I love these ‘Polar Planet Effect‘ images, and this one is awesome. Photographer Martin Stojanovski traveled from Macedonia to Finland during an #AuroraTweetup event in early February 2013 to try and capture the aurora. And he really wanted to try doing one of these “planet” pictures.
“This was one of the photos that I really wanted to create on my aurora trip during #AuroraTweetup and it came together at last,” Martin said via email. “It is really hard to get the final result as the aurora is so dynamic (it changes every second) and also the night sky is difficult for stitching, but the end result came up great. That night Aurora was amazing, and it got really bright and colorful from time to time, as our guide said that night the best of the season.”
In this image the aurora stretches more than 120 degrees from side to side, and a faint glow go higher up towards zenith. It was created from 21 30-second exposures at f-4, 10mm ISO 1600. Image of the whole sky and foreground was taken at the Aurora Camp on Lake Inari in Finland.
He took some other great shots, too, like this one:
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
In Native American lore, the full Moon in February is called the Snow Moon, as this time of year usually signals the deepest snows of winter in the now cold northern latitudes in the Northern Hemisphere. This year, the full moon fell on February 25th and here are a few images shared by our readers. Above is a classic view of a winter evening in the north — especially where I used to live in Minnesota, but also where Rick Stankiewicz lives in Ontario, Canada.
“I was fishing for walleye with some friends on the Bay of Quinte (Lake Ontario) near Belleville, Ontario,” Rick wrote, “and I was fortunate to be in an opportune location to see the Moon rising in the eastern sky. “A pale pastel pink disc appeared initially, but as the minutes wore on and the lunar disk rose higher above the horizon it grew brighter and transformed from pink, then red, then orange as it evaded more and more of the earth’s atmosphere along the horizon. What a wonderful sight and this made the whole trip worth the effort. Our fishing party caught one nice fish this trip but the rising of the Snow Moon was the ‘icing on the cake’ for me.”
A beautiful shot too!
See more below:
Here’s a fun panoramic view of the full Moon, which seemingly creates a little snow covered planet with the full Moon in the sky. This was sent in by Göran Strand from Sweden: “I wanted to catch the Moon in a snowy environment,” Göran wrote, “so me and my friend went out on Storsjöns snow-covered ice here in Östersund, Sweden….As a bonus, a light mist came in over the lake just as we arrived.”
Our pal John Chumack can always be counted on for a great view of the full Moon! You can see more of his images at his Flickr page or his website, Galactic Images.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Great ready. After much anticipation, we could have the first naked eye comet of 2013 for northern hemisphere observers in early March. As discussed earlier this week on Universe Today, 2013 may well be the Year of the Comet, with two bright comets currently putting on a show in the southern hemisphere and comet C/2012 S1 ISON set to perform the closing cometary act of 2013. But while comet C/2012 F6 Lemmon won’t be visible for northern hemisphere residents until April, Comet C/2011 L4 PanSTARRS (which we’ll refer to simply as “Comet PanSTARRS” from here on out) may well become a fine early evening object in the first two weeks of March.
That is, if it performs. Comets are often like cats. Though we love posting pictures of them on the Internet, they often stubbornly refuse to perform up to our expectations. Some comets have been solid performers, like Hale-Bopp in 1997. Others are often promoted to great fanfare like Comet Kohoutek in 1973-74, only to fizzle and fade into notoriety. Continue reading “Comet PANSTARRS: How to See it in March 2013”
On February 19 and 20, 2013, scientists watched a giant sunspot form in under 48 hours. It has grown to over six Earth diameters. This image by astrophotographer Paul Andrew shows a detailed, close-up view of this sunspot group, named AR 1678, imaged with a hydrogen alpha filter.
NASA said the spot quickly evolved into what’s called a delta region, which has a magnetic field that harbors energy for strong solar flares. NOAA forecasters estimate a 45% chance of M-flares and a 15% chance of X-flares during the next day.
