Did you see the Moon last night? I walked outside at 10:30 p.m. and was stunned to see a dark, burnt-orange Full Moon as if September’s eclipse had arrived a month early. Why? Heavy smoke from forest fires in Washington, California and Montana has now spread to cover nearly half the country in a smoky pall, soaking up starlight and muting the moonlight.
If this is what global warming has in store for us, skywatchers will soon have to take a forecast of “clear skies” with a huge grain of salt.
By day, the sky appears the palest of blues. By night, the stars are few if any, and the Moon appears faint, the color of fire and strangely remote. Despite last night’s clear skies, only the star Vega managed to penetrate the gloom. I never saw my shadow even at midnight when the Moon had climbed high into the southern sky.
We’ve seen this smoke before. Back in July, Canadian forest fires wafted south and west and covered much of the northern half of the U.S., giving us red suns in the middle of the afternoon and leaving only enough stars to count with two hands at night. On the bright side, the Moon is fascinating to observe. I set up the telescope last night and spend a half hour watching this unexpected “eclipse”; sunsets appear positively atomic. The size of the smoke particles is just right for filtering out or scattering away blues, greens and even yellow from white light. Vivid reds, pinks and oranges remain to tint anything bright enough to penetrate the haze.
But smoke can cause harm, too. Forest fire smoke contains carbon monoxide, carbon dioxide and soot. On especially smoky days, you can even smell the odor of burning trees in the air at ground level. Some may suffer from burning eyes, asthma or bronchitis on especially smoky days even a thousand miles from the source fires.
On clear, blue-sky days, I’ve watched the smoke creep in from the west. It begins a light haze and slowly covers the entire sky in a matter of several hours, often showing a banded structure in the direction of the Sun. A little smoke is OK for observing, but once it’s thick enough to redden the Moon even hours after moonrise, you can forget about using your telescope for stargazing. Sometimes, a passing thunderstorm and cold front clears the sky again. Sometimes not.
The only cures for fire soot are good old-fashioned rain and the colder weather that arrives with fall. In the meantime, many of us will spend our evenings reading about the stars instead of looking at them.
Who doesn’t love a Full Moon? Occurring about once a month, they never wear out their welcome. Each one becomes a special event to anticipate. In the summer months, when the Moon rises through the sultry haze, atmosphere and aerosols scatter away so much blue light and green light from its disk, the Moon glows an enticing orange or red.
At Full Moon, we’re also more likely to notice how the denser atmosphere near the horizon squeezes the lunar disk into a crazy hamburger bun shape. It’s caused by atmospheric refraction. Air closest to the horizon refracts more strongly than air near the top edge of the Moon, in effect “lifting” the bottom of the Moon up into the top. Squished light! We also get to see all the nearside maria or “seas” at full phase, while rayed craters like Tycho and Copernicus come into their full glory, looking for all the world like giant spatters of white paint even to the naked eye.
Tomorrow night (August 29), the Full Sturgeon Moon rises around sunset across the world. The name comes from the association Great Lakes Indian groups made between the August moon and the best time to catch sturgeon. Next month’s moon is the familiar Harvest Moon; the additional light it provided at this important time of year allowed farmers to harvest into the night.
A Full Moon lies opposite the Sun in the sky exactly like a planet at opposition. Earth is stuck directly between the two orbs. As we look to the west to watch the Sun go down, the Moon creeps up at our back from the eastern horizon. Full Moon is the only time the Moon faces Sun directly – not off to one side or another – as seen from Earth, so the entire disk is illuminated.
If you’re a moonrise watcher like I am, you’ll want to find a place where you can see all the way down to the eastern horizon tomorrow night. You’ll also need the time of moonrise for your city and a pair of binoculars. Sure, you can watch a moonrise without optical aid perfectly well, but you’ll miss all the cool distortions happening across the lunar disk from air turbulence. Birds have also begun their annual migration south. Don’t be surprised if your glass also shows an occasional winged silhouette zipping over those lunar seas.
Next month’s Full Moon is very special. A few times a year, the alignment of Sun, Earth and Moon (in that order) is precise, and the Full Moon dives into Earth’s shadow in total eclipse. That will happen overnight Sunday night-Monday morning September 27-28. This will be the final in the current tetradof four total lunar eclipses, each spaced about six months apart from the other. I think this one will be the best of the bunch. Why?
