A Night-Sky Timelapse You Don’t Want to Miss

Still image from the timelapse, "Illusion of Lights: A Journey into the Unseen." Credit and copyright: Brad Goldpaint Photography.

It’s an old story: a couple leave their jobs, sell everything, and live in motorhome to capture footage and imagery of the night sky.

Wait… what?

This unique story is exactly what Brad and Marci Goldpaint did. They left their jobs and traveled throughout the western US in an RV to begin educating the public about the damaging effects of light pollution. They wanted to help reconnect people with the simple beauty of the night sky and have been teaching photography workshops and gathering footage for a new timelapse called “Illusion of Lights: A Journey into the Unseen.”

With breathtaking scenes and soaring music, this video “introduces you to the concept of movement and time that visually explores our night skies,” says Brad on Vimeo.

We’ve featured images and timelapses from Brad before, and he shared how the sudden loss of his mother caused him to reassess his goals and priorities. Since 2009 he’s been working on outdoor photography and has now dedicated his work to sharing images of the night sky with others.

For this timelapse, Brad said he “spent countless nights traversing in the dark, carrying heavy camera equipment, and braving the dark unseen.” He dealt with lightning storms, dangerous winds, and up-close encounters with bears and other wildlife. Sometimes, after spending days hiking to a remote location and with optimistic weather reports, Mother Nature showed up and ruined his opportunity to get the shot.

A few highlights: at about 2:00 there is an exploding meteor with a persistent train that is stunning. You’ll also see strange lights on Mount Rainier. Brad explained these lights are from people climbing the mountian at night in hopes of reaching the summit by sunrise the following day. The white lights you see are from their headlamps. “Can you imagine climbing up a mountain in the middle of the night?” he asks?

Another still from "Illusions of Light." Credit and copyright: Brad Goldpaint Photography.
Another still from “Illusions of Light.” Credit and copyright: Brad Goldpaint Photography.

For more about this film see their website.

Illusion of Lights: A Journey into the Unseen from Goldpaint Photography on Vimeo.

Skywatchers Identify Aircraft as They Pass in Front of the Sun

An Aer Lingus Airbus A320 passes in front of the Sun on Feb. 4, 2015. Credit and copyright: Chris Lyons.

It’s all about timing and location.

You’ve probably seen images we’ve posted on Universe Today of planes crossing in front of the Sun or the Moon. But how do the photographers manage to capture these events? Hint: it’s not random luck.

“I live under a main flight path out of Heathrow,” said photographer Chris Lyons from the UK who took the image above earlier today, “and can easily spot the planes not long after they take off — if it is clear — from when they are about 100 miles away!”

Chris posts many of his images on Universe Today’s Flickr page, and what is great about Chris’ airplane photos is that he includes a handy infographic about the plane in the shot; the type of plane, its takeoff and destination, and more, garnered from online flight trackers.

Chris told Universe Today that he originally started trying to catch planes passing in front of the Moon.

A waxing gibbous Moon with an  American Airlines flyby  on Feb. 2, 2015. Credit and copyright: Chris Lyons.
A waxing gibbous Moon with an American Airlines flyby on Feb. 2, 2015. Credit and copyright: Chris Lyons.

“It went from snapping them near it when just taking Moon shots to wanting to get closer and have them actually passing it,” he said. “Then I got a Solar filter and tried it with the Sun. It is far more difficult than the Moon, as you cannot look at it for long. I limit my viewing (our eyes are precious) and only look through high rated neutral density filters.”

We’ve also featured images from Sebastien Lebrigand who lives about 70 km outside of Paris, France. Lebrigand is prolific: he takes almost daily images of planes passing in front of the Sun and Moon and posts them on Twitter.

A Boeing 777 and a sunspot crosses the Sun on April 17, 2014, as seen from France. Credit and copyright: Sebastien Lebrigand.
A Boeing 777 and a sunspot crosses the Sun on April 17, 2014, as seen from France. Credit and copyright: Sebastien Lebrigand.

Lebrigand is an amateur astronomer but says he especially enjoys “the rare conjunction of the planes passing by the Sun and the Moon.’

He uses a Canon EOS 60D and a telescope to take his photos the pictures. But his work takes hours of time for analyzing when a potential photo opportunity might occur, setting up equipment, waiting for the exact moment, and then perfecting the images.

An Airbus A319 jet flying at 37,800 feet as it passes in front of the Moon, as seen from near Paris, France. Credit and copyright: Sebastien Lebrigand.
An Airbus A319 jet flying at 37,800 feet as it passes in front of the Moon, as seen from near Paris, France. Credit and copyright: Sebastien Lebrigand.

Check out more of Chris Lyons’ work at his Flickr page, and you can see more of Sebastien Lebrigand’s work at his website or his Twitter feed.

Jupiter and the Full Snow Moon Come Together In a Beautiful Conjunction Tonight

A halo rings the bright moon and planet Jupiter (left of moon) Credit: Bob King

The Full Moon celebrates Jupiter’s coming opposition by accompanying the bright planet in a beautiful conjunction tonight.

Even last night Jupiter and the Moon were close enough to attract attention. Tonight they’ll be even more striking. Two reasons for that. The Moon is full this evening and will have crept within 41/2° of the planet. They’ll rise together and roll together all night long.

