KENNEDY SPACE CENTER, FL – The unplanned ‘Happy Marriage’ of United Launch Alliance (ULA) and Orbital ATK is set to give birth Sunday, Dec. 6, to a Cygnus cargo freighter bound for the International Space Station (ISS).
Following two scrubs and a three day due to intense and wide spread rain squalls and excessive blustery winds, the third time is hopefully the charm for the Orbital ATK Cygnus resupply ship set for blastoff atop the venerable ULA Atlas V booster.
KENNEDY SPACE CENTER, FL – In the shadow of the spanking new commercial crew access tower that our astronauts will soon ascend to restore America’s human access to space, the first ever Atlas V rocket that will launch a commercial Cygnus cargo freighter to the International Space Station (ISS) is poised for blastoff on Thursday, December 3, from the Florida Space Coast and resume the train of critically needed American cargo launches to the orbiting science laboratory.
The stakes are high for NASA and the ISS partners following a string of three cargo mission mishaps over the past year resulting from a trio of launch failures by both US and Russian rocket providers involving Orbital ATK, SpaceX and Roscosmos.
KENNEDY SPACE CENTER, FL – The largest and most advanced version of the privately developed Cygnus cargo freighter ever built by Orbital ATK is fueled, loaded and ready to go to orbit – signifying a critical turning point towards resuming American commercial cargo launches to the space station for NASA that are critical to keep it functioning.
The enhanced and fully assembled commercial Cygnus was unveiled to the media, including Universe Today, during an exclusive tour inside the clean room facility on Friday, Nov. 13, where it is undergoing final prelaunch processing at the Kennedy Space Center (KSC).
One year after the catastrophic launch failure of Orbital ATK’s private Antares rocket seconds after liftoff with the Cygnus cargo freighter bound for the International Space Station (ISS), the firm is well on the way towards revamping the booster with modern new engines and implementing a ‘Return or Flight’ by approximately mid-2016, company officials told Universe Today. Antares is on the comeback trail.
Some 15 seconds after blastoff of the firms Antares/Cygnus rocket on October 28, 2014 on the Orb-3 resupply mission for NASA to the space station, the flight rapidly devolved into total disaster when one of the rockets first stage AJ26 engines suddenly blew up without warning after liftoff from NASA Wallops Island facility along the Eastern shore of Virginia at 6:22 p.m. ET.
OSIRIS-Rex, the first American spacecraft ever aimed at snatching pristine samples from the surface of an asteroid and returning them to Earth for exquisite analysis by researchers world-wide with the most advanced science instruments has successfully completed its assembly phase and moved into the “test drive” phase – just ten months before blastoff, following installation of all its science instruments at Lockheed Martin Space Systems facilities, near Denver, Colorado.
The launch window for OSIRIS-REx opens next fall on September 3, 2016 on a seven-year journey to asteroid Bennu and back. Bennu is a carbon-rich asteroid. OSIRIS-Rex will eventually return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.
The science payload installation was recently completed with attachment of the vehicles three camera instrument suite of cameras and spectrometers known as OCAMS (OSIRIS-REx Camera Suite), which was was designed and built by the University of Arizona’s Lunar and Planetary Laboratory.
OCAMS trio of instruments, PolyCam, MapCam and SamCam, will survey and globally map the surface of Bennu up close at a distance ranging from approximately 5 km to 0.7 km.
“PolyCam, MapCam and SamCam will be our mission’s eyes at Bennu,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, in a statement.
“OCAMS will provide the imagery we need to complete our mission while the spacecraft is at the asteroid.”
“All in all it was flawless installation, with the three cameras and the control electronics making it on the spacecraft well in advance of when we originally planned these activities. In general, the OSIRIS-REx ATLO (assembly, test and launch operations) flow has gone smoothly,” said Lauretta in a blog update.
For the next five months, NASA’s OSIRIS-REx which stands for Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer will undergo a rigorous regime of critical environmental testing to ensure the probe will survive the unforgiving extremes of vacuum, vibration and extreme temperatures it will experience during launch and throughout the life of its planned eight year mission.
