were obtained with the ESO VLT and its high resolution UVES spectrograph. This allowed the chemical composition to be measured which turned out to be similar to that of the Sun, confirming that HE0437-5439 is a young star. Its mass is eight times larger than that of the Sun and the star is only 30 million years old. It is almost 200,000 light years away from us in the direction of the Doradus Constellation (“the Swordfish”).

Even more exciting was the fact that the data indicated the star to be receding at a velocity of 723 km/s, or 2.6 million kilometres per hour. HE0437-5439 moves so fast that the gravitational attraction of the Milky Way is too small to keep it bound to the Galaxy. Hence the hyper-velocity star will escape into intergalactic space.

As the star is moving so fast, it must have been born far away from its present position and accelerated to where we observe it today. What accelerated the star to such a high speed? Calculations carried out already in the late 1980s showed that a so-called massive black hole (SMBH), i.e. a black hole a million times as massive as the Sun, or larger, could provide the enormous acceleration. If a binary star approaches the SMBH, one star falls towards the SMBH while its companion is ejected. The Galactic Centre of the Milky Way hosts such a black hole of about 2.5 million solar masses, and this might have accelerated HE0437-5439.

But the necessary travel time was found to be more than three times the age of the star. Hence the star is too young to have travelled all the way from the Galactic centre to its present location. Either the star is older than it appears or it was born and accelerated elsewhere.

A different clue to the origin of HE0457-5439 comes from its position in the sky. HE0437-5439 is 16 degrees away from the Large Magellanic Cloud (LMC), one of the nearest neighbouring galaxies to the Milky Way. This galaxy lies at a distance of 156,000 light years. HE0457-5439 is even more distant than the LMC and is much closer to the LMC than to the galaxy. The astronomers showed that the star could have reached its present position within its lifetime if it were ejected from the centre of the LMC. This, in turn, would provide evidence for the existence of a SMBH in the LMC.

Another explanation would require the star to be the result of the merging of two stars, belonging to so-called blue stragglers class of stars, which are older than standard evolution models predict them to be. Indeed, its age could then be as much as the lifetime of a 4 solar mass star which is more than 6 times the lifetime of an 8 solar mass star.

The astronomers propose two additional observations to distinguish between the two options. The abundance of certain elements in stars belonging to the LMC is only half that of the Sun. A more precise measurement with UVES would indicate whether the star has a metal abundance appropriate to LMC stars or not. The second is to measure how much the star moves in the transverse direction on the sky, using astrometric measurements.

The research presented here is detailed in a paper to be published in Astrophysical Journal Letters.

Notes
[1]: The Hamburg/ESO sky survey is a collaborative project of the Hamburger Sternwarte and ESO to provide spectral information for half of the southern sky using photographic plates taken with the now retired ESO-Schmidt telescope. These plates were digitized at Hamburger Sternwarte.

[2]: The astronomers are Heinz Edelmann (Dr. Remeis-Sternwarte of the University of Erlangen-Nürnberg, Germany, now at University of Texas, Austin, USA), Ralf Napiwotzki (Centre for Astrophysics Research, University of Hertfordshire, UK), Uli Heber (Dr. Remeis-Sternwarte of the University of Erlangen-Nürnberg, Germany), Norbert Christlieb and Dieter Reimers (Hamburger Sternwarte, Germany).

Original Source: ESO News Release

ESO Image of Robert’s Quartet

Robert’s Quartet. Image credit: ESO. Click to enlarge.
ESO PR Photo 34a/05 shows in amazing details a group of galaxies known as Robert’s Quartet [1]. The image is based on data collected with the FORS2 multi-mode instrument on ESO’s Very Large Telescope.

Robert’s Quartet is a family of four very different galaxies, located at a distance of about 160 million light-years, close to the centre of the southern constellation of the Phoenix. Its members are NGC 87, NGC 88, NGC 89 and NGC 92, discovered by John Herschel in the 1830s. NGC 87 (upper right) is an irregular galaxy similar to the satellites of our Milky Way, the Magellanic Clouds. NGC 88 (centre) is a spiral galaxy with an external diffuse envelope, most probably composed of gas. NGC 89 (lower middle) is another spiral galaxy with two large spiral arms. The largest member of the system, NGC 92 (left), is a spiral Sa galaxy with an unusual appearance. One of its arms, about 100,000 light-years long, has been distorted by interactions and contains a large quantity of dust.

The quartet is one of the finest examples of compact groups of galaxies. Because such groups contain four to eight galaxies in a very small region, they are excellent laboratories for the study of galaxy interactions and their effects, in particular on the formation of stars.