Below is an image from the Solar Dynamics Observatory of this region on the Sun:
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
“No matter how much you plan and prepare,” said photographer Greg Gibbs, “sometimes you just have to be very lucky.”
As we mentioned last week, Jupiter and the Moon were going to have a close encounter in the sky on February 18, with an occultation visible in some areas. And so Gibbs was preparing to get shots of the occultation through his telescope from his location in Victoria, Australia, and was using an automated timer to get shots at about 10 second intervals But then he noticed lights from a plane coming close to the Moon.
“I realised that there was a chance that it would pass in front of the Moon,” he said, “so I quickly canceled the remote timer I was using to take the shots and instead started shooting high speed continuous frames. I managed to get this plane crossing the moon in five individual frames just as Jupiter was about to be occulted by The Moon.”
This final product, as Gibbs notes on his Facebook page, is a two image composite. The Moon, Jupiter and the plane are all one single image. Then he took an overexposed image to bring up the Galilean Moons of (from left to right) Io, Callisto and Europa. At the time of this shot, Ganymede had already been occulted by The Moon.
There’s the old saying, “If you can’t be good, be lucky…”
This shot may have been lucky, but it sure is good, too!
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Stretching across three light years of space and located about 3,000 light years away in the direction of the constellation of Musca, an incredible and rather understudied planetary nebula awaits a new hand to bring out new light. While most planetary nebula have a rather normal, bloated star look, NGC 5189 shows an extraordinary amount of loops and curls not normally seen in objects of its type. Just what is going on here?
This incredibly detailed image comes from the one and only Robert Gendler and was assembled from three separate data sources. The detail for the nebula is from Hubble Space Telescope data, the background starfield from the Gemini Observatory/AURA and the color data from his own equipment. Here we see fanciful gas clouds with thick clumps decorating them. Intense radiation and gas streams from the central dying star in waves, fashioning out hollows and caves in the enveloping clouds. While these clumps in the clouds may appear as wispy details, each serves as a reminder of just how vast space can be… for each an every one of them is about the same size as our Solar System.
“The complex morphology of this PN is puzzling and has not been studied in detailed so far. Our investigation reveals the presence of a new dense and cold infrared torus (alongside the optical one) which probably generated one of the two optically seen bipolar outflows and which might be responsible for the twisted appearance of the optical torus via an interaction process.” says L. Sabin (et al). ” The high-resolution MES-AAT spectra clearly show the presence of filamentary and knotty structures as well as three expanding bubbles. Our findings therefore suggest that NGC 5189 is a quadrupolar nebula with multiple sets of symmetrical condensations in which the interaction of outflows has determined its complex morphology.”
And just as incredibly large as some things can be – others can be as small. At the heart of NGC 5189 shines the tiny light of its central star… no bigger than Earth. It wobbles its way through time, rotating rapidly and spewing material into space like a runaway fire hydrant. Astronomers speculate there might be a binary star hidden inside, since usually planetary nebulae of this type have them. However, only one star has been found at the nebula’s center and it might be one very big, very bad wolf.
“Around 15% are known or suspected binaries, while the remaining 18% are non-emission line nuclei which require further study. Selecting for LIS (low ionization structures) therefore will give a mix of mostly binary and emission line nuclei which will require further observations to separate.” explains B. Miszalski (et al). “Almost all the [WR] CSPN in the sample belong to the hot [WO] type that have more extreme and chaotic LIS covering their entire nebulae, presumably due to turbulence from the strong [WR] winds disrupting pre-existing LIS.”
Just why is this celestial tapestry so complicated and complex? The answer isn’t a simple one – it’s one that has many plausible theories. We know that when a star similar to the Sun expends its fuel, it will begin to shed its outer layers… layers which normally take on very basic shape. These “normal” shapes are usually a sphere, sometimes a double lobe and at times it can be a ring or helix. However, NGC 5189 just doesn’t follow rules. Over time, researchers have speculated it has given off different outlfows at different stages – one prominent as a very visible torus situated around mid-point in the structure – consistent with the theory of a binary star system with a precessing symmetry axis. Still, there is clearly more research needed.
