A Mysterious Blob Near the Milky Way’s Supermassive Black Hole Might Finally Have an Explanation

Orbits of stars near Sagittarius A*. Credit: ESO/M. Parsa/L. Calçada

At the center of the Milky Way, there is a massive persistent radio source known as Sagittarius A*. Since the 1970s, astronomers have known that this source is a supermassive black hole (SMBH) roughly 4 million times the mass of our Sun. Thanks to advancements in optics, spectrometers, and interferometry, astronomers have been able to peer into Galactic Center. In addition, thanks to the international consortium known as the Event Horizon Telescope (EHT), the world got to see the first image of Sagittarius A* (Sgr A*) in May 2022.

These efforts have allowed astronomers and astrophysicists to characterize the environment at the center of our galaxy and see how the laws of physics work under the most extreme conditions. For instance, scientists have been observing a mysterious elongated object around the Sgr A* (named X7) and wondered what it was. In a new study based on two decades’ worth of data, an international team of astronomers with the UCLA Galactic Center Group (GCG) and the Keck Observatory have proposed that it could be a debris cloud created by a stellar collision.

Continue reading “A Mysterious Blob Near the Milky Way’s Supermassive Black Hole Might Finally Have an Explanation”

Supermassive Black Holes on a Collision Course

Artist's impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS
Artist's impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS

The early Universe was swimming with dwarf galaxies only a few hundred million years after the Big Bang. They merged with each other over time, building larger and more massive galaxies. At the same time, the giant black holes inside these dwarfs merged, too.

Continue reading “Supermassive Black Holes on a Collision Course”

Are Black Holes the Source of Dark Energy?

An illustration of cosmic expansion. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

By the 1920s, astronomers learned that the Universe was expanding as Einstein’s Theory of General Relativity predicted. This led to a debate among astrophysicists between those who believed the Universe began with a Big Bang and those who believed the Universe existed in a Steady State. By the 1960s, the first measurements of the Cosmic Microwave Background (CMB) indicated that the former was the most likely scenario. And by the 1990s, the Hubble Deep Fields provided the deepest images of the Universe ever taken, revealing galaxies as they appeared just a few hundred million years after the Big Bang.

Over time, these discoveries led to an astounding realization: the rate at which the Universe is expanding (aka. the Hubble Constant) has not been constant over time! This led to the theory of Dark Energy, an invisible force that counteracts gravity and causes this expansion to accelerate. In a series of papers, an international team of researchers led by the University of Hawaii reported that black holes in ancient and dormant galaxies were growing more than expected. This constitutes (they claim) the first evidence that black holes could be the source of Dark Energy.

Continue reading “Are Black Holes the Source of Dark Energy?”

Astronomers Spot a Rogue Supermassive Black Hole, Hurtling Through Space Leaving Star Formation in its Wake

This artist's conception illustrates a supermassive black hole (central black dot) at the core of a young, star-rich galaxy. Now astronomers have found a rogue SMBH travelling through space. Image credit: NASA/JPL-Caltech

Supermassive black holes (SMBHs) lurk in the center of large galaxies like ours. From their commanding position in the galaxy’s heart, they feed on gas, dust, stars, and anything else that strays too close, growing more massive as time passes. But in rare circumstances, an SMBH can be forced out of its position and hurtle through space as a rogue SMBH.

Continue reading “Astronomers Spot a Rogue Supermassive Black Hole, Hurtling Through Space Leaving Star Formation in its Wake”

Do Advanced Civilizations use Black Holes as Giant Quantum Computers?

Artist view of an active supermassive black hole. Credit: ESO/L. Calçada

If life is common in our Universe, and we have every reason to suspect it is, why do we not see evidence of it everywhere? This is the essence of the Fermi Paradox, a question that has plagued astronomers and cosmologists almost since the birth of modern astronomy. It is also the reasoning behind the Hart-TIpler Conjecture, one of the many (many!) proposed resolutions, which asserts that if advanced life had emerged in our galaxy sometime in the past, we would see signs of their activity everywhere we looked. Possible indications include self-replicating probes, megastructures, and other Type III-like activity.