Using another set of VLT data also obtained with FORS2, astronomers [2] were able to study the properties of regions of active star formation (“HII regions” [3]) in the sister members of Robert’s Quartet. They found more than 200 of such regions in NGC 92, with a size between 500 and 1,500 light-years. For NGC 87, they detected 56 HII regions, while the two other galaxies appear to have far fewer of them. For NGC 88, however, they found two plume-like features, while NGC 89 presents a ring of enhanced stellar activity. The system is thus clearly showing increased star formation activity, most probably as the result of the interaction between its members. The sisters clearly belong to a perturbed family.

The quartet has a total visual magnitude of almost 13, i.e. it is about 600 times fainter than the faintest object that can be seen with the unaided eye. The brightest member of the group has a magnitude of about 14. On the sky, the four galaxies are all within a circle of radius of 1.6 arcmin, corresponding to about 75,000 light-years.

Notes
[1]: The group of galaxies was known as a Compact Group since 1977 by J.A. Rose, under the designation Rose 34. Robert’s Quartet is also known under the less poetic name of AM 0018-485 from the Catalogue of Southern Peculiar Galaxies and Associations, compiled in 1987 by astronomers Halton “Chip” Arp and Barry Madore. But who is Robert then? As discovered by Australian amateur astronomer Mike Kerr, Arp and Madore named Robert’s Quartet after Robert Freedman who generated many of the updated positions of galaxies in the catalogue. The astronomers clearly had a very good sense of humour as the catalogue also contains a system of galaxies called Wendy (ESO 147- 8; for Wendy Freedman) and another called the Conjugal galaxy (ESO 384- 53)!

[2]: The astronomers are S. Temporin (University of Innsbruck, Austria), S. Ciroi and P. Rafanelli (University of Padova, Italy), A. Iovino (INAF-Brera Astronomical Observatory, Italy), E. Pompei (ESO), and M. Radovich (INAF-Capodimonte Astronomical Observatory, Italy). (The article describing this result is available in PDF format at http://www.ast.cam.ac.uk/%7Esb2004/posters/files/Temporin.pdf)

[3]: The radiation of young hot stars embedded in an interstellar cloud is able to heat the surrounding gas, resulting in the apparition of an emission nebula that shines mostly in the light of ionized hydrogen (H) atoms. Such nebulae are therefore often referred to as “HII regions”. The well-known Orion Nebula is an outstanding example of that type of nebula.

Original Source: ESO News Release

Cosmic Cloudshine

Cloudshine in L1448. Image credit: CfA. Click to enlarge.
Hubble’s iconic images include many shots of cosmic clouds of gas and dust called nebulae. For example, the famous “Pillars of Creation” mark the birthplace of new stars within the Eagle Nebula. Yet despite their beauty, visible-light images show only the nebulae surfaces. Baby stars may hide beneath, invisible even to Hubble’s powerful gaze.

Harvard astronomers have pioneered a new way to peer below the surface using near-infrared light that is invisible to the human eye. The resulting images are both beautiful and scientifically valuable because they can be used to map the structure of interstellar matter.

“We can now see the structure of gigantic star-forming regions over vast distances with a resolution 50 times better than before,” said Alyssa Goodman of the Harvard-Smithsonian Center for Astrophysics (CfA). “This technique will revolutionize the way we map stellar birthplaces.”

While Hubble’s NICMOS instrument and NASA’s Spitzer Space Telescope also use infrared light to study nebular interiors, ground-based images at near-infrared wavelengths provide an unparalleled combination of wide-field coverage and high resolution.

“Images like these will give astronomers new insight into what those giant complexes of gas and dust really look like,” added Jonathan Foster, a graduate student at Harvard University and the paper’s first author.

The researchers took long-exposure photographs of a star-forming region in the constellation Perseus and were surprised to see something they had never seen before. Just as earthly clouds shine orange at night as they reflect light from streetlights below, they discovered that clouds in outer space show a similar effect. In space, otherwise “dark” clouds of dust and gas are illuminated by faint starlight washing over them.

Goodman and Foster dubbed the new celestial phenomenon “cloudshine.” Their long-exposure, near-infrared images uncovered the faintly shining billows of material. Recent advances in infrared detectors, combined with longer than usual imaging times, led to the discovery.

“Other astronomers have seen hints of cloudshine in their images, but our new photographs are the most spectacular evidence of cloudshine to date,” said Goodman.

