Improving a 1960s Plan to Explore the Giant Planets

John Bodylski holds a balsa wood model of his proposed aircraft that could be an atmospheric probe. Directly in front of him is a fully assembled version of the aircraft and a large section of a second prototype at NASA’s Armstrong Flight Research Center in Edwards, California. Credit: NASA/Steve Freeman

In the 1960s, NASA engineers developed a series of small lifting-body aircraft that could be dropped into the atmosphere of a giant planet, measuring the environment as they glided down. Although it would be a one-way trip to destruction, the form factor would allow a probe to glide around in different atmospheric layers, gathering data and transmitting it back to a parent satellite. An updated version of the 1960s design is being tested at NASA now, and a drop-test flight from a helicopter is scheduled for this month.

Continue reading “Improving a 1960s Plan to Explore the Giant Planets”

Another Hycean Planet Found? TOI-270 d

Artist's impression of the surface of a hycean world. Hycean worlds are still hypothetical, and have large oceans and thick hydrogen-rich atmospheres that trap heat. They could be habitable even if they're outside the traditional habitable zone. Credit: University of Cambridge

Hycean planets may be able to host life even though they’re outside what scientists consider the regular habitable zone. Their thick atmospheres can trap enough heat to keep the oceans warm even though they’re not close to their stars.

Astronomers have found another one of these potential hycean worlds named TOI-270 d.

Continue reading “Another Hycean Planet Found? TOI-270 d”

Planetary Atmospheres: Why study them? What can they teach us about finding life beyond Earth?

Image of the faint, nitrogen atmosphere of the dwarf planet, Pluto, obtained by NASA’s New Horizons spacecraft on July 14, 2015. (Credit: NASA/JHUAPL/SwRI)

Universe Today has surveyed the importance of studying impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, and comets, and what these fantastic scientific fields can teach researchers and space fans regarding the search for life beyond Earth. Here, we will discuss how planetary atmospheres play a key role in better understanding our solar system and beyond, including why researchers study planetary atmospheres, the benefits and challenges, what planetary atmospheres can teach us about finding life beyond Earth, and how upcoming students can pursue studying planetary atmospheres. So, why is it so important to study planetary atmospheres?

Continue reading “Planetary Atmospheres: Why study them? What can they teach us about finding life beyond Earth?”

If Exoplanets Have Lightning, it’ll Complicate the Search for Life

Lightning on exoplanets could mask some biosignatures and amplify others. Image Credit: NASA/T.Pyle

Discovering exoplanets is almost routine now. We’ve found over 5,500 exoplanets, and the next step is to study their atmospheres and look for biosignatures. The James Webb Space Telescope is leading the way in that effort. But in some exoplanet atmospheres, lightning could make the JWST’s job more difficult by obscuring some potential biosignatures while amplifying others.

Continue reading “If Exoplanets Have Lightning, it’ll Complicate the Search for Life”

Another Explanation for K2-18b? A Gas-Rich Mini-Neptune with No Habitable Surface

Artist depiction of the mini-Neptune K2-18 b. Credit: NASA, CSA, ESA, J. Olmstead (STScI), N. Madhusudhan (Cambridge University)

Exoplanet K2-18b is garnering a lot of attention. James Webb Space Telescope spectroscopy shows it has carbon and methane in its atmosphere. Those results, along with other observations, suggest the planet could be a long-hypothesized ‘Hycean World.’ But new research counters that.

Instead, the planet could be a gaseous mini-Neptune.

Continue reading “Another Explanation for K2-18b? A Gas-Rich Mini-Neptune with No Habitable Surface”

NASA Confirms that 2023 was the Hottest Year on Record

This map of Earth in 2023 shows global surface temperature anomalies, or how much warmer or cooler each region of the planet was compared to the average from 1951 to 1980. Normal temperatures are shown in white, higher-than-normal temperatures in red and orange, and lower-than-normal temperatures in blue. Image Credit: NASA SVS

After analyzing the temperature data from 2023, NASA has concluded that it was the hottest year on record. This will surprise almost nobody. If you live in one of the regions stricken by drought, forest fires, or unusually powerful weather, you don’t need NASA to confirm that the planet is warming.

Continue reading “NASA Confirms that 2023 was the Hottest Year on Record”

Is K2-18b Covered in Oceans of Water or Oceans of Lava?

This illustration shows what exoplanet K2-18 b could look like based on science data. NASA’s James Webb Space Telescope examined the exoplanet and revealed the presence of carbon-bearing molecules. The abundance of methane and carbon dioxide, and shortage of ammonia, support the hypothesis that there may be a water ocean underneath a hydrogen-rich atmosphere in K2-18 b. But more extensive observations with the JWST are needed to understand its atmosphere with greater confidence. Image Credit: By Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI)Science: Nikku Madhusudhan (IoA)

In the search for potentially life-supporting exoplanets, liquid water is the key indicator. Life on Earth requires liquid water, and scientists strongly believe the same is true elsewhere. But from a great distance, it’s difficult to tell what worlds have oceans of water. Some of them can have lava oceans instead, and getting the two confused is a barrier to understanding exoplanets, water, and habitability more clearly.

Continue reading “Is K2-18b Covered in Oceans of Water or Oceans of Lava?”

A Hot Jupiter With a Comet-Like Tail

The hot jupiter exoplanet WASP-69b orbits its star so closely that its atmosphere is being blown into space. Researchers made detailed observations of the planet, located about 160 light-years from Earth. They found that it has a comet-like tail extending about 560,000 km into space, about seven times the planet's diameter. Image Credit: Adam Makarenko/W. M. Keck Observatory

About 164 light-years away, a Hot Jupiter orbits its star so closely that it takes fewer than four days to complete an orbit. The planet is named WASP-69b, and it’s losing mass into space, stripped away by the star’s powerful energy. The planet’s lost atmosphere forms a trail that extends about 560,000 km (350,000 miles) into space.

Continue reading “A Hot Jupiter With a Comet-Like Tail”

Half of this Exoplanet is Covered in Lava

Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old. It's also the closest discovered Earth-sized planet this young, at about 400 million years old. NASA/Ames/JPL-Caltech/T. Pyle

Astronomers working with TESS (Transiting Exoplanet Survey Satellite) have discovered a planet that’s been left out in the Sun too long. Or at least half of it has. The newly discovered planet is tidally locked to its star, and one side is completely molten.

Continue reading “Half of this Exoplanet is Covered in Lava”

GJ 367b is Another Dead World Orbiting a Red Dwarf

This artist's concept illustrates a red dwarf star surrounded by exoplanets. Credit: NASA/JPL-Caltech

Red dwarf exoplanet habitability is a hot topic in space science. These small dim stars host lots of exoplanets, including small rocky ones the size of Earth. But the little stars emit extremely powerful flares that can damage and strip away atmospheres.

If we’re ever going to understand red dwarf habitability, we need to understand the atmospheres of the exoplanets that orbit them.

Continue reading “GJ 367b is Another Dead World Orbiting a Red Dwarf”