Convenient evening viewing hours (CDT times given) for observers in the Americas. Partial eclipse begins at 8:07 p.m., totality lasts from 9:11 – 10:23 p.m. and partial eclipse ends at 11:27 p.m. Those times mean that for many regions, kids can stay up and watch.
The Moon passes more centrally through Earth’s shadow than during the last total eclipse. That means a longer totality and possibly more striking color contrasts.
September’s will be the last total eclipse visible in the Americas until January 31, 2018. Between now and then, there will be a total of four minor penumbral eclipses and one small partial. Slim pickings.
Not only will the Americas enjoy a spectacle, but totality will also be visible from Europe, Africa and parts of Asia. For eastern hemisphere skywatchers, the event will occur during early morning hours of September 28. Universal or UT times for the eclipse are as follows: Partial phase begin at 1:07 a.m., totality from 2:11 – 3:23 a.m. with the end of partial phase at 4:27 a.m.
We’ll have much more coverage on the upcoming eclipse in future articles here at Universe Today. I hope this brief look will serve to whet your appetite and help you anticipate what promises to be one of the best astronomical events of 2015.
Have you been looking up the past few nights, trying to see the Perseid Meteor Shower? Many of our readers have been turning their eyes — and cameras — to the skies, with spectacular results. This year’s Perseids were predicted to be one of the best ever, since there has been little to no moonlight to upstage the shower. As you can see from the images here, many astrophotographers were able to capture fast and bright meteors, and even some that left persistent trains.
Remember, tonight (Wednesday, August 12, 2015) is projected to be the peak, so if you’ve got clear skies, take advantage of this opportunity to see a great meteor shower. You can find out how and when to see them in our previous detailed articles by our in-house observing experts David Dickinson and Bob King.
And enjoy the view from our readers in this gallery of 2015 Perseids:
Prolific night sky photographer John Chumack near Dayton, Ohio put together this video of 81 Perseid meteors he captured on August 12, 2015 with his Automated low light -Meteor Video Camera Network:
If you are clouded out, you can still enjoy the shower. NASA TV will be tracking the Perseids live on Wednesday, August 12 starting at 10PM EDT/02:00 UT:
A good mystery is often where you find it. Photographer Meagan Abell recently made a discovery during a thrift store expedition that not only set the internet abuzz, but also contains an interesting astronomical dimension as well. This is an instance where observational astronomy may play a key role in pinning down a date, and we’d like to put this story before the Universe Today community for further insight and consideration.
Meagan first discovered the set of four medium format negatives at a thrift store on Hull Street in Richmond, Virginia. Beyond that, they have no provenance. Meagan was amazed at what see saw when she scanned in the negatives: the images of a woman walking into the surf have an ethereal beauty all their own. Obviously the work of a skilled photographer, the photos appear to date from the late 1940s or 1950s.
Meagan turned to social media for help, and cyber-sleuths responded in a big way. #FindTheGirlsOnTheNegatives became a viral hit, but thus far, who the women in the images are and the story behind them remains a mystery.
We do know one tantalizing bit of information: several Facebook users have pinned down the location as Dockweiler Beach, California near Los Angeles International Airport. Keen-eyed observers noted the similarity of the outline of the distant hills seen to the north in one of the images.
A few things caught our eye upon reading the mystery of the girls in the negatives this past weekend. One shot clearly shows the notch of the Sun just below the twilight horizon. A second, even more intriguing image shows a tiny sliver of Moon just to the subject’s upper left.
Could a date, or set of dates, be estimated based on these factors alone?
Let’s slip into astro-detective mode now. A few things are obvious right off the bat. First, the Moon is a waxing crescent, meaning the shots would have to be set in the evening. This also lends credence to the ocean being the Pacific, because the sunset is occurring over water. The similarity in cloud formations across all of the images seen also strongly suggests the photographer took all of the pictures on the same evening, during one session.
Can that crescent Moon tell us anything? It’s tiny and indistinct, but we have a few things to go on. The Moon looks to be a 5-6 day old waxing crescent about 30-40% illuminated. Not all waxing crescent Moons are created equal, as the ‘horns of the Moon’ can point in various directions based on the angle of the ecliptic to the local horizon at different times of the year.
The horns of the Moon appear to be oriented about 35 degrees from horizontal. Assuming the subject in the red dress is elevated slightly and about 20 feet from the observer, the Moon would be about 25-30 degrees above the horizon in the shot.