Reflection nebulae such as the wisps surrounding the Pleiades star cluster have been observed for decades. Importantly, the Pleiades and other famous “nebulae” are illuminated from within, by the stars associated with them, as a cloud is when fireworks explode inside of it. Cloudshine is the result of the illumination of otherwise “dark” clouds from “without,” by the faint, and nearly uniform, ambient light produced by the sum of all the stars outside the cloud. Simple modeling in Foster & Goodman’s paper demonstrates that there is enough of this faint ambient light to illuminate the clouds at the levels observed.

The cloudshine images were obtained as part of the COMPLETE survey (Coordinated Molecular Probe Line Extinction Thermal Emission) of star-forming regions. COMPLETE involves making wide-field, high-resolution studies of three nearby star-forming regions. COMPLETE will allow for detailed analysis and understanding of the physics of star formation on scales ranging from one-hundredth of a light-year up to 30 light-years.

A companion paper by astronomer Paolo Padoan (UC San Diego) and colleagues describes theoretical modeling of the cloudshine effect in turbulent clouds of gas. They showed that the near-infrared “color” of a nebula correlates to the nebula’s density, and can therefore be used to map its structure.

“By using cloudshine, astronomers can study star-forming regions at a very small scale,” said Padoan. “We will be able to learn much more about the physics of star formation.”

Foster and Goodman anticipate gathering many additional images of cloudshine as the COMPLETE survey continues.

“We can cover wide areas of the sky at high resolution relatively quickly,” said Foster. “We expect that this will become the best technique for mapping the density of `dark’ clouds with very high resolution.”

Foster and Goodman’s paper reporting the cloudshine observations has been submitted for publication to The Astrophysical Journal Letters and is available online at http://arxiv.org/abs/astro-ph/0510624.

A paper on the theory of cloudshine by Padoan, Mika Juvela and Veli-Matti Pelkonen (University of Helsinki) also has been submitted for publication to The Astrophysical Journal Letters and is available online at http://arxiv.org/abs/astro-ph/0510600.

Foster and Goodman’s work, and the COMPLETE Survey, are supported by the National Science Foundation, NASA, and Harvard University.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

Original Source: CfA News Release

Best View of the Milky Way’s Core

The Milky Way’s nucleus. Sagittarius A* is the bright white dot at center. Image credit: NRAO/AUI/NSF, Jun-Hui Zhao, W.M. Goss. Click to enlarge.
Astronomers have gotten their deepest glimpse into the heart of our Milky Way Galaxy, peering closer to the supermassive black hole at the Galaxy’s core then ever before. Using the National Science Foundation’s continent-wide Very Long Baseline Array (VLBA), they found that a radio-wave-emitting object at the Galaxy’s center would nearly fit between the Earth and the Sun. This is half the size measured in any previous observation.

“We’re getting tantalizingly close to being able to see an unmistakable signature that would provide the first concrete proof of a supermassive black hole at a galaxy’s center,” said Zhi-Qiang Shen, of the Shanghai Astronomical Observatory and the Chinese Academy of Sciences. A black hole is a concentration of mass so dense that not even light can escape its powerful gravitational pull.

The astronomers used the VLBA to measure the size of an object called Sagittarius A* (pronounced “A-star”) that marks the exact center of our Galaxy. Last year, a different team announced that their measurements showed the object would fit inside the complete circle of Earth’s orbit around the Sun. Shen and his team, by observing at a higher radio frequency, measured Sagittarius A* as half that size.

A mass equal to four million Suns is known to lie within Sagittarius A*, and the new measurement makes the case for a black hole even more compelling than it was previously. Scientists simply don’t know of any long-lasting object other than a black hole that could contain this much mass in such a small area. However, they would like to see even stronger proof of a black hole.

“The extremely strong gravitational pull of a black hole has several effects that would produce a distinctive ‘shadow’ that we think we could see if we can image details about half as small as those in our latest images,” said Fred K.Y. Lo, Director of the National Radio Astronomy Observatory and another member of the research team. “Seeing that shadow would be the final proof that a supermassive black hole is at the center of our Galaxy,” Lo added.

Many galaxies are believed to have supermassive black holes at their centers, and many of these are much more massive than the Milky Way’s black hole. The Milky Way’s central black hole is much less active than that of many other galaxies, presumably because it has less nearby material to “eat.” Astronomers believe that the radio waves they see coming from Sagittarius A* are either generated by particle jets that have been detected in many more-active galaxies or from accretion flows that are spiraling into the central black hole. By observing the object at higher radio frequencies, scientists have detected a region of radiation ever closer to the black hole. The results announced last year were based on observations at 43 GigaHertz (GHz), and the latest observations were made at 86 GHz.

“We believe that if we can double the frequency again, we will see the black-hole shadow produced by effects of Einstein’s General Relativity theory,” Lo said.