The Full Snow Moon will share the sky with Jupiter in Cancer tonight not far from the Sickle or head of Leo the Lion.  The map shows the scene around 8 o'clock local time. Source: Stellarium
The Full Snow Moon will share the sky with Jupiter in Cancer tonight not far from the Sickle or head of Leo the Lion. The map shows the scene around 8 o’clock local time. Source: Stellarium

February’s full moon is aptly named the Full Snow Moon as snowfall can be heavy this month. Just ask the folks in Chicago. The Cherokee Indians called it the “Bone Moon”, named for the tough times experienced by many Native Americans in mid-winter when food supplies ran low. With little left to eat people made use of everything including bones and bone marrow for soup.

Not only is the Full Moon directly opposite the Sun in the sky, rising around sunset and setting around sunrise, but in mid-winter they’re nearly on opposite ends of the celestial seesaw.

Jupiter, like tonight's Full Moon, will be directly opposite the Sun this Friday and in "full moon" phase. Credit: Bob King
Jupiter, like tonight’s Full Moon, will be directly opposite the Sun this Friday and in “full moon” phase. Because both planets are lined up on the same side of the Sun, Jupiter will also be at its closest to us for the year. Credit: Bob King

In early February the Sun is still near its lowest point in the sky (bottom of the seesaw) for the northern half of  the globe. And while daylight is steadily increasing as the Sun moves northward, darkness still has the upper hand this month. Full Moons like tonight’s lie 180° opposite the Sun, placing the Moon near the top of the seesaw. Come early August, the Sun will occupy the Moon’s spot and the Full Moon will have slid down to the Sun’s current position. Yin and Yang folks.

Now here’s the interesting thing. Jupiter will also be in “full moon” phase when it reaches opposition this Friday Feb. 6.  Take a look at the diagram. From our perspective on Earth, Jupiter and the Sun lie on opposite sides of our planet 180° apart. As the Sun sets Friday, Jupiter will rise in the east and remain visible all night until setting around sunrise exactly like a Full Moon.

So in a funny way, we have two Full Moons this week only one’s a planet.

Like me, a lot of you enjoy a good moonrise. That golden-orange globe, the crazy squished appearance at rising and the transition to the bright, white, beaming disk that throws enough light on a winter night to ski in the forest without a headlamp. All good reasons to be alive.

If Jupiter were moved to the Moon's distance it would span about 20 of sky or 40x the apparent diameter of the Full Moon. Credit: Roscosmos with additions by the author
If Jupiter were moved to the Moon’s distance it would span about 20 degrees or 40 times the apparent diameter of the Full Moon. Credit: Roscosmos with additions by the author

To find when the moon rises for your town, click over to this moonrise calculator. As you step outside tonight to get your required Moon and Jupiter-shine, consider the scene if we took neighboring Jupiter and placed it at the same distance as the Moon. A recent series of such scenes was released by the Russian Federal Space Agency (Roscosmos). I included one here and added the Moon for you to compare. Is Jupiter enormous or what?

iPhone Astrophotography: How to Take Amazing Images of the Sky with Your Smartphone Tonight!

All photos credit and copyright: Andrew Symes.

Got a smartphone and a telescope?

It’s a sight now common at many star parties. Frequently, you see folks roaming through the darkness, illuminated smartphone aimed skyward. Certainly, the wealth of free planetarium apps has done lots to kindle a renewed interest in the night sky.

Inevitably, after peering through the eyepiece of a telescope, the question then arises:

“Can I get a picture of that with my phone?”

The short answer is yes, with a little skill and patience.

Now simply aiming a camera at the eyepiece of a telescope — known as afocal astrophotography — and shooting without removing the camera lens and physically coupling it to the telescope is a tricky balancing act. Back in the olden days, the Moon and perhaps the brighter planets were the only bright target within bounds of afocal film photographers, and only then after a lengthy set of estimations to hit the correct focal length. The advent of digital cameras and ‘live preview’ means that you can now simply aim, shoot, and throw away or delete anything off center or out of focus. Digital ‘film’ is cheap, and most folks simply use trial and error to get the ‘keepers’. The Moon is an especially bright and easy target for beginners to practice on.

Moon
A gibbous Moon, an easy first pic!

Of course, your typical smartphone, like a webcam, has an imaging chip much smaller than a DSLR. This is why astrophotographers are often tempted to take out a second mortgage (“we don’t really need that second car, do we?” is a common spousal refrain) in pursuit of excellence. Another drawback is that through a smartphone, a planet may look like an overexposed blob. A simple but effective way to get around this is to affix a light reducing filter to the eyepiece. In fact, I’ve used a variable polarizer during live broadcasts of the Virtual Star Party to great effect.  And as with webcam imaging, smartphone astrophotographers now often use automated stacking programs to clean up images and tease out detail. Being an old timer, my faves are still K3CCD Tools and Registax, though many young guns out there now use DeepSkyStacker as well.

Telescope
Andrew Symes’ imaging setup.

Now, I’ll admit, I’m an ‘Android guy,’ and I have put most of my efforts over the years into planetary imaging with a homemade webcam. We therefore sought out in-the-field expertise from someone on the forefront of iPhone astrophotography. Andrew Symes has been taking images of the solar system and beyond with his iPhone coupled to his Celestron NexStar 8” SE telescope for years. He also has one of the few handles on Twitter that we’re envious of, @FailedProtostar. He also ventures out into the chilly nights frequent to his native of Ottawa, Canada to practice his craft, as he observes in temperatures that would drop a Tauntaun.

