Alien Artifacts Could Be Hidden Across the Solar System. Here’s how we Could Search for Them.

Galileo Project members (from left: Carson Ezell, Ezra Kelderman, Abby White, Alex and Lily Delacroix) with the audio tower (left), radar spectrum tower (middle) and radar imaging tower (right) behind them on the roof of the Harvard College Observatory.
Galileo Project members (from left: Carson Ezell, Ezra Kelderman, Abby White, Alex and Lily Delacroix) with the audio tower (left), radar spectrum tower (middle) and radar imaging tower (right) behind them on the roof of the Harvard College Observatory. Image credit: The Galileo Project

Do aliens exist? Almost certainly. The universe is vast and ancient, and our corner of it is not particularly special. If life emerged here, it probably did elsewhere. Keep in mind this is a super broad assumption. A single instance of fossilized archaebacteria-like organisms five superclusters away would be all it takes to say, “Yes, there are aliens!” …if we could find them somehow.

Continue reading “Alien Artifacts Could Be Hidden Across the Solar System. Here’s how we Could Search for Them.”

Want to Stay Healthy in Space? Then you Want Artificial Gravity

A close up of three fruit flies, used for scientific research both on Earth and in space. Credits: NASA Ames Research Center/Dominic Hart

Space travel presents numerous challenges, not the least of which have to do with astronaut health and safety. And the farther these missions venture from Earth, the more significant they become. Beyond Earth’s protective atmosphere and magnetosphere, there’s the threat of long-term exposure to solar and cosmic radiation. But whereas radiation exposure can be mitigated with proper shielding, there are few strategies available for dealing with the other major hazard: long-term exposure to microgravity.

Aboard the International Space Station (ISS), astronauts rely on a strict regimen of exercise and resistance training to mitigate the physiological effects. These include muscle atrophy, bone density loss, organ function, eyesight, and effects on cardiovascular health, gene expression, and the central nervous system. But as a recent NASA study revealed, long-duration missions to Mars and other locations in deep space will need to be equipped with artificial gravity. This study examined the effects of microgravity on fruit flies aboard the ISS and demonstrated artificial gravity provides partial protection against those changes.

Continue reading “Want to Stay Healthy in Space? Then you Want Artificial Gravity”

It’s Thought to Rain Diamonds on Uranus and Neptune, and now Scientists Duplicated it in the lab

An experiment conducted by an international team of scientists recreated the "diamond rain" believed to exist in the interiors of ice giants like Uranus and Neptune. Credit: Greg Stewart/SLAC National Accelerator Laboratory

The ice giant planets of Neptune and Uranus might have just the right conditions to rain diamonds. Unfortunately we can’t go and check ourselves, so we have to rely on laboratory recreations of their atmospheres to find out. And so that’s exactly what a team of physicist did: they used a vaporized form of common plastics to find out how quickly and how easily diamonds could grow in those kinds of conditions.

Continue reading “It’s Thought to Rain Diamonds on Uranus and Neptune, and now Scientists Duplicated it in the lab”

Astronomers Create the First 3D Model of a Planet Orbiting in a Binary System

Artist's conception of an exoplanet about twice the size of Jupiter, the star it orbits, and the binary companion in the distance. Credit: Sophia Dagnello, NRAO/AUI/NSF.

To date, 5,084 extrasolar planets have been confirmed in 3,811 planetary systems, with another 8,912 candidates awaiting confirmation. These discoveries have provided astronomers with a detailed sampling of the types of planets that exist in our Universe, ranging from gas giants several times the size of Jupiter to smaller, rocky bodies like Earth. So far, the vast majority of these have been discovered using indirect methods – like the Transit Method (Transit Photometry) and the Radial Velocity Method (Doppler Spectroscopy) – while the remainder has been detected using various other means.

In a recent study, an international team of astronomers used the National Science Foundation’s (NSF) Very Long Baseline Array (VLBA) network to detect a Jupiter-like planet orbiting in a binary system (GJ 896AB) located about 20 light-years from Earth. Using a method known as Astrometry, the team managed to detect this planet by the “wobble” it makes as it orbits the larger of the system’s two stars. Moreover, this method allowed the team to create the first 3-dimensional architecture of a binary system and a planet that orbits one of its stars.