In a few years, when the Atacama Large Millimeter Array (ALMA) comes on line, it may be used in conjunction with other millimeter-wave telescopes to make the higher-frequency observations that will reveal the telltale black-hole shadow.

At a distance of 26,000 light-years, the Milky Way’s central black hole is the closest such supermassive object. That makes it the most likely one to finally reveal the concrete evidence for a black hole that astronomers have sought for years.

Shen and Lo worked with Mao-Chang Liang of Caltech, Paul Ho of the Harvard-Smithsonian Center for Astrophysics (CfA) and the Institute of Astronomy & Astrophysics of the Academia Sinica in Taiwan, and Jun-Hui Zhao of CfA. The astronomers published their findings in the November 3 issue of the scientific journal Nature.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Original Source: NRAO News Release

First Light of the Universe?

Artist illustration of the early Universe. Image credit: NASA/JPL-Caltech/R. Hurt (SSC). Click to enlarge.
Scientists using NASA’s Spitzer Space Telescope say they have detected light that may be from the earliest objects in the universe. If confirmed, the observation provides a glimpse of an era more than 13 billion years ago when, after the fading embers of the theorized Big Bang gave way to millions of years of pervasive darkness, the universe came alive.

This light could be from the very first stars or perhaps from hot gas falling into the first black holes. The science team, based at NASA Goddard Space Flight Center in Greenbelt, Md., describes the observation as seeing the glow of a distant city at night from an airplane. The light is too distant and feeble to resolve individual objects.

“We think we are seeing the collective light from millions of the first objects to form in the universe,” said Dr. Alexander Kashlinsky, Science Systems and Applications scientist and lead author on the Nature article that appeared in the Nov. 3 issue. “The objects disappeared eons ago, yet their light is still traveling across the universe.”

Scientists theorize that space, time and matter originated 13.7 billion years ago in a Big Bang. Another 200 million years would pass before the era of first starlight. A 10-hour observation by Spitzer’s infrared array camera in the constellation Draco captured a diffuse glow of infrared light, lower in energy than optical light and invisible to us. The Goddard team says that this glow is likely from Population III stars, a hypothesized class of stars thought to have formed before all others. (Population I and II stars, named by order of their discovery, comprise the familiar types of stars we see at night.)

Theorists say the first stars were likely over a hundred times more massive than Earth’s sun and extremely hot, bright, and short-lived, each one burning for only a few million years. The ultraviolet light that Population III stars emitted would be redshifted, or stretched to lower energies, by the universe’s expansion. That light should now be detectable in the infrared.

“This deep observation was filled with familiar-looking stars and galaxies,” said Dr. John Mather, senior project scientist for JWST and a co-author on the Nature article. “We removed everything we knew—all the stars and galaxies both near and far. We were left with a picture of part of the sky with no stars or galaxies, but it still had this infrared glow with giant blobs that we think could be the glow from the very first stars.”

This new Spitzer discovery agrees with observations from the NASA Cosmic Background Explorer (COBE) satellite from the 1990s that suggested there may be an infrared background that could not be attributed to known stars. It also supports observations from the NASA Wilkinson Microwave Anisotropy Probe from 2003, which estimated that stars first ignited 200 million to 400 million years after the Big Bang.

“This difficult measurement pushes the instrument to performance limits that were not anticipated in its design,” said team member Dr. S. Harvey Moseley, instrument scientist for Spitzer. “We have worked very hard to rule out other sources for the signal we observed.”

The low noise and high resolution of Spitzer’s infrared array camera enabled the team to remove the fog of foreground galaxies, made of later stellar populations, until the cumulative light from the first light dominated the signal on large angular scales. The team, which also includes Dr. Richard Arendt, Science Systems and Applications scientist, noted that future missions, such as NASA’s James Webb Space Telescope, will find the first individual clumps of these stars or the individual exploding stars that might have made the first black holes.

This analysis was partially funded through the National Science Foundation. The Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer mission for NASA. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. NASA Goddard built Spitzer’s infrared array camera which took the observations. The instrument’s principal investigator is Dr. Giovanni Fazio, Smithsonian Astrophysical Observatory, Cambridge, Mass.

Original Source: Spitzer News Release

Massive Star Has a Hot Partner

Eta Carinae. Image credit: Hubble. Click to enlarge.
Scientists using NASA’s Far Ultraviolet Spectroscopic Explorer satellite made the first direct detection of a companion star of Eta Carinae. Eta Carinae is one of the most massive and unusual stars in the Milky Way galaxy. The detection was made possible by the high temperature of the companion star and the unique sensitivity of the satellite at the shortest ultraviolet wavelengths.