We caught up with Andrew recently to ask him about some tips of the trade.

Sun
An ‘iPhone Sun’ shot in hydrogen alpha through a Coronado PST.

Universe Today: I know from doing webcam photography that acquiring, centering and focusing are often more than half the battle. Any tips for accomplishing these?

Andrew: Acquiring, centering, and focusing the objects I’m photographing is definitely the big challenge! To speed and simplify the process, I have a dedicated eyepiece that I use in association with my phone and adapter. Before even heading outside, I attach the adapter to this eyepiece, insert my phone, and hold the unit up to a light source to see if the camera lens is properly aligned with the eyepiece. It usually takes a bit of fiddling to get things set properly because if the adapter and eyepiece are not perfectly aligned, nothing will show up on the camera screen. It’s better to get that process out of the way in a lit environment than outside in the dark. I then set that unit aside, and use a separate “adapter-less” zoom eyepiece to locate and center the object in the telescope. Once I’ve acquired the object and am successfully tracking it, I remove my zoom eyepiece and drop in the eyepiece/adapter/phone combo. At that point, the object is usually visible on screen but out of focus since the focus required for the iPhone is different from what works for my eyes! To ensure proper focus, I display the object on my phone’s screen using a live video app called FiLMiC Pro and adjust the focus until it is sharp. I use that app because it has a digital zoom function that lets me get a closer look at the object than the standard iPhone video camera view. Only once I’m confident that I’ve achieved good focus and am tracking the object properly, will I start to record video or shoot individual frames.

A comparison
A comparison of the first image of the Orion Nebula (M42) shot in 1880 (left) with a modern iPhone image.

Universe Today: A question I always like to ask everyone… what was your biggest mistake? Are there any pitfalls to avoid?

Andrew: There are a few pitfalls to avoid when doing iPhone astrophotography. In the past, I would attach the adapter outside while the eyepiece was in the telescope but this caused a number of problems. Often, I would accidentally bump the object out of view while attaching and adjusting the adapter and have to align everything all over again. The weather is also often cold here, and it’s VERY difficult to attach the adapter properly with gloves on, so I would either get really cold hands or spend a lot of unnecessary time fumbling with the adapter with gloved hands. For those reasons, I now prepare the eyepiece/adapter/phone unit indoors in advance as described above. I also now make sure that my iPhone is fully charged before heading outdoors as I’ve found that the iPhone battery drains very quickly when the camera is running constantly — especially in cold weather. Even with an almost-full battery, there are times here in winter when the phone will simply shut down due to the low temperature so I make sure to only start capturing photos/videos once I’m completely confident in my setup.

Lovejoy
Yes, that’s Comet C/2014 Q2 Lovejoy shot with an iPhone!

Universe Today: You’re really pushing the envelope by doing deep sky astro-pics with an iPhone … anything else that you’re experimenting with or working on?

Andrew: My main focus is definitely still on iPhone astrophotography because I like the quick and “light” setup. I don’t need to bring a laptop outside and don’t need equipment that I wouldn’t normally have on me anyway (other than the adapter itself.) So, I want to keep pushing the envelope with what I can capture using the phone and my goal is now is to see how far I can go with deep-sky objects. I’d really like to add the Ring and Dumbbell Nebulae to my portfolio, for example, and see if it’s possible to grab even fainter ones. There are also some non-deep sky targets I’d like to try. I haven’t been successful at capturing a telescopic photo of the ISS, and would love to see if I can catch it transiting the Sun or Moon with my phone. I also still need to capture Uranus and Neptune to round out a solar system collage I put together in 2014!

Lastly, I’m continually experimenting with photo apps to see which are best at capturing and/or processing telescopic images, and have just started using both an iPhone 4S and iPhone 6 to take photos and video. Surprisingly, I still prefer the 4S for planetary imaging as I haven’t been able to properly capture the true colors of planets with the iPhone 6 yet. The 6 has better camera resolution but seems to be adjusting the exposure of small, faint objects like planets differently than the 4S, so I need to change my routine and techniques to compensate. The methods I’ve become accustomed to using with the 4S don’t seem to translate directly to the 6 so I have some learning yet to do!

M13
An iPhone capture of Messier 13.

Amazing stuff, for sure. And to think, we were all gas-hypering film and using absurdly long focal lengths to get blurry planetary images just a few decades ago!

-Check out more of Andrew’s images, as well as read more about how he does it.

-Got a pic, shot with a smartphone or otherwise? Send ‘em in to Universe Today!

Where to Look for Comet Lovejoy Until it Fades from Sight

Viewing Comet Lovejoy from dark skies in Portugal. Credit: Miguel Claro

I hate to admit it, but our dear comet is fading. Only a little though. As Comet Q2 Lovejoy wends its way from Earth toward perihelion and beyond, it will slowly dim and diminish. With an orbital period of approximately 8,000 years it has a long journey ahead. Down here on Earth, we continue to look up every clear night hoping for yet another look at what’s been a wonderful comet. 