“Our preliminary results of a comparative spectroscopic study of these two objects shows that the chemical composition of the two nebulae is completely different, even though their morphology is most probably quite similar.” says VF Polcaro (et al). ” In addition, the PN appears much more chemically homogeneous. These features are clearly associated with the evolutionary paths of the stars.”
“The striking broad emission line spectroscopic appearance of Wolf-Rayet (WR) stars has long defied analysis, due to the extreme physical conditions within their line and continuum forming regions.” explains Paul Crowther. “Theoretical and observational evidence that WR winds depend on metallicity is presented, with implications for evolutionary models, ionizing fluxes, and the role of WR stars within the context of core-collapse supernovae and long-duration gamma ray bursts.”
Is NGC 5189 the handiwork of a binary star? Or is it the product of an intensely hot Wolf-Rayet? Like the proverbial Tootsie Pop equation… the world may never know.
Many thanks to Robert Gendler for sharing this incredible image with us.
The movement of the Moon makes a fascinating study of celestial mechanics. Despite the light pollution it brings to the nighttime sky, we’re fortunate as a species to have a large solitary satellite to give us lessons in “Celestial Mechanics 101″
This weekend, we’ll get to follow that motion as the Moon crosses into the constellation Taurus for a near-pass of the planet Jupiter, and for a very few citizens of our fair world, occults it.
In astronomy, the term “occultation” simply means that one astronomical body passes in front of another. The term has its hoary roots in astronomy’s ancient past; just like the modern day science of chemistry sprung from the pseudo-science of alchemy, astronomy was once intertwined with the arcane practice of astrology, although the two have long since parted ways. When I use the term “occultation” around my non-space geek friends, (I do have a few!) I never fail to get a funny look, as if I just confirmed every wacky suspicion that they ever had about us backyard astronomers…
But those of us who follow lunar occultations never miss a chance to observe one. You’ll actually get to see the motion of the Moon as it moves against the background planet or star, covering it up abruptly. The Moon actually moves about 12° degrees across the sky per 24 hour period.
On the evening of Monday, February 18th, the 56% illuminated waxing gibbous Moon will occult Jupiter for Tasmania and southern Australia around 12:00 Universal Time (UT). Folks along the same longitude as Australia (i.e., eastern Asia) will see a close pass of the pair. For North America, we’ll see the Moon approach Jupiter and Aldebaran of February 17th (the night of the Virtual Star Party) and the Moon appear past the pair after dusk on the 18th.
But fret not; you may still be able to spot Jupiter near the Moon on the 18th… in the daytime. Daytime planet-spotting is a fun feat of visual athletics, and the daytime Moon always serves as a fine guide. Jupiter is juuuuuust bright enough to see near the Moon with the unaided eye if you know exactly where to look;
To see a planet in the daytime, you’ll need a clear, blue sky. One trick we’ve used is to take an empty paper towel tube and employ it as a “1x finder” to help find our target… binoculars may also help! To date, we’ve seen Venus, Jupiter, Sirius & Mars near favorable opposition all in the daylight… Mercury and Vega should also be possible under rare and favorable conditions.
This week’s occultation of Jupiter is the 3rd and final in a series that started in December of last year. The Moon won’t occult a planet again until an occultation of Venus on September 8th later this year, and won’t occult Jupiter again until July 9th, 2016. We’re also in the midst of a long series of occultations of the bright star Spica (Alpha Virginis) in 2013, as the Moon occults it once every lunation from somewhere in the world. Four major stars brighter than +1st magnitude lie along the Moon’s path near the ecliptic; Spica, Aldebaran, Regulus, and Antares which we caught an occultation of in 2009;
Also of note: we’re approaching a “plane-crossing” of the Jovian moons next year. This means that we’ll start seeing Callisto casting shadows on the Jovian cloud tops this summer on July 20th, and it will continue until July 21st, 2016. The orbits of the Jovian moons appear edge-on to us about every five years, and never really deviate a large amount. Callisto is the only moon that can “miss” casting a shadow on the disk of Jupiter in its passage. The actual plane crossing as seen from the Earth occurs in November 2014. Jupiter reaches solar conjunction this year on June 19th and doesn’t come back into opposition until early next year on January 5th. 2013 is an “opposition-less” year for Jupiter, which occurs on average once per every 11-12 years. (One Jovian orbit equals 11.8 Earth years).