Eta Carinae is an unstable star thought to be rapidly approaching the final stage of its life. It is clearly visible from the southern hemisphere and has been the subject of intense studies for decades. This mysterious star is located about 7,500 light-years from Earth in the constellation Carina. Scientists thought a companion star in orbit around Eta Carinae might explain some of its strange properties, but researchers lacked direct evidence a companion star existed.

“Until now, Eta Carinae’s partner has evaded direct detection,” said Dr. Rosina Iping, a research scientist at Catholic University of America in Washington. “This discovery significantly advances our understanding of the enigmatic star.”

Evidence that Eta Carinae might be a double star system was inferred from a repeating pattern of changes in visual, X-ray, radio and infrared light over approximately 5.5 years. Astronomers thought a second star in a 5.5 year orbit around Eta Carinae might cause the repeated changes in its light. The strongest indirect evidence supporting the double star theory is that once every 5.5 years, the X-rays coming from the system disappear for about three months. Eta Carinae is too cool to generate X-rays, but it continuously blasts a flow of gas into space as a stellar wind at about 300 miles per second.

If its companion has a similar wind, their stellar winds would collide with enough force to generate the X-rays. This collision region must lie somewhere between the two stars.

As Eta Carinae moves in its orbit, it passes in front of the region where the winds collide, as viewed from Earth. When this occurs, Eta Carinae eclipses the X-rays once every 5.5 years, causing them to disappear. The last X-ray eclipse began on June 29, 2003. The 5.5 year orbit places the companion star only about 10 times farther from Eta Carinae than Earth is from the sun. Eta Carinae is too far away for telescopes to distinguish two stars in such a close orbit.

Another way to find evidence of a double-star system would be to detect the light of the second star, which in this case is much fainter than Eta Carinae. Several scientists searched for light from Eta Carinae’s companion using ground-based telescopes, but none succeeded. Because the companion is thought to be much hotter than Eta Carinae, astronomers reasoned it should be brighter at shorter wavelengths like ultraviolet light. However, it still escaped detection when it was searched for using the ultraviolet capabilities of the Hubble Space Telescope.

Iping and her collaborators used the satellite to detect the companion, because it can see even shorter ultraviolet wavelengths than Hubble. The team observed the far-ultraviolet light from Eta Carinae with the satellite on June 10, 17 and 27, 2003, right before the expected X-ray eclipse. While the far ultraviolet light from Eta Carinae was seen in the observations from June 10 and 17, it vanished on the 27, two days before the X-ray eclipse.

The disappearance of far ultraviolet light so close to the X-ray eclipse implies when Eta Carinae eclipsed the X-rays, it also eclipsed the companion star. The far-ultraviolet light observed prior to the eclipse was from the hotter companion, because Eta Carinae is too cool to emit much far-ultraviolet light.

“This far ultraviolet light comes directly from Eta Carinae’s companion star, the first direct evidence that it exists,” said Dr. George Sonneborn. He is Far Ultraviolet Spectroscopic Explorer Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md. “The companion star is much hotter than Eta Carinae, settling a long-standing mystery about this important star.”

This discovery will be published today in the Astrophysical Journal Letters. Authors include Iping, Sonneborn and Ted Gull of Goddard; Derck Massa of SGT Inc., Greenbelt, Md.; and John Hiller of the University of Pittsburgh. The project is a NASA Explorer mission developed in cooperation with the French and Canadian space agencies by Johns Hopkins University, Baltimore, University of Colorado, Boulder, and University of California, Berkeley. Goddard manages the program for NASA’s Science Mission Directorate. For images and information about the project on the Web, visit:

Original Source: NASA News Release

Spitzer Presents Black Widow Nebula for Halloween

Black widow nebula. Image credit: NASA/Spitzer. Click to enlarge.
Unsuspecting prey be warned! Hiding in the darkest corner of the constellation Circinus is a gigantic black widow spider waiting for its next meal. For decades, this galactic creepy crawler has remained largely invisible, cunningly escaping visible-light detection. At last, it has finally been caught by NASA’s Spitzer Space Telescope’s dust-piercing, infrared eyes.

The spider is actually a star-forming cloud of gas and dust. In this Halloween interactive image comparison, an hourglass-shaped insignia, typically found on the underbelly of a black widow spider, can be seen faintly in the visible-light image from Digital Sky Survey (DSS). As Spitzer’s infrared image fades in, the veil of galactic dust shrouding the rest of the spider is lifted to reveal a poisonous widow.