Comet Lovejoy and the Pleiades on January 19, 2015. Credit: Joseph Brimacombe
Comet Lovejoy and the Pleiades on January 19, 2015. Credit: Joseph Brimacombe

Despite its inevitable departure I encourage you to continue following Comet Lovejoy. It’s not often a comet vaults to naked eye brightness, and this one should remain visible without optical aid through mid-February.

Like a human celebrity, Lovejoy’s been the focus of attention from beginners and professionals alike using everything from cheap cellphone cameras to high-end telescopes to capture its magic. Who can get enough of that wildly fluctuating ion tail and greeny-blue coma?

Comet Q2 Lovejoy continues tracking north-northwest now through March. This chart shows the comet's position at 7 p.m. (CST) every 5 nights through March 5. Stars shown to magnitude +6. Created with Chris Marriott's SkyMap software
Comet Q2 Lovejoy continues tracking north-northwest now through March. This chart shows the comet’s position at 7 p.m. (CST) every 5 nights through March 5. Stars shown to magnitude +6. Click to enlarge. Created with Chris Marriott’s SkyMap software

The comet continues moving northward all winter long, sliding through  the diminutive constellations Aries and Triangulum, across Andromeda and into Cassiopeia, fading as she goes. You can use the map above and binoculars to help you follow it. I like to create lines and triangles using bright stars and deep sky objects to direct me to the comet.

Deep image of Comet Lovejoy taken with a Canon 6D with 50mm f/1.4 lens at f/2. 10  exposure of 30 secs at ISO3200 stacked. The tail, though faint, extends for possibly 18 degrees in this amazing image. Credit: Ian Sharp
Deep image of Comet Lovejoy taken with a Canon 6D with 50mm f/1.4 lens at f/2. Ten exposures of 30 secs at ISO3200 were stacked to create the final photo. The tail extends for possibly 18 degrees in this amazing image. The Pleiades are at top right; Hyades at bottom center. Credit: Ian Sharp

Tonight for instance, Lovejoy one fist held at arm’s length due west of the Pleiades. On the 29th, it’s on a line from Beta Persei (Algol) to Beta Trianguli. On February 3rd, it pulls right up alongside the colorful double star Gamma Andromedae, also called Almach, and on the 8th forms one of the apexes of an equilateral triangle with the two Betas. You get the idea.

The tail rays that show so clearly in photographs as in this image made on January 16th require dark skies and 8-inch or larger telescope to see visually. They're very low contrast. Credit: Greg Redfern
The tail rays that show so clearly in photographs as in this image made on January 16th require dark skies and an 8-inch or larger telescope to see visually. They’re very low contrast. Credit: Greg Redfern

The waxing moon will interfere with viewing beginning next weekend and render the comet nil with the naked eye, you’ll still be able to track it in binoculars during that time. Dark skies return around Feb. 7.

Comet Lovejoy captured from the Dark Sky Alqueva Reserve, Portugal on Jan. 11th by Miguel Claro

Delicate streamers show in Comet Lovejoy's ion tail in this photo from January 13th. Credit: Bernhard Hubl
Delicate streamers show in Comet Lovejoy’s ion tail in this photo from January 13th. Credit: Bernhard Hubl

Comet Lovejoy Now at its Brightest: Images from Around the World

C/2014 Q2 Lovejoy comet passing over perseus and Taurus molecular cloud forming a triangle with the California Nebula (the red nebula on the left), the M45 Pleaides and Hyades in Taurus. Taken on January 14, 2015 from Pragelato, Turin, Italy. Credit and copyright: Leonardo Orazi.

Last night was the first time I was able to spot Comet Lovejoy with unaided eyes. The latest images from our readers and dedicated astrophotographers confirm that now is a good time to see the comet, which is reaching maximum brightness at his week. Spaceweather.com reports that many experienced observers say the comet is now shining at magnitude +3.8. With clear, dark skies C/2104 Q2 is easily seen with binoculars.

Enjoy this gallery of recent images, and if you’ve taken an image, consider joining our Flickr pool and submitting it. We may use your image in an upcoming article!