Now, Dockweiler Beach is located at latitude 33 degrees 55’ 20” north, longitude 118 degrees 26’ 3” west. The beach itself faces a perpendicular azimuth of 240 degrees out to sea, or roughly WSW.
Already, we can rule out winter and spring, because of the unfavorable angle of the dusk ecliptic. We want a time of year with A) a shallow southward ecliptic and B) a sunset roughly due west.
Turns out, late July through early October fit these ideal conditions for the location.
Can we narrow this even further? Well, here’s one possibility. Remember, this next step is what gumshoe PIs call a ‘hunch’…
The motion of the Moon is a wonderfully complicated affair. The path of the Moon is inclined about five degrees relative to the ecliptic, meaning that the Moon can ride anywhere from declination 28 degrees south, to 28 degrees north. From latitude 34 degrees north, this puts the mid-July ecliptic at about 33 degrees elevation across the meridian at sunset.
The nodal points where the path of the Moon crosses the ecliptic also precess slowly around the celestial sphere. This motion completes one revolution every 18.6 years, meaning that the Moon reaches those maximum declination values (sometimes referred to as a ‘long nights’ or the Major Lunar Standstill of the Moon) just under once every 19 years.
This occurred last in 2006, and will occur next in 2025. Incidentally, we’re at a shallow mid-point (known as a Minor Lunar Standstill) between the two dates this coming Fall.
This also puts the late summer 1st quarter Moon as far south ‘in the weeds’ as possible. Extrapolating back in time, this sort of wide-ranging Moon occurred around 1949. Looking at the celestial scene in Stellarium, three dates nail the horn angle and elevation of the Moon seen in the photograph pretty closely around this time:
-August 11th, 1948
-August 29th, 1949
-August 19th, 1950
Of course, this is just a hunch. Perhaps the subject was standing on a westward facing spit of rocks. Or maybe the photographer was closer or farther away than estimated. Or maybe the negative was inverted left to right along the way… that’s why I’d like to invite, you, the astute sky watcher, to weigh in.
And even if we pinned down the date, the mystery remains. Who are the girls in the negatives? What became of the photo shoot? And how did the negatives end up in a thrift store in Virginia?
Update: an sharp-eyed reader noticed that if you boost the contrast, you can see an additional ‘speck’ in the Moon image (see comment discussion below):
Update: Meagan responds: “The object along the horizon in the crescent Moon image is actually just a transparency defect.” A second image from the same strip does not show the white speck (arrowed above) near the horizon.
Every year in mid-August, Earth plows headlong into the debris left behind by Comet 109P/Swift-Tuttle. Slamming into our atmosphere at 130,000 mph, the crumbles flash to light as the Perseid meteor shower. One of the world’s most beloved cosmic spectacles, this year’s show promises to be a real crowd pleaser.
Not only will the Moon be absent, but the shower maximum happens around 3 a.m. CDT (8 UT) August 13 — early morning hours across North America when the Perseid radiant is highest. How many meteors will you see? Somewhere in the neighborhood of 50-100 meteors per hour. As always, the darker and less light polluted your observing site, the more zips and zaps you’ll see.
Find a place where there’s as few stray lights as possible, the better to allow your eyes to dark-adapt. Comfort is also key. Meteor showers are best enjoyed in a reclining position with as little neck craning as possible. Lie back on a folding lawn chair with your favorite pillow and bring a blanket to stay warm. August nights can bring chill and dew; a light coat and hat will make your that much more comfortable especially if you’re out for an hour or more.
I’m always asked what’s the best direction to face. Shower meteors will show up in every corner of the sky, but can all be traced backwards to a point in Perseus called the radiant. That’s the direction from which they all appear to stream out of like bats flying out of a cave.
Another way to picture the radiant it is to imagine driving through a snowstorm at night. As you accelerate, you’ll notice that the flakes appear to radiate from a point directly in front of you, while the snow off to the sides streams away in long trails. If you’re driving at a moderate rate of speed, the snow flies past on nearly parallel paths that appear to focus in the distance the same way parallel railroad tracks converge.
Now replace your car with the moving Earth and comet debris for snow and you’ve got a radiant and a meteor shower. With two caveats. We’re traveling at 18 1/2 miles per second and our “windshield”, the atmosphere, is more porous. Snow bounces off a car windshield, but when a bit of cosmic debris strikes the atmosphere, it vaporizes in a flash. We often think friction causes the glow of meteors, but they’re heated more by ram pressure.