On the other hand, several proposed resolutions challenge the notion that advanced life would operate on such massive scales. Others suggest that advanced extraterrestrial civilizations would be engaged in activities and locales that would make them less noticeable. In a recent study, a German-Georgian team of researchers proposed that advanced extraterrestrial civilizations (ETCs) could use black holes as quantum computers. This makes sense from a computing standpoint and offers an explanation for the apparent lack of activity we see when we look at the cosmos.

Continue reading “Do Advanced Civilizations use Black Holes as Giant Quantum Computers?”

Hungry Black Hole was Already Feasting 800 Million Years After the Big Bang

Artist view of an active supermassive black hole. Credit: ESO/L. Calçada

Black holes swallow everything—including light—which explains why we can’t see them. But we can observe their immediate surroundings and learn about them. And when they’re on a feeding binge, their surroundings become even more luminous and observable.

This increased luminosity allowed astronomers to find a black hole that was feasting on material only 800 million years after the Universe began.

Continue reading “Hungry Black Hole was Already Feasting 800 Million Years After the Big Bang”

The Donut That Used To Be a Star

This sequence of artist's illustrations shows how a black hole can devour a bypassing star. 1) A normal star passes near a supermassive black hole in the center of a galaxy. 2) The star's outer gasses are pulled into the black hole's gravitational field. 3) The star is shredded as tidal forces pull it apart. 4) The stellar remnants are pulled into a donut-shaped ring around the black hole, and will eventually fall into the black hole, unleashing a tremendous amount of light and high-energy radiation. Credit: NASA, ESA, Leah Hustak (STScI)

The death of a star is one of the most dramatic natural events in the Universe. Some stars die in dramatic supernova explosions, leaving nebulae behind as shimmering remnants of their former splendour. Some simply wither away as their hydrogen runs out, billowing into a red giant as they do so.

But others are consumed by behemoth black holes, and as they’re destroyed, the black hole’s powerful gravity tears the star apart and draws its gas into a donut-shaped ring around the black hole.

Continue reading “The Donut That Used To Be a Star”

A Black Hole is Savoring its Meal, Feeding on the Same Star Over and Over Again

This illustration shows a glowing stream of material from a star, being devoured and torn to shreds by a supermassive black hole. Credit: NASA/JPL-Caltech

Something extraordinary happens about every 10,000 to 100,000 years in galaxies like the Milky Way. An unwary star approaches the supermassive black hole (SMBH) at the galaxy’s center and is torn apart by the SMBH’s overpowering gravity. Astronomers call the phenomenon a tidal disruption event (TDE.)

Usually, a TDE spells doom for the star as its gas is torn away into the black hole’s accretion ring, causing a bright flaring visible for hundreds of millions of light years. But researchers have found one black hole that’s playing with its food.

Continue reading “A Black Hole is Savoring its Meal, Feeding on the Same Star Over and Over Again”

What Does it Take to Make Black Holes Collide?

Simulation of the emitted light from a supermassive black hole binary system. (Credit: NASA’s Goddard Space Flight Center)

In a recent study published in Astronomy and Astrophysical Letters, a team of researchers at the Massachusetts Institute of Technology (MIT) used various computer models to examine 69 confirmed binary black holes to help determine their origin, and found their data results changed based on the model’s configurations, and the researchers wish to better understand both how and why this occurs and what steps can be taken to have more consistent results.

Continue reading “What Does it Take to Make Black Holes Collide?”

Webb’s New Image Reveals a Galaxy Awash in Star Formation

This JWST image shows NGC 7469, a luminous, face-on spiral galaxy approximately 90 000 light-years in diameter that lies roughly 220 million light-years from Earth in the constellation Pegasus. Image Credit: ESA/Webb, NASA & CSA, L. Armus, A. S. Evans

When a spiral galaxy presents itself just right, observations reveal more detail. That’s the case with NGC 7469, a spiral galaxy about 220 million light-years away. It’s face-on towards us, and the James Webb Space Telescope captured its revealing scientific portrait.

Continue reading “Webb’s New Image Reveals a Galaxy Awash in Star Formation”