The asteroid sampling spacecraft is tracking on budget and ahead of schedule.
“OSIRIS-REx is entering environmental testing on schedule, on budget and with schedule reserves,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.
“This allows us to have flexibility if any concerns arise during final launch preparations.”
Bennu is a near-Earth asteroid and was selected for the sample return mission because it “could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth,” says NASA.
The spacecraft is equipped with a suite of five science instruments to remotely study the 492 meter wide asteroid.
The instruments were all installed as planned on the spacecraft deck over the past few months so they can all be subjected to the environmental testing together with the spacecraft bus.
“This milestone marks the end of the design and assembly stage,” said Lauretta, in a statement.
“We now move on to test the entire flight system over the range of environmental conditions that will be experienced on the journey to Bennu and back. This phase is critical to mission success, and I am confident that we have built the right system for the job.”
The tests will “simulate the harsh environment of space, including acoustical, separation and deployment shock, vibration, and electromagnetic interference. The simulation concludes with a test in which the spacecraft and its instruments are placed in a vacuum chamber and cycled through the extreme hot and cold temperatures it will face during its journey to Bennu,” say NASA officials.
Video caption: Engineers at Lockheed Martin move the OSIRIS-REx spacecraft onto a rotation fixture. This fixture supports the full weight of the spacecraft and acts as a hinge, orienting the spacecraft at a 90 degree angle, which allows engineers to access the top of the spacecraft much more easily. Credits: Lockheed Martin Corporation
The testing is done to uncover any issues lurking prior next September’s planned liftoff.
“This is an exciting time for the program as we now have a completed spacecraft and the team gets to test drive it, in a sense, before we actually fly it to asteroid Bennu,” said Rich Kuhns, OSIRIS-REx program manager at Lockheed Martin Space Systems.
“The environmental test phase is an important time in the mission as it will reveal any issues with the spacecraft and instruments, while here on Earth, before we send it into deep space.”
After the testing is complete by next May, the spacecraft will ship from Lockheed Martin’s Denver facility to NASA’s Kennedy Space Center, where it will undergo final prelaunch preparations and transport to the launch pad at Cape Canaveral.
OSIRIS-REx is scheduled for launch in September 2016 from Cape Canaveral Air Force Station in Florida aboard a United Launch AllianceAtlas V 411 rocket, which includes a 4-meter diameter payload fairing and one solid rocket motor. Only three Atlas V’s have been launched in this configuration.
“This is an exciting time,” says Lauretta.
The spacecraft will reach Bennu in 2018. OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023 for study by researchers here with all the most sophisticated science instruments available.
Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.
OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.
NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.
OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
The biggest and heaviest Cygnus commercial cargo craft ever built by Orbital ATK is coming together at the Kennedy Space Center as the launch pace picks up steam for its critical ‘Return to Flight’ resupply mission to the space station for NASA. Cygnus is on target for an early December blastoff from Florida and the Orbital ATK team is “anxious to get flying again.”
The 2016 launch window for Mars missions is fast approaching along with opposition, and ESA is refining its target window for ExoMars. Mars launch season offers the optimal time to make the trip from Earth to Mars, as missions prepare to break the surly bonds and head towards the Red Planet next spring. NASA’s InSight lander will also make the trip.
ExoMars is the first joint European Space Agency (ESA) Roscosmos mission to the Red Planet. The ExoMars Trace Gas Orbiter is under contract to Thales Alenia Space, and the EDM stationary lander dubbed Schiaparelli after the 19th century Italian astronomer is being constructed by Airbus Defense and Space. This would be Russia’s first successful Mars lander mission for over a dozen tries if successful.
