Astronomers Detect the Faint Glow of Stars in Between Galaxies

Light 'between' the groups of galaxies – the "intra-group light" – however dim, is radiated from stars stripped from their home galaxy. Image Credit: MARTÍNEZ-LOMBILLA ET AL./UNSW SYDNEY

Not all stars are members of galaxies. Some stars exist in the space between galaxies, though they didn’t form there. They’re called intra-group stars, and astronomers study them by observing their light, called intra-group light (IGL.)

They’re challenging to observe because their light is extremely faint and overpowered by the light of nearby galaxies.

Continue reading “Astronomers Detect the Faint Glow of Stars in Between Galaxies”

Astronomers Directly Image Debris Disk and find a Jupiter-Sized Planet Orbiting a Sunlike Star

Astronomers with the SHINE collabortion observed a debris disk containing a Super-Jupiter around a young star. Credit: ALMA (ESO/NAOJ/NRAO); M. Weiss (NRAO/AUI/NSF)

According to the most widely-accepted theory, planetary systems form from large clouds of dust and gas that form disks around young stars. Over time, these disks accrete to create planets of varying size, composition, and distance from their parent star. In the past few decades, observations in the mid- and far-infrared wavelengths have led to the discovery of debris disks around young stars (less than 100 million years old). This has allowed astronomers to study planetary systems in their early history, providing new insight into how systems form and evolve.

This includes the SpHere INfrared survey for Exoplanets (SHINE) consortium, an international team of astronomers dedicated to studying star systems in formation. Using the ESO’s Very Large Telescope (VLT), the SHINE collaboration recently directly imaged and characterized the debris disk of a nearby star (HD 114082) in visible and infrared wavelengths. Combined with data from NASA’s Transiting Exoplanet Space Satellite (TESS), they were able to detect a gas giant many times the size of Jupiter (a “Super-Jupiter”) embedded within the disk.

Continue reading “Astronomers Directly Image Debris Disk and find a Jupiter-Sized Planet Orbiting a Sunlike Star”

The Technique for Detecting Meteors Could be Used to Find Dark Matter Particles Entering the Atmosphere

A perseid meteor, streaking across the night sky. Image credit: Andreas Möller
A Perseid meteor streaks across the sky, leaving a glowing ionized trail. Image credit: Andreas Möller, licensed under

Researchers from Ohio State University have come up with a novel method to detect dark matter, based on existing meteor-detecting technology. By using ground-based radar to search for ionization trails, similar to those produced by meteors as they streak through the air, they hope to use the Earth’s atmosphere as a super-sized particle detector. The results of experiments using this technique would help researchers to narrow down the range of possible characteristics of dark matter particles.

Continue reading “The Technique for Detecting Meteors Could be Used to Find Dark Matter Particles Entering the Atmosphere”

The Second-Closest Supermassive Black Hole Might be in a Nearby Dwarf Galaxy

Leo 1 dwarf spheroidal galaxy has a supermassive black hole
Leo I appears as a faint patch to the right of the bright star, Regulus. Astronomers say it appears to have a supermassive black hole Credit: Scott Anttila Anttler

There’s a little galaxy in the Milky Way’s cosmic neighborhood called Leo 1. It’s a dwarf spheroidal that lies less than a million light-years away from us. Surprisingly, it has a supermassive black hole about the same mass as Sagittarius A* in our galaxy. That’s unusual in several ways, and astronomers want to know more about it.

Continue reading “The Second-Closest Supermassive Black Hole Might be in a Nearby Dwarf Galaxy”

The First SLS Launch Caused Damage to the Launch Pad. How bad was it?

When you test launch the most powerful rocket ever successfully flown, there’s bound to be some collateral damage. With 8.8 million pounds of thrust at liftoff, NASA’s Space Launch System (SLS) packs a mighty punch (the Saturn V, which carried astronauts to the moon in 1969, produced 7.5 million pounds). After November 16’s test flight of SLS, dubbed Artemis I, the pad was a little worse for wear, but not outside of expected parameters, NASA officials say.