In the Spitzer image, the two opposing bubbles that make up the black widow’s body are being formed in opposite directions by the powerful outflows from massive groups of forming stars. The baby stars can be seen inside the widow’s “stomach” where the two bubbles meet.

When individual stars form from molecular clouds of gas and dust they produce intense radiation and very strong particle winds. Both the radiation and the stellar winds blow the dust outward from the star creating a cavity or, bubble.

In the case of the Black Widow Nebula, astronomers suspect that a large cloud of gas and dust condensed to create multiple clusters of massive star formation. The combined winds from these large stars probably blew out bubbles into the direction of least resistance, forming a double-bubble.

Original Source: Spitzer News Release

Amateur Observers Are Seeing Double

Image credit: Derek Breit. Click to enlarge.
Findings of this nature are one of the many reasons why International Occultation Timing Association (IOTA) members pursue their craft. One of the notable and historic discoveries on a standard star by occultation means happened in 1819 when Antares’ companion star was observed. However, the name of the astronomy game is confirmation – and also filming and timing the northern limit event at differing locations were Walt Morgan and Ed Morana.

Contacting IOTA’s Dr. David Dunham, Breit forwarded his findings, contacted team members and started seeking an answer for two unusual seconds of video. According to Dunham’s response, “Almost 2 seconds with a distance of much more than a km; it’s unlikely that the Moon would be that smooth, it would have to be within about 5m or less for the brightness to remain faint and constant at that level so long. Especially since this apparently occurred at nearly every event, a faint, close companion, only 0.01″ to 0.02″ north of the primary, seems likely.”

And Morgan clarifies, “The disappearances and reappearances by upsilon Geminorum as it passed lunar peaks were usually slow transitions, that is, the star appeared to fade (or brighten) over a matter of several video frames. That was not considered unusual because of the fairly large angular diameter of the star. However, in some instances the magnitude 4.1 star did not seem to completely disappear on Breit’s record: a very faint point of light remained visible right at the lunar limb.”

But confirmation of such importance to the scientific community doesn’t stop there. Breit’s findings went out to all IOTA observers and the critical timing information provided them with the clues they needed. Also recording the event was Dr. Richard Nolthenius, whose answer was, “Derek’s right! I’ve just reduced my upsilon Gem graze video recording from last Friday. I used a PC164c on an 8″ f/10 operating at f/6.3, recorded on my Canon ZR45mc. And the conclusion is…. Derek’s camcorder is not going crazy! I fully confirm his observations and conclusions – this star is a very close double star.”

As they continue to work through the geometry and astrometric angles, Dr. Nolthenius offers the following information from his own recordings: “The second and 3rd D’s look especially like there is an 11th magnitude companion, and the final D most dramatic of all, with the initial fade happening in just 3 frames, followed by a definite but very faint 11th magnitude star left over for fully 1 second before finally disappearing.”

Although it might seem that in a sky filled with innumerable double stars that a revelation of this type would be of little significance, IOTA member – Dr. Michael Richmond – knew better: “I did a little searching to see if there was any other indication that upsilon Geminorum might be double. The Hipparcos observations indicate that it is slightly variable, with an amplitude of about 0.08 mag, but there is no indication of a period. The Astrophysics Data Service has a number of references which mention upsilon Geminorum. This star has been chosen to be a calibrator for optical interferometers; that is, people have decided that it’s a good star to use as a reference when doing high angular resolution measurements. There are two recent papers which list measurements of its angular size: Borde et al. (A&A 393, 183, 2002), which finds an angular diameter of 5.00 +/- 0.051 mas, and Richichi and Percheron (A&A 386, 492, 2002), which lists angular diameter of 5.23 +/- 0.31 mas. Given the Hipparcos parallax of 13.57 mas, this means that the star’s diameter is roughly 0.37 AU. The main star has spectral type listed as late K or early M giant, with V-band mag 4.08 and K-band mag 0.24. If this is a double star, with a companion of roughly mag 11, then it would be important to let other astronomers know: it would no longer be a really good calibration star.”

But, Dr. Richmond did not let his findings rest there and he continued to look for more precise information. Says Richmond, “I found that both of the catalogue entries were NOT based on direct measurements of angular size; instead, they were simply estimates, based on the observed brightness and the shape of the spectrum. In other words, they were basically fits to a blackbody with a given temperature. I was surprised to find such indirect evidence appearing in catalogues of angular size, for use as a calibrator for interferometers.”

