Primordial Holes Could be Hiding in Planets, Asteroids, and Here on Earth

An artistic take on primordial black holes. Credit: NASA’s Goddard Space Flight Center

Small primordial black holes (PBHs) are one of the hot topics in astronomy and cosmology today. These hypothetical black holes are believed to have formed soon after the Big Bang, resulting from pockets of subatomic matter so dense that they underwent gravitational collapse. At present, PBHs are considered a candidate for dark matter, a possible source of primordial gravitational waves, and a resolution to various problems in physics. However, no definitive PBH candidate has been observed so far, leading to proposals for how we may find these miniature black holes.

Recent research has suggested that main-sequence neutron and dwarf stars might contain small PBHs in their interiors that are slowly consuming their gas supply. In a recent study, a team of physicists extended this idea to include a new avenue for potentially detecting PBHs. Basically, we could search inside objects like planets and asteroids or employ large plates or slabs of metal to detect PBHs for signs of their passage. By detecting the microchannels these bodies would leave, scientists could finally confirm the existence of PBHs and shed light on some of the greatest mysteries in cosmology today.

Continue reading “Primordial Holes Could be Hiding in Planets, Asteroids, and Here on Earth”

The Milky Way Might be Part of an Even Larger Structure than Laniakea

A data visualization of the motions of galaxies in structures called basins of attraction. The Milky Way is the red dot. Courtesy of the University of Hawai'i.
A data visualization of the motions of galaxies in structures called basins of attraction. The Milky Way is the red dot. Courtesy of the University of Hawai'i.

If you want to pinpoint your place in the Universe, start with your cosmic address. You live on Earth->Solar System->Milky Way Galaxy->Local Cluster->Virgo Cluster->Virgo Supercluster->Laniakea. Thanks to new deep sky surveys, astronomers now think all those places are part of an even bigger cosmic structure in the “neighborhood” called The Shapley Concentration.

Continue reading “The Milky Way Might be Part of an Even Larger Structure than Laniakea”

Webb Detects Carbon Dioxide and Hydrogen Peroxide on Pluto’s Moon Charon

An SwRI-led team detected carbon dioxide and hydrogen peroxide spectral signatures on Pluto’s largest moon Charon using Webb telescope observations (white), which extend the wavelength coverage of previous New Horizons flyby measurements (pink). Credit: SwRI

The James Webb Space Telescope (JWST) has revealed magnificent things about the Universe. Using its sophisticated infrared optics, it has peered deeper into space (and farther back in time) than any observatory to date, gathering data on the first galaxies to form in our Universe. It has also obtained spectra from exoplanets, revealing things about the chemical composition of their atmospheres. In addition, Webb has provided some stunning views of objects within our Solar System, like Jupiter and its auroras, Saturn’s rings and moons, and Neptune and its satellites.

Recently, a team led by researchers from Southwest Research Institute (SwRI) used Webb Near-Infrared Spectrograph (NIRSpec) to closely examine the Pluto-Charon system. Their observations detected frozen carbon dioxide and hydrogen peroxide on the surface of Pluto’s largest moon for the first time. These discoveries add to what scientists learned about Charon’s chemical inventory from ground-based telescopes and the New Horizons mission. It also reveals more about the chemical composition of the many objects that make up the Kuiper Belt.

Continue reading “Webb Detects Carbon Dioxide and Hydrogen Peroxide on Pluto’s Moon Charon”

The GALAH Fourth Data Release Provides Vital Data on One Million Stars in the Milky Way.

Day and night at the Anglo Australian Telescope. Half right image taken in the late afternoon, the Moon is up. Half left image taken just some few minutes before the beginning of the morning twilight of the same night. Credit: Dr Ángel R. López-Sánchez/Australian Astronomical Optics/Macquarie University/ASTRO 3D

For the past ten years, Australia’s ARC Centre of Excellence in All Sky Astrophysics in 3 Dimensions (ASTRO 3D) has been investigating star formation, chemical enrichment, migration, and mergers in the Milky Way with the Anglo-Australian Telescope (AAT). Their work is part of the GALactic Archaeology with HERMES (GALAH) project, an international collaboration of more than 100 scientists from institutes and universities worldwide. These observations have led to the highest spectral resolution multi-dimensional datasets for over a million stars in the Milky Way.

Previous GALAH data releases have led to many significant discoveries about the evolution of the Milky Way, the existence of exoplanets, hidden star clusters, and many more. In the fourth data release (DR4), the GALAH team released the chemical fingerprints (spectra) for almost 1 million stars. This data is the pinnacle of the 10-year project and was released during the 50th anniversary celebration of the AAT. According to the study that accompanied the release, the data will inform decades of research into the formation and evolution of our galaxy.

Continue reading “The GALAH Fourth Data Release Provides Vital Data on One Million Stars in the Milky Way.”

Could a New Sungrazer Comet Put on a Show at the End of October?

Comet W3 Lovejoy imaged from the ISS after perihelion in 2011. Credit: NASA

Could this be the next great comet? To be sure, these words have been said lots of times before. In a clockwork sky, how comets will perform is always the great wildcard. Comets from Kohoutek to ISON have failed to live up to expectations, while others like W3 Lovejoy took us all by surprise. But a discovery this past weekend has message boards abuzz, as an incoming sungrazer could put on a show right around Halloween.

Continue reading “Could a New Sungrazer Comet Put on a Show at the End of October?”