Comet Lovejoy C/2104 Q2 cruising past the open star Cluster M45 “Pleiades” or “The Seven Sisters.” Credit and copyright: John Chumack.
Comet Lovejoy C/2104 Q2 cruising past the open star Cluster M45 “Pleiades” or “The Seven Sisters.” Credit and copyright: John Chumack.
Comet Lovejoy taken on January 15, 2015 from Singapore. Credit and copyright: Justin Ng.
Comet Lovejoy taken on January 15, 2015 from Singapore. Credit and copyright: Justin Ng.
Comet C/2014 Q2 Lovejoy in a widefield false color image taken on January 16, 2015 from New Mexico Skies. Credit and copyright Joseph Brimacombe.
Comet C/2014 Q2 Lovejoy in a widefield false color image taken on January 16, 2015 from New Mexico Skies. Credit and copyright Joseph Brimacombe.
Comet Lovejoy, C/2014 Q2, a wide binocular field west of M45, the Pleiades star cluster in Taurus, on January 15, 2015, shot from Silver City, New Mexico. The long blue ion tail stretched back for about 8°. Credit and copyright: Alan Dyer.
Comet Lovejoy, C/2014 Q2, a wide binocular field west of M45, the Pleiades star cluster in Taurus, on January 15, 2015, shot from Silver City, New Mexico. The long blue ion tail stretched back for about 8°. Credit and copyright: Alan Dyer.
Comet Lovejoy photographed from Torrance Barrens Dark-Sky Preserve (30 km from Gravenhurst, Ontario, Canada; 200 km north of Toronto) on January 13, 2015.  Credit and copyright: Michael Watson.
Comet Lovejoy photographed from Torrance Barrens Dark-Sky Preserve (30 km from Gravenhurst, Ontario, Canada; 200 km north of Toronto) on January 13, 2015. Credit and copyright: Michael Watson.
Comet Lovejoy as seen from Lahore, Pakistan on January 15, 2014, 10:30 pm local time. 35 single images stacked in DSS. Each 8 seconds, ISO 2000, f/5.6, edited in Photoshop. Credit and copyright: Roshaan Bukhari
Comet Lovejoy as seen from Lahore, Pakistan on January 15, 2014, 10:30 pm local time. 35 single images stacked in DSS. Each 8 seconds, ISO 2000, f/5.6, edited in Photoshop. Credit and copyright: Roshaan Bukhari
High resolution 3 panel mosaic of C/2014 Q2 on January 11, 2015. Field of view is approximately 3.5° x 2° and composed of three fields. Many fine streamers are visible emanating from the nucleus. Credit and copyright: SEN/ Damian Peach.
High resolution 3 panel mosaic of C/2014 Q2 on January 11, 2015. Field of view is approximately 3.5° x 2° and composed of three fields. Many fine streamers are visible emanating from the nucleus. Credit and copyright: SEN/ Damian Peach.
Comet LoveJoy photographed from Kosovo on January 13, 2015. Credit and copyright: Suhel A. Ahmeti.
Comet LoveJoy photographed from Kosovo on January 13, 2015. Credit and copyright: Suhel A. Ahmeti.
C2014 Q2 Lovejoy on January 13, 2015. Credit and copyright: Shahrin Ahmad.
C2014 Q2 Lovejoy on January 13, 2015. Credit and copyright: Shahrin Ahmad.
Comet Lovejoy on January 11, 2015. Credit and copyright: Henry Weiland.
Comet Lovejoy on January 11, 2015. Credit and copyright: Henry Weiland.
Wide angle shot of Comet Lovejoy with the constellation Orion, showing rich fields of red nebula, star clouds and dark nebula with the bright green naked eye comet. Credit and copyright: Chris Schur.
Wide angle shot of Comet Lovejoy with the constellation Orion, showing rich fields of red nebula, star clouds and dark nebula with the bright green naked eye comet. Credit and copyright: Chris Schur.
Comet Lovejoy traveling through Taurus. Imaged on January 12, 2015 from Bathurst, New South Wales. Credit and copyright: Wes Schulstad.
Comet Lovejoy traveling through Taurus. Imaged on January 12, 2015 from Bathurst, New South Wales. Credit and copyright: Wes Schulstad.
C2014 Q2 Lovejoy on January 7, 2015, taken from Bannister Green, England. Credit and copyright: Wendy Clark.
C2014 Q2 Lovejoy on January 7, 2015, taken from Bannister Green, England. Credit and copyright: Wendy Clark.

How to Find and Make the Most of Comet Lovejoy

This photo map shows Comet Lovejoy's nightly position among the winter stars through January 19th as it travels across the constellation Taurus not far from Aldebaran and the Pleiades star cluster. Click to enlarge. Credit: Bob King

Comet Q2 Lovejoy passed closest to Earth on January 7th and has been putting on a great show this past week. Glowing at magnitude +4 with a bluish coma nearly as big as the Full Moon, the comet’s easy to see with the naked eye from the right location if you know exactly where to look. I wish I could say just tilt your head back and look up and bam! there it would be, but it’ll take a little more effort than that. But just a little, I promise. 

Comet Lovejoy and its spectacular "lively" ion tail photographed on January 8th by Nick Howes at Tzec Muan Network at Siding Spring Australia
Comet Lovejoy and its spectacular “lively” ion tail photographed on January 8th by Nick Howes at Tzec Muan Network at Siding Spring Australia

Last night, under a dark rural sky, once I spotted the comet and noticed its position in relation to nearby bright stars, I could look up and see it anytime. Finding anything other than the Moon or a bright planet in the night sky often requires a good map. I normally create a star-chart style map but thought, why not make a photographic version? So last night I snapped a few guided images of Lovejoy as it glimmered in the wilds of southern Taurus and then cloned the comet’s nightly position through onto the image. Maybe you’ll find this useful, maybe not. If not, the regular map is also included.

Comet Lovejoy position is shown for each night tonight through January 23rd. The comet should remain in the 4-5 magnitude range throughout. Click for a larger map you can print out and use outdoors. Click to enlarge and print for use outdoors. Source: Chris Marriott’s SkyMap software
Comet Lovejoy’s position is shown for each night tonight through January 23rd. The comet should remain in the 4-5 magnitude range throughout. Lovejoy is currently high in the southeastern sky at nightfall and crosses the meridian due south around 9 o’clock local time. Click for a larger map you can print out and use outdoors. Source: Chris Marriott’s SkyMap software

To see Comet Lovejoy with the naked eye you’ll need reasonably dark skies. It should be faintly visible from outer ring suburbs, but country skies will guarantee a sighting. I’ve been using bright stars in Orion and Taurus to guide binoculars – and then my eye – to the comet. Pick a couple bright stars like Aldebaran and Betelgeuse and extend a line from each to form a triangle with Lovejoy at one of the corners. If you then point binoculars at that spot in the sky, the comet should pop out. If you don’t find it immediately, sweep around the position a bit.  After you find it, lower the binoculars and try to spot it with the naked eye.