The ExoMars project is a two-part mission, and will culminate in an ExoMars rover in 2018. The key objective for the Trace Gas Orbiter, lander and rover to follow in 2018 is to seek out the controversial source of methane on Mars. A product of biology—think bovine flatulence—on Earth, researchers have proposed various sources—inorganic and otherwise—as a source of the anomalous methane seen in the Martian atmosphere. The Trace Gas Orbiter will remain on-station in orbit through 2018 to relay communications from the ExoMars rover. The Entry, Descent and Landing Demonstrator Module Schiaparelli will demonstrate key technologies for landing, including a hybrid Buck Rodgers fins-first style retro-rocket landing reminiscent of Viking, along with a deformable underside meant to absorb impact.
The landing with be a dramatic one on Meridiani Planum at the expected height of dust storm season, and we may get some interesting footage from the onboard descent camera. Along with weather and atmospheric measurements, the EDM Lander will also make the first electrical field measurements from the surface of Mars.
Unfortunately, EDM’s life will be short; Roscosmos originally intended to supply a 100-watt plutonium-powered RTG for the lander, but later opted due to export control to use an on-board battery. The EDM’s lifespan will be measured in a few days, at best.
Heading to Mars in 2016
An issue related to two propulsion system sensors aboard the EDM Lander recently prompted mission planners to opt for a launch for ExoMars at the end of the window next year, with liftoff set for March 14th atop a Proton rocket from the Baikonur Cosmodrome in Kazakhstan instead of January, as originally intended. NASA’s Mars InSight will depart Earth for the Red Planet just ten days earlier on March 4th from Vandenberg AFB in a rare dramatic night shot of an Atlas 5 rocket deploying an interplanetary mission from the US West Coast. InSight’s primary objective is to study seismic activity and the Martian interior, and will land in one of four selected sites (1 primary and 3 backup) in Elysium Planitia on September 28th, 2016.
Naturally, ESA and Roscomos are taking every precaution to assure the success of ExoMars and EDM. The 2011 failure of Phobos-Grunt highlighted the perils of tempting the ‘Great Martian Ghoul’ with more tasty spacecraft. Space is hard, and landing on Mars even more so.
Opposition 2016 for Mars occurs on May 22nd, 2016. Mars is always high in the early morning sky a few months prior to opposition, presenting an optimal window to send spacecraft to the Red Planet on the most efficient in trajectory in terms of fuel and time. This 3-month wide window comes around every 26 months leading up to opposition season. Oppositions of Mars are now getting more favorable, and the next opposition after 2016 in 2018 will be nearly as favorable as the historic 2003 event.
Our robots are swiftly colonizing Mars on our behalf. Here’s a Who’s Who scorecard of functioning spacecraft. On the surface: NASA’s Opportunity and Mars Curiosity rovers. In orbit: Mars Odyssey, (Since 2001!) Mars Express, HiRISE, India’s Mars Orbiter, and MAVEN. Add the ExoMars 2016 and 2018 missions, InSight and the Mars 2020 rover for NASA, and we’ve truly established a redundant sort of ‘telepresence’ on and around Mars.
Will the EDM Lander become the first successful non-NASA lander to approach the Red Planet? Keep an eye on the Insight and the first of two ExoMars missions, as Earth invades Mars in 2016!
United Launch Alliance (ULA) celebrated an incredible milestone today, Oct. 2, with the successful launch of the firms 100th mission on an Atlas V rocket carrying Mexico’s next generation Morelos-3 satellite to provide advanced telecommunications for education and health programs for rural communities and secure communications for Mexican national security needs.
Video caption: This animation of images captured from September 29 to October 1, 2015 from NOAA’s GOES-East satellite shows Hurricane Joaquin become a major hurricane in the Bahamas. Credits: NASA/NOAA GOES Project
NEW JERSEY – A wide swath of the US East Coast is bracing for impact in the coming days as ‘Hurricane Joaquin’ strengthened to a major and dangerous Category 4 storm, today, Thursday, Oct. 1, as NASA and NOAA satellites keep constant watch as it barrels potentially towards tens of millions of coastal residents.