The incoming bit of ice or rock rapidly compresses and heats the air in front of it, which causes the particle to vaporize around 3,000°F (1,650°C). The meteor or bright streak we see is really a hollow “tube” of glowing or ionized air molecules created by the tiny rock as its energy of motion is transferred to the surrounding air molecules. Just as quickly, the molecules return to their rest state and release that energy as a spear of light we call a meteor.
Imagine. All it takes is something the size of a grain of sand to make us look up and yell “Wow!”
Speaking of size, most meteor shower particles range in size from a small pebble to beach sand and generally weigh less than 1-2 grams or about what a paperclip weighs. Larger chunks light up as fireballs that shine as bright as Venus or better. Because of their swiftness, Perseids are generally white and often leave chalk-like trails called trains in their wakes.
This year’s shower is special in another way. According to Sky and Telescope magazine, meteor stream modeler Jeremie Vaubaillon predicts a bump in the number of Perseids around 1:39 p.m. (18:39 UT) as Earth encounters a debris trail shed by the Comet Swift-Tuttle back in 1862. The time favors observers in Asia where the sky will be dark. It should be interesting to see if the prediction holds.
How To Watch
Already the shower’s active. Go out any night through about the 15th and you’ll see at least at least a handful of Perseids an hour. At nightfall on the peak night of August 12-13, you may see only 20-30 meteors an hour because the radiant is still low in the sky. But these early hours give us the opportunity to catch an earthgrazer — a long, very slow-moving meteor that skims the atmosphere at a shallow angle, crossing half the sky or more before finally fading out.
I’ve only seen one good earthgrazer in my earthly tenure, but I’ll never forget the sight. Ambling from low in the northeastern sky all the way past the southern meridian, it remained visible long enough to catch it in my telescope AND set up a camera and capture at least part of its trail!
The later you stay up, the higher the radiant rises and the more meteors you’ll see. Peak activity of 50-100 meteors per hour will occur between about 2-4 a.m. No need to stare at the radiant to see meteors. You can look directly up at the darkest part of the sky or face east or southeast and look halfway up if you like. You’re going to see meteors everywhere. Some will arrive as singles, others in short burst of 2, 3, 4 or more. I like to face southeast with the radiant off to one side. That way I can see a mix of short-trailed meteors from near the radiant and longer, graceful streaks further away just like the snow photo shows.
If there’s a lull in activity, don’t think it’s over. Meteor showers have strange rhythms of their own. Five minutes of nothing can be followed by multiple hits or even a fireball. Get into the feel of the shower as you sense spaceship Earth speeding through the comet’s dusty orbit. Embrace the chill of the August night under the starry vacuum.
For Jupiterians (Jovians?) a trip around the Sun takes 12 Earth years. If you were born today on the planet or one of its moons, you’d turn one year old in 2027 and reach the ripe old age of 12 in 2111.
In this remarkable montage, astrophotographer Damian Peach divides a year on Jupiter into 12 parts, with images spaced at approximately one-year intervals between February 2003 and April 2015. Like the planet, Peach was on the move; the photos were taken from four different countries with a variety of different telescopes and cameras.
On the tilted Earth, one year brings a full change of seasons as our planet completes a solar loop in 365 1/4 days. Jupiter’s axial tilt is just 3° or nearly straight up and down, so seasons don’t exist. One part of the Jovian year is much the same as another. Still, as you can plainly see, the solar system’s biggest planet has plenty of weather.
Just look at the Great Red Spotor GRS. Through about 2008, it’s relatively large and pale but suddenly darkens in 2010 at the same time the South Equatorial Cloud Belt (the wide stripe of clouds above the Spot) disappears. If you look closely at the Spot from year to year, you’ll see another big change — it’s shrinking! The GRS has been dwindling for several decades, but it’s amazing how obvious the difference is in only a dozen years.
Lots of other smaller changes can be seen, too. On Earth, the primary heat source driving weather is the Sun, but on Jupiter it’s residual heat left over from the collapse of the primordial solar nebula, the vast cloud of dust and gas from which the Sun and planets were formed.