But wait, there’s more… the Moon will also occult +7.7th magnitude 4 Vesta on February 18th at~21:00 UT. This occultation occurs across South America and the southern Atlantic Ocean. It would be fun to catch its ingress behind the dark limb of the Moon, and we bet that a precisely timed video might just show evidence for Vesta’s tiny angular diameter as it winks out. For North American observers, Vesta will sit just off the northern limb of the Moon… if you have never seen it, now is a great time to try!
Finally, we realized that also in the field with 4 Vesta is an explorer that just departed its environs, NASA’s Dawn spacecraft. Although unobservable from Earth, we thought that it would be an interesting exercise to see if it gets occulted by the Moon as well this week, and in fact it does, for a very tiny slice of the planet;
Hey, calculating astronomical oddities is what we do for fun… be sure to post those pics of Jupiter, the Moon and more up to our Universe Today Flickr page & enjoy the celestial show worldwide!
Old meets space-age in this image of the International Space Station passing over an ancient saguaro cactus at the Saguaro National Park East near Tucson, Arizona. Robert Sparks (a.k.a. @halfastro or hale-bopp37 on Flickr) captured this beautiful image on February 6, 2013. While the ISS is just over 12 years old, the saguaro seen here could be upwards of 200 years old. These prickly old soldiers don’t usually start to grow arms until they are between 50 to 100 years of age, and they may live for perhaps 200 years or more.
Rob also captured the expanse of the awesome desert night sky, too.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Gong Hey Fat Choy! Today marks the beginning of the Chinese New Year and what better way to celebrate the Year of the Black Snake than with a look at an enormous shadowy cosmic serpent, the Snake Nebula!
Also known as Barnard 72, the Snake Nebula is a meandering lane of dark dust located about 650 light-years away in the constellation Ophiuchus. Several light-years long, its opaque dust blocks our view of stars within the central bulge of the galaxy… but also reveals its presence since that region of the sky is literally filled with stars.
The bright star seen in the image just below the snake’s middle (looks like it may have just had dinner!) is HD 157398, a giant orange star 538 light-years from Earth. Here it shines brightly, but in the sky its visible magnitude is 6.67 — just a bit dimmer than what can be seen with the naked eye under the darkest skies.
Nearly four million light years away in the direction of the constellation of Canes Venatici, a visage of creation awaited to be revealed. Now, thanks to the teamwork of the astronomical image processors at the Space Telescope Science Institute in Baltimore, Maryland, and world-renowned astrophotographers Robert Gendler and Jay GaBany, we’re able to see combined Hubble Space Telescope data with ground-based telescope imaging. Let’s look deep into spiral galaxy, Messier 106.
This wasn’t an overnight imaging project. “A few months ago the Hubble Heritage Team contacted me and asked if I’d be interested in making a large format image of M106 from the available data on the Hubble Legacy Archive,” says Gendler. “I agreed and went to work downloading a large number of data sets from the HLA. I realized this would be a massive project. The image would be a mosaic of more than 30 panels and would incorporate both wideband and narrowband data sets.”
With the cooperation of Jay GaBany, they combined their own observations/images of this magnificent structure and compiled it with Hubble data – filling in areas where no data was available. The resulting image is a portrait of such depth and beauty that it’s almost like looking into the eyes of creation itself.