An Earth-like Planet Around a Dead Sun Provides Some Reassurance About the Future of Earth

Astronomers have discovered a distant white dwarf with an Earth-like planet in an orbit just beyond where Mars is in our solar system. Earth could end up in such an orbit circling a white dwarf in about 8 billion years, if, like this exoplanet, it can survive the sun's red giant phase on its way to becoming a white dwarf. Credit: Adam Makarenko

In about five billion years, our Sun will exit its main sequence phase and transition to its red giant phase. At this point, the Sun will expand and consume the planets of the inner Solar System, including Mercury and Venus. What will become of Earth when this happens has been the subject of debate for many decades. But with the recent explosion in exoplanet discoveries, 5,759 confirmed in 4,305 systems so far, astronomers hope to learn more about how planets fare as their stars near the end of their life cycle.

Using the 10-meter telescope at the Keck Observatory in Hawaii, an international team of astronomers discovered an Earth-like planet orbiting a white dwarf star 4,000 light-years from Earth. This planet orbits its star, about half the mass of our Sun, at a distance roughly twice that of the Earth today. The system resembles what is expected to become of our system once the Sun has exhausted the last of its fuel and sheds its outer layers. It also offers some assurances that Earth will survive the Sun becoming a red giant and exploding in a supernova.

Continue reading “An Earth-like Planet Around a Dead Sun Provides Some Reassurance About the Future of Earth”

The ESO Releases the Most Detailed Infrared Map of our Galaxy Ever Made

This collage highlights a small selection of regions of the Milky Way imaged as part of the most detailed infrared map ever of our galaxy. Here we see, from left to right and top to bottom: NGC 3576, NGC 6357, Messier 17, NGC 6188, Messier 22 and NGC 3603. All of them are clouds of gas and dust where stars are forming, except Messier 22, which is a very dense group of old stars. The images were captured with ESO’s Visible and Infrared Survey Telescope for Astronomy (VISTA) and its infrared camera VIRCAM. The gigantic map to which these images belong contains 1.5 billion objects. The data were gathered over the course of 13 years as part of the VISTA Variables in the Vía Láctea (VVV) survey and its companion project, the VVV eXtended survey (VVVX).

Despite decades of large-scale optical surveys, there are still mysteries about the Milky Way galaxy that astronomers are eager to resolve. This is particularly true of its internal structure and the core region, which is difficult to survey due to clouds of gas and dust in the interstellar medium (ISM). This material absorbs visible light, making fainter objects difficult to see in optical wavelengths. Luckily, advances in infrared astronomy have enabled surveys of the Milky Way that have revealed things that would otherwise remain invisible to us.

For more than 13 years, an international team of astronomers has been observing the Milky Way using the ESO’s 4.1-meter Visible and Infrared Survey Telescope for Astronomy (VISTA). In a recently published study, they announced the release of their final data product: a gigantic infrared map of the Milky Way containing more than 1.5 billion objects—the most detailed map our galaxy has ever created! With over 200,000 images and 500 terabytes of data, this map is also the largest observational project ever carried out with an ESO telescope.

Continue reading “The ESO Releases the Most Detailed Infrared Map of our Galaxy Ever Made”

An October Annular Solar Eclipse Rounds Out 2024

Eclipse
The 'Horns of the Sun' rise from the Atlantic during the June 10th, 2021 annular solar eclipse. Credit: Michael Zeiler

A remote annular solar eclipse bookends the final eclipse season for 2024.

The final eclipse of the year is almost upon us. If skies are clear, a few lucky observers and intrepid eclipse-chasers will get to witness the passage of the Moon in front of the Sun one last time on Wednesday, October 2nd during an annular solar eclipse.

Continue reading “An October Annular Solar Eclipse Rounds Out 2024”

Will Comet A3 Tsuchinshan-ATLAS Shine Brighter Than Expected?

ISS Comet

Now is the time to catch Comet A3-Tsuchinshan-ATLAS at dawn.

The window is now open. If skies are clear, set your alarm heading into this weekend to see Comet C/2023 A3 Tsuchinshan-ATLAS at dawn. We’re already seeing great views of the comet this week from southern observers and astronauts aboard the International Space Station. The visibility window is now even creeping up to the southern tier latitudes of the contiguous United States (CONUS). If fortune favors us, the comet could hit an easy naked eye magnitude +2 by next week, and forward scattering could even boost this into negative magnitudes… the rare term ‘daytime comet’ is even getting kicked around a bit in cometwatching circles.

Continue reading “Will Comet A3 Tsuchinshan-ATLAS Shine Brighter Than Expected?”

High-Resolution Images of the Sun Show How Flares Impact the Solar Atmosphere

A solar flare erupts on the Sun. Credit: NASA/GSFC/SDO

Solar flares are a fascinating thing and have a profound effect on what astronomers refer to as “space weather.” These events vary with the Sun’s 11-year solar cycle, releasing immense amounts of radiation across the electromagnetic spectrum (from extreme ultraviolet to X-rays) into space. The effects of flares have been observed since time immemorial, which include aurorae at high latitudes (Aurora Borealis and Australis), but have only been the subject of study and prediction for about a century and a half. Still, there is much that remains unknown about these dramatic events.

For instance, flares are known to affect the Sun’s atmosphere, from the visible surface (photosphere) to its outermost layer (corona). However, there are still questions about how these events influence the lower layers of the atmosphere. In a recent study led by the University of Colorado, Boulder, a team of researchers documented the rotation of two very small sunspots of the Sun’s surface (pores) using the Daniel K. Inouye Solar Telescope (DKIST) at Mauna Kea. These pores were linked to a less powerful flare and moved in a way that has never been observed, suggesting that the dynamics of the Sun’s atmosphere are more complex than previously thought.

Continue reading “High-Resolution Images of the Sun Show How Flares Impact the Solar Atmosphere”