Comet Lovejoy last night January 9th around 8 p.m. (CST) shows a bright coma and faint ~1.5-degree-long
Comet Lovejoy last night January 9th around 8 p.m. (CST) shows a bright coma and faint ~1.5-degree-long tail. This photo, made with a 200mm lens, gives a good idea of what the comet looks like in 50mm binoculars. Details: f/2.8, ISO 800, 2-minute exposure. Credit: Bob King

This week, as Lovejoy continues trekking north, you can use bright orangey Aldebaran in Taurus and the Pleiades, also called the Seven Sisters star cluster, to “triangulate” your way to the comet. Look for a glowing fuzzball. In 10×50 and 8×40 binoculars, it’s obviously different from a star — all puffed up with a brighter center. The 50mm glass even shows a hint of the coma’s blue color caused by carbon molecules fluorescing in ultraviolet sunlight and a faint, streak-like tail extending to the northeast. With the naked eye, at first you might think it’s just a dim star; closer scrutiny reveals the star has a hazy appearance, pegging it as a comet.

Comet Lovejoy sketches from last night made using a 15-inch telescope. The coma is big - almost a half-degree across. The drawing shows the bright nuclear region and tiny "false nucleus". At right, a suspected plume extends to the southwest of the false nucleus. Color is how the comet really looks in the telescope. Credit: Bob King
Comet Lovejoy sketches from last night made using a 15-inch telescope. The coma is big – almost a half-degree across. The drawing shows the bright nuclear region and tiny “false nucleus”. At right, a suspected plume extends to the southwest of the false nucleus. Color is how the comet really looks in the telescope. South is up. Credit: Bob King

Through a telescope the coma is a HUGE pale blue tiki lamp of a thing with a small, much brighter nuclear region. The rays of the ion tail, so beautifully shown in photographs, are indistinct but visible with patience and a moderate-sized telescope under dark skies. At low magnification, the nucleus – the false nucleus actually, since the real comet nucleus is hidden by a shroud of dust and gas – looks like a misty star of about magnitude +9. On close inspection at high magnification (250x and up), you penetrate more deeply into the nuclear zone and the star-like center shrinks and dims to around magnitude +13.

Fascinating plumes of dust recorded by Gianluca Masi on January 6th. South is up, west to the left. Credit: Gianluca Masi
Fascinating plumes of dust recorded by Gianluca Masi on January 6th. South is up, west to the left. Credit: Gianluca Masi

If the seeing is good and comet active, high magnification will often reveal jets or fans of dust in the sunward direction, in this case west of nucleus. I’ve been studying the comet the past couple nights and am almost convinced I can see a short, very low contrast plume poking to the south of center. Generally, plumes and jets are subtle, low-contrast features. Challenging? Yes, but with Lovejoy as close as it’s going to get, now’s the time to seek them.

In this photo taken January 8th, the comet's tail is caught in the act of separated from the head or coma. Magnetic fields embedded in the stream of particles from the Sun occasionally reconnect on the rear side of a comet and pinch off its tail. Credit: Rolando Ligustri
In this photo taken January 8th, the comet’s tail is caught in the act of separated from the head or coma. Magnetic fields embedded in the stream of particles from the Sun occasionally reconnect on the rear side of a comet and pinch off its tail. A new one quickly grows to replace the old. Credit: Rolando Ligustri

Just before Christmas, fluctuations in the solar wind snapped off Comet Lovejoy’s tail. Guess what? It happened again on January 8th as recorded in dramatic fashion by astrophotographer Rolando Ligustri. An ion or gas tail like the one in the photo forms when cometary gases, primarily carbon monoxide, are ionized by solar radiation and lose an electron to become positively charged. Once “electrified”, they can be twisted, kinked and even snapped off by magnetic fields embedded in the Sun’s particle wind.

Of course, the comet didn’t miss a breath but grew another tail immediately. Look closely at the photo and you see another faint streak of light pointing beyond the coma below and left of the bright nuclear region. This may be Lovejoy’s dust tail. Most comets sport both types of tails – gas and dust – since they release both materials as the Sun heats and vaporizes their ices.

Lovejoy’s been a thrill to watch because it’s doing all the cool stuff that makes them so fun to follow. Gianluca Masi, an Italian astrophysicist and lover of all things cometary, will offer a live feed of the comet on Monday January 12th starting at 1 p.m. CST (7 p.m. UT). May your skies be clear tonight!

Mercury and Venus an Awesome Duo at Dusk

You couldn't miss Mercury and Venus together last night January 9th 45 minutes after sunset in the southwestern sky. Very easy to see! They'll be even closer tonight. Credit: Bob King

As Universe Today’s Dave Dickinson described earlier this week not only has Venus returned to the evening sky, but Mercury has climbed up from the horizon to join it. Last night (Jan. 9th) the two planets were separated by just a hair more than one Moon diameter. The photo only hints at amazingly easy the pair was to see. Consider the duo a tasty hors d’oeuvres before the onset of night and the Comet Lovejoy show.

