The closest planetary conjunction of the year graced the skies this morning, and astrophotographers were out in force to marvel at the beauty. The duo were just 11.9’ apart, less than half the diameter of a Full Moon. Also joining the view was M44, the Beehive Cluster. We start with this gorgeous shot from Queensland, Australia by one of our longtime favorite astrophotographers, Joseph Brimacombe.
But wait… there’s more! Much more! See below:
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
“The sum total of 2 1/2 hours worth of images – one meteor!” lamented photographer Roger Hutchinson (see his image below).
A bright Moon is not conducive seeing and capturing meteors on camera, but some astrophotographers persevered and managed to get some photos of this year’s Perseid Meteor Shower. Enjoy the views from photographers who submitted photos to Universe Today via our Flickr group and on Twitter:
The sum total of 2 1/2 hours worth of images – one meteor.
Above is one image from John Maclean of the UK’s Meteor Network, who sent us several image. You can see a collection of the best images from the UK’s Meteor Observation Network here.
Here’s a compilation of meteors from NASA’s Meteor Network seen from August 12-13, 2014.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Wow! The astrophotographers out there are getting artsy! Take a look at some of the most artistic images of the full Moon we’ve seen yet.
The August 10 full Moon was a so-called “super” Moon — and it was the “super-est” of a trio of full Moons being at perigee, or its closest approach to the Earth in its orbit. It was just 356,896 kilometers distant at 17:44 UTC, less than an hour from Full. You can see a comparison shot of the perigee and apogee Moons this year immediately below. Find all the technical details here, but enjoy a gallery of great images from around the world
It was prom night in Cairns… so the fancy cars were out. See Joseph’s other “prom supermoon” image here.
Even NASA got into the “super Moon” astrophoto craze. NASA photographer Bill Ingalls took this beautiful image at The Peace Monument on the grounds of the United States Capitol, in Washington D.C. :
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
How would you like to have one of your astrophotos sent up to the astronauts and cosmonauts on the International Space Station? Since arriving on the ISS back in May, astronaut Reid Wiseman has been posting beautiful images on social media of the International Space Station passing overhead, taken by people from all around the world.
There’s a dedicated team of people working behind the scenes back on Earth to make sure Wiseman and his crewmates get to see as many images as possible. This is all part of the #SpotTheStation, a project to get people to look up and see the ISS — to increase the “visibility” off the space station, so to speak — to make the general public more aware of the station and what benefits it brings to science. Of course, being able to see the space station fly overhead is always a fun experience!
The #SpotTheStation project is getting photographers more involved, too. We get several images a week posted on our Flickr site of space station passes (see the gorgeous one above by David Murr).
Take a look at some of the recent images @Astro_Reid has posted on Twitter:
How do you get your images sent up to the ISS? You can email your picture to [email protected] and include a description of your images of the ISS (location, date, times, maybe exposure information and techniques involved). Please also include your Twitter handle, Facebook or website information.
You can also just share your image through your social media outlets using #SpotTheStation hashtag.
How do you find out how to see the ISS? There are several different tools:
NASA’s Spot the Station website: Enter your Country, Region, City along with an email address or mobile phone number. Then give your preference for notifications in the evening, morning or both and that’s it. About twelve hours before the station is due to fly overhead, you’ll get a notification from NASA.
Heaven’s Above: A great website that will provide times and locations of where to look for the ISS and many more satellites that are flying over your location.
People are getting involved in this project, even if they’ve never taken a picture of the ISS previously. For example, photographer George Krieger who had never taken an image of the ISS before he heard of the #SpotTheStation project. He got right to it and on June 3 he captured two amazing ISS passes over Hollister, California. Take a look below:
Here are a few more pics from our Flickr pool:
Join in and maybe you can tell all your friend that YOUR image has been sent up to the International Space Station!
What a stunning view of this dark region of space! This image, by astrophotographer Callum Hayton shows LDN 673, a molecular cloud complex that lies in the constellation Aquila. This region is massive — around 67 trillion kilometers (42 trillion miles across), and it is between 300-600 light years from Earth. Observers in the northern hemisphere can find this region in the summer skies near the bright star Altair and the Summer Triangle.
Because the cloud lies on the galactic plane, the dark dust is back-lit by millions of stars in the Milky Way galaxy. This dusty cloud likely contains enough raw material to form hundreds of thousands of stars. Hayton explained on Flickr how the dust gets “eroded” away by stellar formation:
“When some of these clouds reach a certain mass they begin to collapse and fragment creating protostars,” Hayton wrote. “As the temperature and pressure at the centre of the protostar rises, sometimes it becomes so great that nuclear fusion begins and a star is born. In this image you can see where at least two young stars have eroded the dust around them and are now above the clouds casting light down on to the dust below.”
Gorgeous!
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Shooting the night sky from an area filled with canyons and towering trees might sound like a challenge, but Gavin Heffernan and his crew at Sunchaser Pictures have “majestically” succeeded with this new timelapse from Kings Canyon and Sequoia National Parks in California. They spent three days and two nights around the summer solstice, covering the 1,353 square miles of the two parks. They captured gorgeous night sky views, star trails, bright meteor streaks, and satellite passes — all framed by the magnificent landscape of the area.
“It was undoubtedly one of the most beautiful places I’ve ever seen, with incredible canyons, mountains, and vistas out of a fantasy novel,” Gavin told UT via email. “Far removed from any light pollution, the skies were equally stunning, with some epic milky ways, star trails, and the brightest meteor picture I’ve ever captured.” Image above — and see the new timelapse video below, with the meteor trails coming at 1:41 & 2:26:
Gavin said most night shots were captured with 25 second exposures on two Canon EOS 6D’s with a variety of wide, fast lenses, including a 24mm f1/4 and 28mm f1/8. The stunning star trails effect is created by tracing rotations of the Earth’s axis, using long exposures.