Be swept away…
If you’re drawn to the core of Messier 106, there’s good reason. It isn’t just an ordinary spiral galaxy, it’s one that has a peculiar jet flow which can be detected in radio and in H-alpha wavelengths. “Due to the special geometry of the galaxy, the jets emerge from the nuclear region through the galactic disk,” says Marita Krause (et al). “Also the distribution of molecular gas looks different from that in other spiral galaxies.” It is just this difference that makes NGC 4258 (M106) stand out a bit from the crowd and so worthy of further processing. According to new modeling techniques the “concentration of CO along the ridges is due to interaction of the rotating gas clouds with the jet’s magnetic field by ambipolar diffusion. This magnetic interaction is thought to increase the time the molecular clouds reside near the jet thus leading to the quasi-static CO ridge.”
Knowing those jets are present and the hunger to reveal them through imaging became the driving force for R. Jay GaBany. “Since the early 1960s, M106, also known as NGC 4258, has been known to exhibit an extra pair of arms, located between the spiral arms comprised of stars, dust and gas. But an explanation for their existence remained elusive until earlier in this decade,” says Jay. “My contribution to the image came from my 2010 image of M-106 that revealed the full extent of its amazing jets. My image include 22 hours of white light exposures through clear, red, blue and green filters plus and other 15 hours of imaging through a 6nm narrow band h-alpha filter.”
“Seen in the light emitted by hydrogen molecules when they become ionized, these arms display an artificial red hue to make them visible in the image I produced. The extra arms are now believed to be caused by high energy jets emanating from an active 40 million solar mass super-massive black hole menacing the galaxy’s center,” explains GaBany. “Because the jets are tilted at a low inclination they pierce the disk and surrounding halo of this galaxy. So, as the jets pass through regions of gas, they create an expanding cocoon of shock waves that heats the surrounding material causing it to release radiation in optical wavelengths. The curvature and fraying seen at their extremities represents previous trajectories of the jet due to past precession. Precession is a change in the orientation of the rotation axis of a spinning object. For example, the wobble of a spinning top.”
Yet, that’s not all. This low luminosity Seyfert II galaxy is also hosting a maser – its warped disk of water molecules discovered in 1994. Through radio observations, M106 became the first of its kind to show the exact location of the core of an AGN (active galactic nucleus). According to a study done by JR Herrnstein (et al): “NGC 4258 is an exceptional laboratory for the study of AGN accretion processes. The nuclear maser reveals details about the kinematics and structure of the accretion disk on subparsec scales and permits the determination of the central mass with great precision.”
And there is still more…
Deep inside lurks that known supermassive black hole – one that’s extremely active and produces bright microwave radiation. But, don’t stop there. Ordinarily a spiral galaxy has two arms, but M106 has double. These ethereal “extras” can be seen as faint ribbons of gas at optical wavelengths, but become solidified when viewed in x-ray and radio. Here the structure is formed in hot gas rather than stars. While this process was once a mystery to astronomers, new information suggests they may arise from the black hole activity, making them a unique artifact. What could cause it? These “extra arms” could be the result of the violent turbulence at the core – where gases are superheated and interact with their denser counterparts causing them to illuminate. At the perimeter of the galactic structure, the gases are more loose and the arching formation could be the product of the movement of jet activity.
“One goal I had early on was to feature the well known ‘anomalous arms’ of M106,” said Gendler. “This feature, peculiar to M106, is thought to arise from superheated gases, energized by accretion of matter into the galaxy’s massive black hole. The anomalous arms emit light in the visual spectrum around 656nm (hydrogen alpha) and I found a fair amount of hydrogen alpha data sets for the arms in the HLA.”
Gendler was responsible for all the image assembly and processing. “Assembling the image required over two months,” he said. “The quality of the data ranged from good to very poor. The central galaxy had sufficient color data but away from the center the Hubble data was incomplete and in some areas did not exist. I then decided to use ground based data from my own image and Jay GaBany’s image of M106 to fill in areas of missing or incomplete Hubble data. I also used ground based data to boost the signal of the outer areas of the galaxy as the Hubble data was sparse and of short exposure for the more remote areas of the galaxy.”
All in all, Messier 106 is a galaxy that deserves attention – attention and a loving touch given by two of the very best amateur astronomers and dedicated astrophotographers to be found.