Tonight the duo will be at their closest and remain near one another for the next week or so. This is one of Mercury’s best apparitions of the year for northern hemisphere skywatchers and well worth donning your winter uniform of coat, boots, hat and thick gloves for a look. Just find a location with a decent view of the southwestern horizon and start looking about a half hour after sunset. Mercury and Venus will be about 10° or one fist held at arm’s length high above the horizon.

Through a telescope both Venus and Mercury are in gibbous phase with Venus more fully filled out. Both are also very small with Venus about 10 arc seconds and Mercury 6 seconds across. Source: Stellarium
Through a telescope both Venus and Mercury are in gibbous phase with Venus more fully filled out. Both are very small with Venus about 10 arc seconds in diameter and Mercury 6 seconds. Source: Stellarium

Venus will jump right out. Mercury’s a couple magnitudes fainter and lies to the right of the goddess planet.  By 45 minutes after sunset, Mercury gets even easier to see. Find your sunset time HERE so you can best plan your outing.

Mark your calendars for a cool conjunction of the 1-day-old lunar crescent, Mercury and Venus on January 21st. Source: Stellarium
Mark your calendars for a cool conjunction of the 1-day-old lunar crescent, Mercury and Venus on January 21st. Source: Stellarium

Because both planets are still fairly low in the sky and far away, they present only tiny, blurry gibbous disks in the telescope. Later this spring, Venus will climb higher and show its changing phases more clearly. Keep watch the coming week to catch the ever-shifting positions of Venus and Mercury in the evening sky as each follows the binding arc of its own orbit. The grand finale occurs on January 21st when a skinny crescent Moon joins the duo (Mercury now fading) for a triumphant trio. Has this been an exciting month or what?

If You Can Find Orion, You Can Find Comet Lovejoy

The constellation Orion and Comet Lovejoy (C/2014 Q2), highlighted for easy viewing, as seen from Millersville, Maryland on January 7, 2015. Credit and copyright: Brian Moran.

Comet Lovejoy (2014 Q2) is now visible in the night sky, and while you’ll need binoculars or a low-power telescope to see it best, the perfect window of opportunity to see it for yourself is starting now! We’ve heard from some readers that they’ve had some trouble spying it, but photographer Brian Moran has snapped the perfect picture to show you EXACTLY where to look for the comet. All you need to do is look for the easy-to-find constellation of Orion, and swing your eyes to the right (about 20 degrees) and up slightly up.

Brian said he was having trouble finding Lovejoy, but perhaps it may have been because he was looking a little too close to Orion. “Orion is a great frame of reference, but all of the photos I saw online made it seem like it was closer to Orion than it actually is,” he said.

Comet Q2 Lovejoy is currently shining at 4th magnitude, and if you’ve got a really dark sky, you may be able to see it with the unaided eye. as our David Dickinson explained, this comet is now entering “prime time” evening sky viewing, as it is visible over the southern horizon at around 9:30 PM local time this weekend, then 8:00 PM on January the 15th, and just before 6:00 PM by January 31st.

Tonight (Thursday, January 8) we’ll have a “two-hour window of darkness between the end of twilight and moonrise for those of us in the world’s mid-northern latitudes. Each night after tonight the Moon rises nearly an hour later,” said Sky & Telescope’s Alan MacRobert.

Finder chart for Comet Lovejoy, C/2014 Q2, during January 2015. The dates are in Universal Time; the ticks are at 0:00 UT (7:00 p.m. on the previous date Eastern Standard Time). Click on the image for larger, print-friendly black-on-white PDF, courtesy of Sky & Telescope.
Finder chart for Comet Lovejoy, C/2014 Q2, during January 2015. The dates are in Universal Time; the ticks are at 0:00 UT (7:00 p.m. on the previous date Eastern Standard Time). Click on the image for larger, print-friendly black-on-white PDF, courtesy of Sky & Telescope.

While C/Q2 Lovejoy passed closest to Earth yesterday (January 7) at a distance of 0.47 a.u. (44 million miles; 70 million km), the comet should remain at about the same brightness as it crosses the sky into Taurus, Aries, and Triangulum, higher and higher in early evening. It will pass 8° west-southwest of the Pleiades on the evening of January 17th.

MacRobert also explained that although the comet is beginning to recede from us, its intrinsic brightness should still be increasing a bit. “That’s because it doesn’t reach perihelion (its closest to the Sun) until January 30th (at a rather distant 1.29 a.u. from the Sun),” he said. “By that date the comet should finally be fading slightly from Earth’s point of view. And in late January the Moon returns; it’s first-quarter on the 26th.”

Here are some great images of Comet Lovejoy taken by Universe Today readers. Be sure to check out our Flickr group for more great images! We have nearly 1,500 members and new photos are added every day. And if you take an astrophoto, join our group and submit your photos! We may use your image in an upcoming article!