Continue reading “The First SLS Launch Caused Damage to the Launch Pad. How bad was it?”

With JWST Fully Operational Again, we get Images Like This: Saturn’s Moon Titan

Saturn's moon Titan, taken by the JWST using its MIRI camera. Credit: Michael Radke/NASA/JPL-Caltech

On August 24th, a vital instrument aboard the James Webb Space Telescope (JWST) experienced a malfunction that prompted the mission team to take it offline. The problem occurred when the Mid-Infrared Instrument (MIRI) experienced increased friction in one of its wheels while in Medium-Resolution Spectroscopy (MRS) mode. The mission team took MIRI offline while they attempted to diagnose the problem, leaving the observatory to continue making observations in other modes.

This came shortly after Webb was hit by a large micrometeoroid in late May that caused damage to one of its primary mirror segments. Luckily, the damage this caused will not alter the telescope’s performance, and the mission team announced earlier this month that they had restored the MIRI to operational status. With everything in the green, Webb has once again turned its infrared optics to the cosmos and acquired some breathtaking images. This includes a new image of Saturn’s largest moon Titan, which recently appeared online.

Continue reading “With JWST Fully Operational Again, we get Images Like This: Saturn’s Moon Titan”

The Milky Way’s Stellar Halo Isn’t a Sphere After All

stellar halo around the milky way
The Milky Way's anatomy includes a rounded stellar halo That view is changing with new data. Image courtesy ESA.

Our galaxy’s stellar halo is giving astronomers some new food for thought. It turns out everyone thought the halo was spherical. But, it’s not. That’s news to everyone who said it was spherical. According to a new measurement done by a team at Harvard-Smithsonian Center for Astrophysics, it has a tilted, oblong football shape. This all tells astronomers an interesting tale about our galaxy’s ancient history.

Continue reading “The Milky Way’s Stellar Halo Isn’t a Sphere After All”

Hubble Sees a Dense Cloud of Gas and Dust That’s About to Become a Star

A small, dense cloud of gas and dust called CB 130-3 blots out the center of this image from the NASA/ESA Hubble Space Telescope.
A small, dense cloud of gas and dust called CB 130-3 blots out the centre of this HST image. Courtesy NASA/ESA/STScI

The process of star birth begins in a shroud of gas and dust. Hubble Space Telescope (HST) excels in showing detailed views of these stellar crêches because there’s still a lot to learn about them. Its latest image shows an object called a “dense core”, where a stellar embryo could already exist.

Continue reading “Hubble Sees a Dense Cloud of Gas and Dust That’s About to Become a Star”

Einstein's Predictions for Gravity Have Been Tested at the Largest Possible Scale

The first image taken by the James Webb Space Telescope, featuring the galaxy cluster SMACS 0723. Credit: NASA, ESA, CSA, and STScI

According to the Standard Model of Particle Physics, the Universe is governed by four fundamental forces: electromagnetism, the weak nuclear force, the strong nuclear force, and gravity. Whereas the first three are described by Quantum Mechanics, gravity is described by Einstein’s Theory of General Relativity. Surprisingly, gravity is the one that presents the biggest challenges to physicists. While the theory accurately describes how gravity works for planets, stars, galaxies, and clusters, it does not apply perfectly at all scales.

While General Relativity has been validated repeatedly over the past century (starting with the Eddington Eclipse Experiment in 1919), gaps still appear when scientists try to apply it at the quantum scale and to the Universe as a whole. According to a new study led by Simon Fraser University, an international team of researchers tested General Relativity on the largest of scales and concluded that it might need a tweak or two. This method could help scientists to resolve some of the biggest mysteries facing astrophysicists and cosmologists today.

Continue reading “Einstein's Predictions for Gravity Have Been Tested at the Largest Possible Scale”