Recognizing the importance of such a finding as opposed to known data definitely changes the way we perceive information. Astronomy is a continually upgrading science as Dr. Nolthenius notes: “For some 9th magnitude star, finding yet another double is one thing, but for such a bright star, being a standard for certain measurements should be checked, as you did. The star is apparently in that fall-through-the-cracks area of parameter space: a wide enough double to not make for noticeable periodicity in the radial velocity on a time scale of a few years – the period is likely in the 100+ year range, (although this is something I will calculate later) and yet impossibly difficult as a visual binary without using interferometry or lunar occultations.”

Of course, there is far more to this picture than just the discovery of undisclosed double star. By recording, timing, and observing both grazing and occultation events, IOTA is able to help determine proper movement, orbit and lunar limb features as well. As Dr. Nolthenius explains, “The absolute UT’s of the events will help in assessing the slope of the moon at the event points. However, the most convincing case for duplicity will be identifying significant periods of time of constant brightness at the very faint levels.” The diffraction of large stars aids astronomers in making more accurate calculations, “Perhaps there is a secondary that is of order 1 radius or less above the surface of upsilon Geminorum.” hypothesizes Nolthenius, “If such extended periods of very faint levels might be consistent with limb darkening which is very extended. As a K giant, I would not expect the limb darkening to be so extreme – normally limb darkening is more extreme the cooler the star, and late K is not all that cool.”

More confirmation was needed and the findings were sent to Dr. Mitsuru Soma of the National Astronomical Observatory of Japan. Says Soma, “From the comparison of your faint flash mentioned above and the short duration (0.7s) from R to D of the primary of Walter Morgan the companion’s separation from the primary is estimated to be about 0.04 arcsec, and this is consistent with the duration of your gradual R’s at 4:39:07 and at 4:40:21 (UT). The spectral type of ups Gem is K5III which is the same as Aldebaran according to the Hipparcos catalogue, so I assume that the actual radius of ups Gem is almost the same as Aldebaran. The angular radius of Aldebaran was estimated to be about 0.010 arcsec from lunar occultations.”

But confirmation means being very sure that there is no chance of this being a diffraction effect. As Dr. Soma explains, “The distance to ups Gem is 3.6 times the distance to Aldebaran (ups Gem’s parallax is 0.014 arcsec and Aldebaran’s parallax is 0.050 arcsec) so the angular radius of ups Gem should be about 0.003 arcsec, which is small so that I think the error arisen from the assumption that the star is a point source is almost negligible when we estimate the diffraction effects. Referring to this fact I think 0.04 arcsec I mentioned above is too large to be attributed to the diffraction effects.”

Confirmation continues on a deeper level when Dr. Michael Richmond plots the photometry of all three tapes of the Upsilon Geminorum event: “The thing I find very interesting and encouraging is that I see an asymmetry in these light curves.” says Richmond, “If this is true, then I think we can make a good case that there may be a faint companion to the primary star. The companion must be “ahead” of the primary, so that the moving limb of the moon first blocks (or reveals) the companion, before it blocks (or reveals) the primary.”

Dr. Mitusuru Soma also continued with his analysis and presented the papers at the Journees 2005 meeting in Warsaw on 2005 September 19-21. Based on available information says, “My conclusion about the position of the secondary of upsilon Geminorum relative to the primary is 0″.04 +/- 0″.01 in separation and 70deg +/- 20deg in PA.” Although these findings are preliminary, Soma will continue to review the data and clarify the results of all accumulative information.

Seeing double? The answer is quite probable. In the mean time IOTA members will continue to review of the data and further research the duplicity of upsilon Geminorum. There’s a whole big wide sky out there, and each time an observation of this type is made it adds more to our understanding. While speckle interferometry is cutting edge of double star detection – the occultation method can reveal far more. Contributions from dedicated members are what makes the International Occultation and Timing Association play an important role in today’s astronomy.

Says Breit, “It was a pretty darn good feeling when Dr Nolthenius wrote “Derek’s RIGHT!” When four PhD’s say I have found something special doing a hobby I taught myself from the age of six, that’s pretty good. Something to tell the grandkids… But my real thought was that I finally have a great video to show others and hopefully get them interested in observing these very dynamic and temporal events!” So what are the chances of IOTA members Derek Breit, Walt Morgan, Ed Morana and Michael Richmond making a contribution to the scientific community?

I’d say double.

Written by Tammy Plotner.

When Did the Earth’s Core Separate from its Shell?

Our planet. Image credit: NASA/JPL. Click to enlarge.
New research allows geologists to estimate the time at which the Earth’s core separated from its rocky outer shell.

A paper in this week’s Nature [26 October 2005] shows how the problem can be resolved by considering the effect of a giant impact with the Earth.