Continue reading “Astronomers Create the First 3D Model of a Planet Orbiting in a Binary System”

BlueWalker-3 Satellite Launches This Weekend, May Be Bright

AST SpaceMobile
An artist's conception of BlueWalker-3 in space. Credit: AST SpaceMobile

A new satellite launching this weekend BlueWalker-3 could be conspicuously bright once it’s unfurled in orbit.

A routine SpaceX Starlink launch this coming weekend carries an unusual passenger, that you many be able to easily see gliding through the increasingly crowded night sky.

Continue reading “BlueWalker-3 Satellite Launches This Weekend, May Be Bright”

Star Formation in the Center of the Milky Way Started at the Core and Then Worked its way out

False-color image of the region Sagittarius B1, as seen by the GALACTICNUCLEUS survey. Credit & ©: F. Nogueras-Lara et al. / MPIA

One of the biggest questions facing astronomers today concerns star formation and its role in the evolution of galaxies. In particular, astronomers are curious whether the process began in the central regions of galaxies, where stars are more tightly bound. Previous observations have shown that numerous galaxies experienced intense periods of star formation in their centers roughly one billion years after the Big Bang. For some time, astronomers have wanted to conduct similar observations of the Milky Way’s Galactic Center to study rapid star formation more closely.

Unfortunately, it has been very difficult for astronomers to study the center of the Milky Way because of how bright and densely packed the region is, which makes it difficult to discern individual stars and clusters. Thanks to a new analysis of a high-resolution infrared survey, a team of astronomers has created the first reconstruction of the star formation history in the Galactic Center. According to their findings, most young stars in this region formed in loose stellar associations that dispersed outwards to fill the Galactic Disk over the course of many eons (as opposed to tightly-knit massive clusters).

Continue reading “Star Formation in the Center of the Milky Way Started at the Core and Then Worked its way out”

A New Map Shows how Solar Winds Rain Down Everywhere on Mars

In a joint effort between NASA’s MAVEN spacecraft and the United Arab Emirates’ Emirates Mars mission (EMM), scientists have observed an uncommonly chaotic interaction between the solar wind and Mars’ upper atmosphere, creating a unique ultraviolet aurora. The phenomenon represents an unusual occurrence in Martian space weather, and scientists are excited to take advantage of future collaborations between spacecraft to keep an eye out for repeat events.

Continue reading “A New Map Shows how Solar Winds Rain Down Everywhere on Mars”

Pulsars are Blasting out Cosmic Rays With a Million Billion Electronvolts

Distant past supernovae could be linked by cosmic ray particles to climate change on Earth and changes in biodiversity. Courtesy: Henrik Svensmark, DTU Space.
Distant past supernovae could be linked by cosmic ray particles to climate change on Earth and changes in biodiversity. Courtesy: Henrik Svensmark, DTU Space.

We are living in an exciting time, where next-generation instruments and improved methods are leading to discoveries in astronomy, astrophysics, planetary science, and cosmology. As we look farther and in greater detail into the cosmos, some of the most enduring mysteries are finally being answered. Of particular interest are cosmic rays, the tiny particles consisting of protons, atomic nuclei, or stray electrons that have been accelerated to near the speed of light. These particles represent a major hazard for astronauts venturing beyond Earth’s protective magnetic field.

At the same time, cosmic rays regularly interact with our atmosphere (producing “showers” of secondary particles) and may have even played a role in the evolution of life on Earth. Due to the way they carry an electric charge, which scrambles their path as they travel through the Milky Way’s magnetic field, astronomers have been hard-pressed to find where cosmic rays originate. But thanks to a new study that examined 12 years of data from NASA’s Fermi Gamma-ray Space Telescope, scientists have confirmed that the most powerful originate from shock waves caused by supernova remnants.

Continue reading “Pulsars are Blasting out Cosmic Rays With a Million Billion Electronvolts”