A New View of Olympus Mons

100,000 orbits requires some sort of recognition. NASA’s 2001 Mars Odyssey orbiter captured this single image of Olympus Mons, the tallest volcano in the solar system, on March 11, 2024. Besides providing an unprecedented view of the volcano, the image helps scientists study different layers of material in the atmosphere, including clouds and dust. Credit: NASA/JPL-Caltech/ASU

After 100,000 orbits and almost 23 years on Mars, NASA’s Mars Odyssey orbiter has seen a lot. The spacecraft was sent to map ice and study its geology, but along the way, it’s captured more than 1.4 million images of the planet.

A recent image captured the Solar System’s tallest mountain and volcano, Olympus Mons.

Continue reading “A New View of Olympus Mons”

Could We Detect an Alien Civilization Trying to Warm Their Planet?

This artist's illustration shows a hypothetical Earth-like inhabited planet being terraformed with artificial greenhouse gases. We could detect these chemicals with infrared spectroscopy. Image Credit: Sohail Wasif, UC Riverside/Schwieterman et al. 2024

Humanity is facing an atmospheric threat of our own device, and our internecine squabbles are hampering our ability to neutralize that threat. But if we last long enough, the reverse situation will arise. Our climate will cool, and we’ll need to figure out how to warm it up. If that day ever arises, we should be organized enough to meet the challenge.

If there are other civilizations out there in the galaxy, one may already be facing a cooling climate or an ice age. Could we detect the greenhouse chemicals they would be purposefully emitting into their atmosphere in an attempt to warm their planet?

Continue reading “Could We Detect an Alien Civilization Trying to Warm Their Planet?”

Earth’s Atmosphere is Our Best Defence Against Nearby Supernovae

Artist's impression of a Type II supernova explosion. These supernova produce gamma rays and powerful ionizing radiation that's hazardous to life. Credit: ESO

Earth’s protective atmosphere has sheltered life for billions of years, creating a haven where evolution produced complex lifeforms like us. The ozone layer plays a critical role in shielding the biosphere from deadly UV radiation. It blocks 99% of the Sun’s powerful UV output. Earth’s magnetosphere also shelters us.

But the Sun is relatively tame. How effective are the ozone and the magnetosphere at protecting us from powerful supernova explosions?

Continue reading “Earth’s Atmosphere is Our Best Defence Against Nearby Supernovae”

The Great Red Spot Probably Formed in the Early 1800s

"Great Red Spot from P7 Flyover". Credit: NASA / SwRI / MSSS / Jason Major © public domain

Jupiter’s Great Red Spot (GRS) is one of the Solar System’s defining features. It’s a massive storm that astronomers have observed since the 1600s. However, its date of formation and longevity are up for debate. Have we been seeing the same phenomenon all this time?

Continue reading “The Great Red Spot Probably Formed in the Early 1800s”

Sulphur Makes A Surprise Appearance in this Exoplanet’s Atmosphere

This artist's illustration shows the Neptune-like exoplanet GJ 3470b, which has an atmosphere rich in sulphur. The planet's atmosphere holds clues to how it and other similar planets formed. Image Credit: Department of Astronomy, UW–Madison

At our current level of knowledge, many exoplanet findings take us by surprise. The only atmospheric chemistry we can see with clarity is Earth’s, and we still have many unanswered questions about how our planet and its atmosphere developed. With Earth as our primary reference point, many things about exoplanet atmospheres seem puzzling in comparison and generate excitement and deeper questions.

That’s what’s happened with GJ-3470 b, a Neptune-like exoplanet about 96 light-years away.

Continue reading “Sulphur Makes A Surprise Appearance in this Exoplanet’s Atmosphere”

Life Probably Played No Role in Mars’ Organic Matter

Color mosaic image of Mars, taken by the HRSC instrument aboard the ESA's Mars Express orbiter. Credit: ESA/DLR/FU Berlin (G. Michael)

The Martian surface shows ample evidence of its warm, watery past. Deltas, ancient lakebeds, and dry river channels are plentiful. When the Curiosity rover found organic matter in ancient sediments in the Jezero Crater paleolake, it was tempting to conclude that life created the matter.

However, new research suggests that non-living processes are responsible.

Continue reading “Life Probably Played No Role in Mars’ Organic Matter”

TRAPPIST-1 Outer Planets Likely Have Water

Three of the TRAPPIST-1 planets – TRAPPIST-1e, f and g – dwell in their star’s so-called “habitable zone. CreditL NASA/JPL

The TRAPPIST-1 solar system generated a swell of interest when it was observed several years ago. In 2016, astronomers using the Transiting Planets and Planetesimals Small Telescope (TRAPPIST) at La Silla Observatory in Chile detected two rocky planets orbiting the red dwarf star, which took the name TRAPPIST-1. Then, in 2017, a deeper analysis found another five rocky planets.

It was a remarkable discovery, especially because up to four of them could be the right distance from the star to have liquid water.

Continue reading “TRAPPIST-1 Outer Planets Likely Have Water”

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

Artist rendering of the view on a Hycean world. The recent detection of a biosignature on the Hycean world K2-18b attracted a lot of attention. Image Credit: Shang-Min Tsai/UCR

The JWST is astronomers’ best tool for probing exoplanet atmospheres. Its capable instruments can dissect the light passing through a distant world’s atmosphere and determine its chemical components. Scientists are interested in everything the JWST finds, but when it finds something indicating the possibility of life it seizes everyone’s attention.

That’s what happened in September 2023, when the JWST found dimethyl sulphide (DMS) in the atmosphere of the exoplanet K2-18b.

Continue reading “Did You Hear Webb Found Life on an Exoplanet? Not so Fast…”

Is the JWST Now an Interplanetary Meteorologist?

This artist’s concept shows what the hot gas-giant exoplanet WASP-43 b could look like. Image Credits: NASA, ESA, CSA, Ralf Crawford (STScI)

The JWST keeps one-upping itself. In the telescope’s latest act of outdoing itself, it examined a distant exoplanet to map its weather. The forecast?

An unending, blistering inferno driven by ceaseless supersonic winds.

Continue reading “Is the JWST Now an Interplanetary Meteorologist?”

Measuring the Atmospheres of Other Worlds to See if There are Enough Nutrients for Life

A NASA graphic explaining how a telescope can measure an exoplanet atmosphere using spectroscopy. Courtesy: NASA/JPL-Caltech/Lizbeth B. De La Torre.
A NASA graphic explaining how a telescope can measure an exoplanet atmosphere using spectroscopy. Courtesy: NASA/JPL-Caltech/Lizbeth B. De La Torre.

Life on Earth depends on six critical elements: Carbon, Hydrogen, Nitrogen, Oxygen, Phosphorous, and Sulfur. These elements are referred to as CHNOPS, and along with several trace micronutrients and liquid water, they’re what life needs.

Scientists are getting a handle on detecting exoplanets that might be warm enough to have liquid water on their surfaces, habitability’s most basic signal. But now, they’re looking to up their game by finding CHNOPS in exoplanet atmospheres.

Continue reading “Measuring the Atmospheres of Other Worlds to See if There are Enough Nutrients for Life”