It’s HOT inside Jupiter. A thermometer stuck in its core would register between 23,500° and 63,000° F. That’s too cool for nuclear fusion, the process that powers the Sun, but plenty hot to heat the atmosphere and create magnificent weather. The planet gives off 1.6 times as much energy as it get from the Sun. While hardly a star, it’s no ball of ice either.
Jupiter and Venus still travel in tandem at dusk. Look about an hour after sunset a fist and a half high in the western sky. Venus is the bright one with Jupiter tagging along to the right. Fun to think that the light we see from Jupiter is reflected sunlight, but if we could view it with heat-sensing, infrared eyes, it would glow like an ember.
Don’t be surprised if you look up in the Sun’s direction and squint with itchy, watery eyes. You might be staring into billows of tree pollen wafting through your town. It’s certainly been happening where I live.
When conditions are right, billions of microscopic pollen grains consort to create small, oval-shaped rings around a bright Moon during the peak of the spring and early summer allergy season. With the Full Moon coming up this week, there’s no better time to watch for them.
Because they’re often lost in the glare of the Sun or Moon, the key to finding one is to hide the solar or lunar disk behind a thick tree branch, roof or my favorite, the power pole. Look for a telltale oval glow, sometimes tinted with rainbow colors, right up next to the Moon or Sun’s edge. Common halos, those that form when light is refracted by ice crystals, span 44° compared to pollen coronas, which measure just a few degrees in diameter.
To see or photograph coronas, you need plenty of light. The Sun’s ideal, but so is the Moon around full. Fortunately, that happens on June 2, neatly fitting into the sneezing season. Last night, the same grains — most likely pine tree pollen — also stoked a lunar corona. Once my eyes were dark adapted and the Moon hidden by an arboreal occulting instrument (tree branch), it was easy to see.
One of things you’ll notice right away about these biological bullseyes is that they’re not circular. Pollen coronas are oval because the pollen particles are elongated rather than spherical like water droplets. When light from the moon or sun strikes pollen, the minute grains diffract the light into a series of closely-spaced colored rings. I’ve read that pine and birch produce the best coronas, but spruce, alder and and others will work, too.
And here’s another amazing thing about these coronas. You don’t need a transparent medium to produce them. No ice, no water. All that’s necessary are very small, similarly-shaped objects. Light waves are scattered directly off their surfaces; the waves interfere with one another to create a diffraction pattern of colored rings.
Pollen coronas tend to become more elongated when the Sun or Moon is closer to the horizon, so look be on the lookout during those times for more extreme shapes. For some reason I’ve yet to discover, pollen disks sometimes exhibit “bumps” or extensions at their tops, bottoms and sides.
So many of us suffer from allergies, perhaps the glowing presence of what’s causing all the inflammation will serve as partial compensation for our misery.
Cue the “Space Invaders” sound effects! We’ve shared previously how astrophotographer Thierry Legault will travel anywhere to get a unique shot. He took this impressive but fun video of an Iridium 72 satellite flaring and passing in front of Jupiter, traveling to Oostende Beach at the North Sea in Belgium to capture this transit. He took both a wide angle view as well as the telescopic close-up view of Jupiter, and from the vantage point of Earth, it appears as though Jupiter gets blasted by the flare. In the zoomed-in view, even Jupiter’s moons are part of the scene.
You can almost hear the “pew-pew.”
Legault also shared a another recent video he shot of the Chinese Yaogan 6 satellite. “It is probably out of control, quickly tumbling with very bright and short flashes,” Legault said, and it has been tumbling for about a year. Yaogan 6 is a radar reconnaissance satellite launched by China in 2009. Legault said he did the tracking by hand with professional video tripod with a fluid head.
See more of Legault’s extraordinary astrophotography work at his website.
Martian auroras will never best the visual splendor of those we see on Earth, but have no doubt. The Red Planet still has what it takes to throw an auroral bash. Witness the latest news from NASA’s MAVEN atmospheric probe.
In December 2014, it detected widespread auroras across Mars’ northern hemisphere dubbed the “Christmas Lights”. If a similar display happened on Earth, northern lights would have been visible from as far south as Florida.
“It really is amazing,” says Nick Schneider who leads MAVEN’s Imaging Ultraviolet Spectrograph (IUVS) instrument team at the University of Colorado. “Auroras on Mars appear to be more wide ranging than we ever imagined.”