A wide-angle shot of Comet Lovejoy 2014 Q2 above snow-covered trees. Taken as it neared Orion on January 6, 2014.  Credit and copyright: Marion Haligowski.
A wide-angle shot of Comet Lovejoy 2014 Q2 above snow-covered trees. Taken as it neared Orion on January 6, 2014. Credit and copyright: Marion Haligowski.
C/2014 Q2 Lovejoy on 7th January 2015. A couple of satellites managed to sneak in the image, too! Credit and copyright: JP Willinghan.
C/2014 Q2 Lovejoy on 7th January 2015. A couple of satellites managed to sneak in the image, too! Credit and copyright: JP Willinghan.
Comet C/2014 Q2 Lovejoy Passes Messier 79 Narrowfield C False Color, taken on Dec 29, 2014, from New Mexico Skies using a 43-cm CDK telescope and STXL-6303 camera on a PME II mount. Credit and copyright: Joseph Brimacombe.
Comet C/2014 Q2 Lovejoy Passes Messier 79 Narrowfield C False Color, taken on Dec 29, 2014, from New Mexico Skies using a 43-cm CDK telescope and STXL-6303 camera on a PME II mount. Credit and copyright: Joseph Brimacombe.
A monochrome image of Comet Lovejoy (2014 Q2) taken on December 31, 2014. Credit and copyright: Damian Peach.
A monochrome image of Comet Lovejoy (2014 Q2) taken on December 31, 2014. Credit and copyright: Damian Peach.
Comet Lovejoy, as seen on December 29, 2014 at around 12.30AM SGT from Singapore. Also visible is spiral galaxy NGC1886, seen to the left of the coma. Total exposure time is 12 minutes. Credit and copyright: Justin Ng.
Comet Lovejoy, as seen on December 29, 2014 at around 12.30AM SGT from Singapore. Also visible is spiral galaxy NGC1886, seen to the left of the coma. Total exposure time is 12 minutes. Credit and copyright: Justin Ng.
Comet Lovejoy as seen from Aldalucia, Spain on December 30, 2013. Credit and copyright: Ian Sharp.
Comet Lovejoy as seen from Aldalucia, Spain on December 30, 2013. Credit and copyright: Ian Sharp.
Comet Lovejoy Passing Globular Cluster M-79. Credit and copyright: Greg Redfern.
Comet Lovejoy Passing Globular Cluster M-79. Credit and copyright: Greg Redfern.
A two-part panorama of Comet 2014 Q2 Lovejoy as seen from Payson, Arizona on December 27, 2014. Credit and copyright: Chris Schur
A two-part panorama of Comet 2014 Q2 Lovejoy as seen from Payson, Arizona on December 27, 2014. Credit and copyright: Chris Schur

Photo Shoot Captures Classified Spy Satellite Engine Burn

The small white flash in the upper left is the visible engine burn of the Air Force's ANGELS satellite firing it’s final boost stage. Credit and copyright: Randy Halverson.

Remember at the end of “Star Trek: First Contact” when Lily looks up to see the Enterprise enter the temporal vortex with a flash of light? Astrophotographer Randy Halverson captured a view very similar to that scene, albeit without time travel or Vulcans standing nearby.

“On July 28th, 2014, I was set up to shoot the Milky Way near Kennebec, South Dakota,” Halverson wrote on his website. “I had looked through some of the stills but didn’t notice anything unusual. [But] in December 2014 I was editing timelapse and when I got to the July 28th sequence I noticed something different on it. At first I thought it was another meteor with persistent train, but I had missed the meteor in between exposures. I had already caught several meteor with persistent trains on timelapse last year, so I was watching for them. Then I looked closer and noticed the flash was dimming and getting brighter. Also, when I zoomed in I could see a satellite or object right before the first flash.”

Halverson did a quick search of launches during that time and found the Air Force had launched a semi-classified trio of satellites into orbit earlier in the evening of July 28th (23:28 UTC, 7:28 EDT) on a Delta IV rocket from Cape Canaveral Air Force Station, and further research indicated he had captured the engine burn of one of the satellite’s final boost stage.

Just goes to show, you can never tell what you’ll see when you’re looking up!

See the timelapse below:

On board the Delta IV were two Geosynchronous Space Situational Awareness Program (GSSAP) spacecraft and the Autonomous Nanosatellite Guardian for Evaluating Local Space (ANGELS) NanoSatellite. Halverson conferred with a few NASA mission analysts and they all agreed the flash was coming from the ANGELS boost stage firing.

“The first flash you see on the timelapse happened at 1:09am July 29th (camera time) so that also seems to match up with the timing for the final burn the article mentions,” Halverson said.

According to the Spaceflight101 website, the ANGELS nanosatellite is a project of the U.S. Air Force Research Laboratory’s (AFRL) and was a secondary payload on Delta IV launched on July 28, 2014. Its purpose was to do a technical demonstration flight several hundred kilometers above the belt of geosynchronous orbit (35,786 kilometers (22,236 miles). The satellite was supposed to “perform an autonomous rendezvous demonstration with the Delta IV upper stage before testing a camera system for the inspection of satellites in high orbits.”

Halverson said he used a Canon 5D Mark III with a Nikon 14-24 lens on an eMotimo TB3 mounted on a Dynamic Perception Stage Zero Dolly.

See more of Randy’s great timelapse and night sky photography work at his website dakotalapse, or Twitter.