Joaquin is already packing winds exceeding 130 mph with even higher wind gusts as the storm continues to strengthen at this hour and the pressure is decreasing. See the latest Hurricane Joaquin animation and imagery from NASA and NOAA, above and below.
A ULA Atlas V is slated to lift off Friday from Cape Canaveral Air Force Station in Florida at 6:08 a.m. EDT with the Morelos-3 communications satellite for Mexico, before the hurricane gets closer to Florida.
The National Hurricane Center declared Joaquin had intensified into a massive Category 4 hurricane on the Saffir-Simpson Wind Scale, as of 2 PM EDT today, Oct. 1.
You can watch the launch on ULA’s live webcast starting at 5:48 a.m. Oct 2: http://www.ulalaunch.com
The governors of three states – New Jersey, Virginia and North Carolina – have already declared ‘States of Emergency’ in anticipation of potentially destructive winds, potentially life threatening drenching rains and floods, downed power lines and ocean rip currents with high waves in local areas.
Multiple NASA and NOAA satellites are intensively and continuously observing Joaquin, and are providing absolutely critical data to forecasters and government officials with the most current and best information available.
NASA’s GPM, Terra and NPP-Suomi satellites and NOAA’s GOES-East satellite are tracking Joaquin and have seen powerful thunderstorms today which indicates continued strengthening.
At this time we still don’t whether the US eastern seaboard will suffer a major hit but officials are taking no chances after suffering through Superstorm Sandy which caused many deaths, widespread power outages and billions and billions of dollars of damage – from which we are still recovering.
Joaquin is currently over The Bahamas in the Caribbean and is expected to make a sharp right turn on Friday Oct 2 and head northwards to the east coast and the Atlantic Ocean. It could start impacting the Carolinas and regions further north as soon as Sunday, Oct. 4, based on current forecasts, and drop double digits inches of torrential rainfall.
Its pounding the Bahamas right now and is creating a disaster with hurricane force winds and heavy rainfall, say weather forecasters, as it remains over the island for some 24 hours or more and may drop over 10 inches of rain.
But there is a very wide cone of uncertainly of where it could hit as the possible storm track extends from the Carolinas to Maine. It may or may not directly impact the eastern US. The storm may shift to the right and spare the east coast. But no one knows at this time.
Some areas on the US East coast stretching from Virginia to Maine have already suffered from torrential rains and severe flooding from an unrelated storm the past few days and also right now today, Thursday.
So the grounds are already saturated in parts of the Carolina’s, Virginia, Maine and elsewhere.
Coastal flood warnings and watches are already in effect in many areas along the eastern seaboard where local areas could be drenched by some 12 to 18 inches of additional rain which could fall even before the hurricane hits.
Significant beach erosion has already occurred in the Carolinas over the past few days and more is expected up and down the entire coast up to Maine.
And 10 foot high defense berms of sand are being constructed at this moment along miles and miles of the Jersey Shore – areas that suffered devastating damage from Superstorm Sandy.
There is a potential risk of deadly flooding, flash flooding and damage to houses, buildings, businesses, roadways and infrastructure.
“At 2 p.m. EDT (1800 UTC), the center of Hurricane Joaquin was located near latitude 23.0 North, longitude 74.2 West. Joaquin was moving generally southwestward at about 6 mph (9 kph), and the National Hurricane Center forecast a turn toward the northwest and north on Friday, Oct. 2. On the forecast track, the center of Joaquin will move near or over portions of the central Bahamas today and tonight and pass near or over portions of the northwestern Bahamas on Friday, Oct. 2,” according to NASAs Rob Gutro.
The weather forecast for Friday’s launch from Cape Canaveral , Florida is currently 70 percent GO for liftoff of the United Launch Alliance Atlas V rocket at 6:08 a.m. EDT. The Atlas V will launch with the Morelos-3 mission for Mexico’s Secretaria de Comunicaciones y Transportes (Ministry of Communications and Transportation).
Morelos-3 will be part of the Mexsat constellation of satellites that delivers advanced telecommunications throughout Mexico.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.