Previous research, using two different types of radioactive ‘clocks’ (hafnium-tungsten and uranium-lead), appeared to give conflicting core formation times of about 35 and 80 million years, respectively, after the origin of the solar system.

The collision of a Mars-sized object with the Earth is thought to have contributed to the last ten percent of the Earth’s mass, as well as forming the Moon.
“The explanation may be that the hafnium-tungsten clock represents the initial phase of core formation, whereas the uranium-lead clock, that gives a younger age, has been reset by the upheaval introduced by the giant impact.”
Professor Bernie Wood

Professor Bernard Wood, who completed this research while at Bristol University, and Professor Alex Halliday from Oxford University, propose that the impact would have also changed the conditions of core formation.

They put forward a model that explains the discrepancy between the two isotope clocks if the effects of the oxidation state of the mantle are taken into account.

Professor Wood said: “The explanation may be that the hafnium-tungsten clock represents the initial phase of core formation, sometime before 35 million years after the origin of the solar system, whereas the uranium-lead clock, that gives a younger age of about 80 million years after the origin of the solar system, has been reset by the upheaval introduced by the giant impact.”

The impact could have produced an oxidation state under which a sulphur-rich metal formed – of which the core is now composed. This oxidation state would have readily allowed lead to dissolve, effectively resetting the uranium-lead clock and resulting in the younger age.

Original Source: University of Bristol News Release

Planets Could Be Common Around Brown Dwarfs

Artist illustration of microscopic crystals surrounding a dusty disk. Image credit: NASA/JPL. Click to enlarge.
NASA’s Spitzer Space Telescope has spotted the very beginnings of what might become planets around the puniest of celestial orbs – brown dwarfs, or “failed stars.”

The telescope’s infrared eyes have for the first time detected clumps of microscopic dust grains and tiny crystals orbiting five brown dwarfs. These clumps and crystals are thought to collide and further lump together to eventually make planets. Similar materials are seen in planet-forming regions around stars and in comets, the remnants of our own solar system’s construction.

The findings provide evidence that brown dwarfs, despite being colder and dimmer than stars, undergo the same initial steps of the planet-building process.

“We are learning that the first stages of planet formation are more robust than previously believed,” said Dr. Daniel Apai, an astronomer at the University of Arizona, Tucson, and member of the NASA Astrobiology Institute’s Life and Planets Astrobiology Center. “Spitzer has given us the possibility to study how planets are built in widely different environments.”

The observations also imply that brown dwarfs might be good targets for future planet-hunting missions. Astronomers do not know if life could exist on planets around brown dwarfs.

Brown dwarfs differ from stars largely due to their mass. They lack the mass to ignite internally and shine brightly. However, they are believed to arise like stars, out of thick clouds of gas and dust that collapse under their own weight. And like stars, brown dwarfs develop disks of gas and dust that circle around them. Spitzer has observed many of these disks, which glow at infrared wavelengths.

Apai and his team used Spitzer to collect detailed information on the minerals that make up the dust disks of six young brown dwarfs located 520 light-years away, in the Chamaeleon constellation. The six objects range in mass from about 40 to 70 times that of Jupiter, and they are roughly 1 to 3 million years old.

The astronomers discovered that five of the six disks contain dust particles that have crystallized and are sticking together in what may be the early phases of planet assembling. They found relatively large grains and many small crystals of a mineral called olivine.

“We are seeing processed particles that are linking up and growing in size,” said Dr. Ilaria Pascucci, a co-author also of the University of Arizona. “This is exciting because we weren’t sure if the disks of such cool objects would behave the same way that stellar disks do.”

The team also noticed a flattening of the brown dwarfs’ disks, which is another sign that dust is gathering up into planets.

A paper on these findings appears online today in Science. Authors of the paper also include Drs. Jeroen Bouwman, Thomas Henning and Cornelis P. Dullemond of the Max Planck Institute for Astronomy, Germany; and Dr. Antonella Natta of the Osservatorio Astrofisico di Arcetri, Italy.

NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer mission for NASA’s Science Mission Directorate. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Spitzer’s infrared spectrograph, which made the observations, was built by Cornell University, Ithaca, N.Y. Its development was led by Dr. Jim Houck of Cornell. The NASA Astrobiology Institute, founded in 1997, is a partnership between NASA, 16 major U.S. teams and six international consortia.

For artist concepts, graphics and more information about Spitzer, visit http://www.spitzer.caltech.edu/spitzer/ . For more information about the NASA Astrobiology Institute, visit http://nai.arc.nasa.gov/ . For more information about NASA and agency programs on the Web, visit http://www.nasa.gov/home/ .

Original Source: NASA/JPL News Release