Study the map and you’ll see the purple arcs extend to south of 30° north latitude. So what would Martian auroras look like to the human eye? Would we see an arcade of nested arcs if we faced east or west from 30°N? Well, er, yes, if you could see into the ultraviolet end of the spectrum. Mars’ atmosphere is composed mostly of carbon dioxide, so most of the auroral emissions occur when high speed solar wind particles ionize CO2 moleculesand carbon monoxide to produce UV light. Perhaps properly suited-up bees, which can see ultraviolet, would be abuzz at the sight.
That’s not the end of the story however. Martian air does contain 0.13% oxygen, the element that puts the green and red in Earth’s auroras. The “Christmas Lights” penetrated deeply into Mars’ atmosphere, reaching an altitude of just 62 miles (100 km) above its surface. Here, the air is relatively thicker and richer in oxygen than higher up, so maybe, just maybe Christmas came in green wrapping.
Nick Schneider, who leads MAVEN’s Imaging Ultraviolet Spectrograph (IUVS) instrument team, isn’t certain but thinks it’s possible that a diffuse green glow could appear in Mars’ sky during particularly energetic solar storms.
While the solar wind produces auroras at both Earth and Mars, they originate in radically different ways. At Earth, we’re ensconced in a protective planet-wide magnetic field. Charged particles from the Sun are guided to the Earth’s poles by following a multi-lane freeway of global magnetic field lines. Mars has no such organized, planet-wide field. Instead, there are many locally magnetic regions. Particles arriving from the Sun go where the magnetism takes them.
“The particles seem to precipitate into the atmosphere anywhere they want,” says Schneider. “Magnetic fields in the solar wind drape across Mars, even into the atmosphere, and the charged particles just follow those field lines down into the atmosphere.”
Maybe one day, NASA or one of the other space agencies will send a lander with a camera that can shoot long time exposures at night. We’ll call it the “Go Green” initiative.
Lots of towns hold a polar plunge fundraising event in the winter. Duluth, Minnesota’s version, where participants jump in Lake Superior every February, might just be the coldest. Comet Lovejoy’s a season behind, but sure enough, it’s following suit, diving deep into the dark waters of the north celestial pole this month.
I dropped in on our old friend last night, when it glowed only 8° from the North Star. In 8×40 binoculars, the comet was faintly visible as a hazy blob of light with a brighter center. Not a sight to knock you over, but the fact that this comet is still visible in binoculars after so many months makes it worthwhile to seek out. Moonless skies for the next 10-11 nights means lots of opportunities.
Unless a new comet is discovered, Lovejoy will continue to remain the only “bright” comet visible from mid-northern latitudes for some time. There’s a tiny chance Comet C/2014 Q1 PanSTARRS will wax bright enough to see in twilight in early July, but it will be very low in the northwestern sky at dusk and visible for a few nights at most. Only C/2013 US10 Catalina offers the chance for a naked eye / binocular appearance, when it re-emerges from the solar glare in the latter half of November in the morning sky.
Southern hemisphere observers have more to smile about with Comet C/2015 G2 MASTERcurrently flaunting its fluff at magnitude +6.6 or just under the naked eye limit. They’ll also get a far better view of C/2014 Q1 PanSTARRS come this July and August.
Through a telescope, Lovejoy still shows off a round, 6 arc minute diameter coma (one-fifth as wide as a full moon) and a denser, brighter core highlighted by a starlike false nucleus. We call it false because the true comet nucleus, probably no more than a few kilometers across, hides within a dusty cocoon of its own making. Only spacecraft have been able to get close enough for a clear view of comet nuclei. Each shows a unique and usually non-spherical shape because comets aren’t massive enough for their own self-gravity to crush them into spheres the way larger moons and planets do. If you’re a single object and big, being spherical comes naturally.
In my 15-inch (37-cm) telescope a faint wisp of a tail poked from the coma to the north. Looking at the map, you can see the comet’s headed due north through Cepheus toward Polaris, the North Star. Each passing night, it draws closer to the sky’s celestial pivot point, missing it by just 1° on the evenings of May 27 and 28. Closest approach to the north celestial pole, which marks the spot in the sky toward which Earth’s north polar axis currently points, occurs on May 29 with a separation of 54 arc minutes or just under a degree.
Finding Polaris is easy. Just draw a line through the two stars at the end of of the Big Dipper’s Bowl toward the horizon. The first similarly bright star you run into is the North Star. Using the map, you can navigate from Polaris to the fuzzy comet with either binoculars or telescope.