Find out more about this video on Vimeo and you can watch a “behind the scenes” video of what it took to make this video — including an encounter with a brown bear! — here.
We’re finally getting to know the icy nucleus behind comet 67P/Churyumov-Gerasimenko. For all the wonder that comets evoke, we on Earth never see directly what whips up the coma and tail. Even professional telescopes can’t burrow through the dust and vapor cloaking the nucleus to distinguish the clear outline of a comet’s heart. The only way to see one is to fly a camera there.
Rosetta took 10 years to reach 67P/C-G, a craggy, boot-shaped body that resembles an asteroid in appearance but with key differences. Asteroids shown in close up photos often display typical bowl-shaped impact craters. From the photos to date, 67P/C-G’s ‘craters’ look shallow and flat in comparison. Were they impacts smoothed by ice flows over time? Did some of the dust and vapor spewed by the comet settle back on the surface to partially bury and soften the landscape?
While 67P is doubtless its own comet, it does share certain similarities with Comet 81P/Wild including at least a few crater-like depressions seen during NASA’s Stardust mission. In January 2004, the spacecraft gathered photos, measurements and dust samples during its brief flyby of the nucleus. Photos reveal pinnacles, flat-bottomed depressions and bright plumes or jets of vaporizing ice.
In a 2004 paper by Donald Brownlee and team, the group experimentally reproduced the flat-floored craters by firing projectiles into resin-coated sand baked a bit to make it cohere. Their results suggest the craters formed from impacts in loosely compacted material under the low-gravity conditions typical of small objects like comets. To quote the paper: “Most disrupted material stayed inside the cavity and formed a flat-floored deposit and steep cliffs formed the rim.” Icy materials mixed with dust may have also played a role in their appearance and other crater-like depressions called pit-halos.
Speculation isn’t science, so I’ll stop here. So much more data will be streaming in soon, we’ll have our hands full. On Wednesday, August 6th, Rosetta will enter orbit around the nucleus and begin detailed studies that will continue through December 2015. Studying the new pictures now arriving daily, I’m struck by the dual nature of comets. We see an ancient landscape and yet one that looks strangely contemporary as the sun vaporizes ice, reworking the terrain like a child molding clay.
You might think the image above of the famous Antenna Galaxies was taken by a large ground-based or even a space telescope. Think again. Amateur astronomer Rolf Wahl Olsen from New Zealand compiled a total of 75 hours of observing time to create this ultra-deep view.
“To obtain a unique deep view of the faint tidal streams and numerous distant background galaxies I gathered 75 hours on this target during 38 nights from January to June 2014,” Rolf said via email. “At times it was rather frustrating because clouds kept interrupting my sessions.”
But he persisted, and the results are stunning.
He used his new 12.5″ f/4 Serrurier Truss Newtonian telescope, which he said gathers approximately 156% the amount of light over his old 10″ f/5 telescope.
Rolf even has put together comparison shots from the Hubble Space Telescope and the Very Large Telescope of the same field of view:
And if you look even closer you can see an incredible field of distant background galaxies. “Apart from the Antennae itself, what I like most about this scene is the incredible number of distant background galaxies,” Rolf told Universe Today. “This area in Corvus seems very rich indeed. The full resolution image is worth having a look at just to see all these faint galaxies littering the background. There are many beautiful interacting pairs and groups which would be fantastic targets in themselves if they were only closer.”
Here’s a collage of some of the background galaxies that Rolf compiled:
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Astrophotographer Leo Aerts from Belgium took advantage of the recent opposition of Mars and captured the Red Planet both “coming and going” in this montage of images taken from October 2013 to June of 2014. Mars reached opposition in April of this year, meaning it was closest to Earth, allowing for the brightest and best viewing.
Leo even shows the changing locations in the sky where Mars appeared across the months, allowing also for the apparent retrograde motion through Virgo during the months on either side of opposition.
Opposition of Mars (or any planet) means that planet and the Sun are on directly opposite sides of Earth. From our perspective on a spinning Earth, the other planet rises in the east just as the Sun sets in the west. Then, after staying up in the sky the entire night, the other planet sets in the west just as the Sun rises in the east.
Mars’ opposition happens about every 26 months. Opposition time is also a good time to send spacecraft to Mars, since our two planets are the closest, meaning less fuel (and time) will be needed to reach the planet. Hence, we’ve got two missions on their way to the Red Planet: MAVEN will arrive at Mars on September 21, 2014, and India’s Mars Orbiter Mission (MOM) will get there on September 24.
This year’s opposition was pretty close, but we’re currently on an improving trend: the next opposition in 2016 Mars will look even bigger and brighter and during the 2018 opposition, Mars will nearly be as close as it was in 2003.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Here’s another beautiful astrophoto, courtesy of photographer Justin Ng from Singapore. He’s currently on a photography trip to Malaysia and by chance captured this absolutely stunning view.
“Knowing that the sky would clear after sunset, I led a group of photographers to this location to film a time-lapse of the rising Milky Way above a lonely boat,” Justin explained via email, “but what happened soon after we started shooting was amazing. We were treated to a spectacular lightning display for about an hour from 9:30pm onwards before the clouds caught up with the rising Milky Way and dominated the skies eventually.”
The image is a result of stacking 12 photos (11 shots of lightnings and 1 shot for everything else) from his time-lapse sequence.
We’re looking forward to seeing the timelapse!
See more images from his current trip here, and you can see more of Justin’s fantastic astrophotography at his website, on G+, Facebook and Twitter.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.