M87 Galaxy Reconstructed in Thrilling 3D

A photo of the huge elliptical galaxy M87 [left] is compared to its three-dimensional shape as gleaned from meticulous observations made with the Hubble and Keck telescopes [right]. Image Credit: NASA, ESA, J. Olmsted (STScI), F. Summers (STScI)C. Ma (UC Berkeley); CC BY 4.0

In astronomy, we speak casually of extremely large numbers and extremely vast distances as if they’re trivial. A supermassive black hole can have several billion solar masses, a distant quasar is 500 million light-years away, etc. Objects like galaxies that are mere tens of millions of light years away start to seem familiar.

But even though our Wikipedia pages are full of data on distant objects, there’s a deceptive lack of understanding of some of their basic properties. Take Messier 87, for example, a galaxy often talked about and seen in images. It’s noteworthy for being home to the first black hole ever imaged.

It’s so far away that astronomers have no real idea what its three-dimensional shape is.

Continue reading “M87 Galaxy Reconstructed in Thrilling 3D”

Artificial Intelligence Produces a Sharper Image of M87’s Big Black Hole

The new PRIMO reconstruction of the black hole in M87. This is based on a newly "cleaned-up" image from the Event Horizon Telescope. (Credit: Lia Medeiros et al. / ApJL, 2023)
The new PRIMO reconstruction of the black hole in M87. This is based on a newly "cleaned-up" image from the Event Horizon Telescope. (Credit: Lia Medeiros et al. / ApJL, 2023)

Astronomers have used machine learning to sharpen up the Event Horizon Telescope’s first picture of a black hole — an exercise that demonstrates the value of artificial intelligence for fine-tuning cosmic observations.

The image should guide scientists as they test their hypotheses about the behavior of black holes, and about the gravitational rules of the road under extreme conditions.

Continue reading “Artificial Intelligence Produces a Sharper Image of M87’s Big Black Hole”

Primordial Black Holes May Have “Frozen” the Early Universe

Artist's logarithmic scale conception of the observable universe with the Solar System at the center, inner and outer planets, Kuiper belt, Oort cloud, Alpha Centauri, Perseus Arm, Milky Way galaxy, Andromeda galaxy, nearby galaxies, Cosmic Web, Cosmic microwave radiation and the Big Bang's invisible plasma on the edge. Credit: Wikipedia Commons/Pablo Carlos Budassi

Primordial holes formed in the exotic conditions of the big bang may have become their own source of matter and radiation.

Continue reading “Primordial Black Holes May Have “Frozen” the Early Universe”

Astronomers Think They've Found One of the Biggest Black Holes Ever Seen

Artist's impression of an ultramassive black hole (UBH). Credit: ESA/Hubble/DSS/Nick Risinger/N. Bartmann

In 1931, Indian-American physicist Subrahmanyan Chandrasekhar proposed a resolution to Einstein’s Theory of General Relativity that postulated the existence of black holes. By 1972, astronomers obtained the first conclusive evidence that these objects existed in our Universe. Observations of quasars and the center of the Milky Way also revealed that most massive galaxies have supermassive black holes (SMBHs) at their cores. Since then, the study of black holes has revealed that these objects vary in size and mass, ranging from micro black holes (MBHs) and intermediate black holes (IMBHs) to SMBHs.

Using astronomical simulations and a technique known as Gravitational Lensing, an international team of astrophysicists detected what could be the largest black hole ever observed. This ultramassive black hole (UMBH) has a mass roughly 30 billion times that of our Sun and is located near the center of the Abell 1201 galaxy cluster, roughly 2.7 billion light-years from Earth. This is the first time a black hole has been found using Gravitational Lensing, and it could enable studies that look farther into space to find black holes and deepen our understanding of their size and scale.

Continue reading “Astronomers Think They've Found One of the Biggest Black Holes Ever Seen”

Hypervelocity Stars Teach us About Black Holes and Supernovae

An artist's conception of a hypervelocity star that has escaped the Milky Way. Credit: NASA

Hypervelocity stars (HVS) certainly live up to their name, traveling thousands of kilometers per second or a fraction of the speed of light (relativistic speeds). These speed demons are thought to be the result of galactic or black hole mergers, globular clusters kicking out members, or binary pairs where one star is kicked out when the other goes supernova. Occasionally, these stars are fast enough to escape our galaxy and (in some cases) take their planetary systems along for the ride. This could have drastic implications for our theories of how life could be distributed throughout the cosmos (aka. panspermia theory).

There are thousands of these stars in our galaxy, and tracking them has become the task of cutting-edge astrometry missions (like the ESA’s Gaia Observatory). In previous research, astronomers suggested that these stars could be used to determine the mass of the Milky Way. In a recent study from Leiden University in the Netherlands, Ph.D. candidate Fraser Evans showed how data on HVS could be used to probe the mysteries of the most extreme objects in our Universe – supermassive black holes (SMBHs) and the violent supernovae of massive stars.

Continue reading “Hypervelocity Stars Teach us About Black Holes and Supernovae”

A Tadpole-Shaped Cloud of Gas is Whirling Around a Black Hole

Artist’s Impression of the “Tadpole” Molecular Cloud and the black hole at the gravitational center of its orbit. Credit: Keio University

In the 1930s, astrophysicists theorized that at the end of their life cycle, particularly massive stars would collapse, leaving behind remnants of infinite mass and density. As a proposed resolution to Einstein’s field equations (for his Theory of General Relativity), these objects came to be known as “black holes” because nothing (even light) could escape them. By the 1960s, astronomers began to infer the existence of these objects based on the observable effects they have on neighboring objects and their surrounding environment.

Despite improvements in instruments and interferometry (which led to the first images of M87 and Sagittarius A*), the study of black holes still relies on indirect methods. In a recent study, a team of Japanese researchers identified an unusual cloud of gas that appears to have been elongated by a massive, compact object that it orbits. Since there are no massive stars in its vicinity, they theorize that the cloud (nicknamed the “Tadpole” because of its shape) orbits a black hole roughly 27,000 light-years away in the constellation Sagittarius.

Continue reading “A Tadpole-Shaped Cloud of Gas is Whirling Around a Black Hole”

How do Black Holes Make a Shadow?

This is the first image of Sgr A*, the supermassive black hole at the center of our galaxy. A reanalysis of EHT data by NAOJ scientist suggests its accretion disk may be more elongated than shown in this image. Image Credit: EHT
This is the first image of Sgr A*, the supermassive black hole at the center of our galaxy. A reanalysis of EHT data by NAOJ scientist suggests its accretion disk may be more elongated than shown in this image. Image Credit: EHT

It’s notoriously difficult to take a picture of a black hole. But when they are surrounded by material we have an opportunity to witness the hole carved out by the event horizon. But what we see in the famous images of black holes isn’t the event horizon itself, but a magnified and enlarged version known as the shadow.

Continue reading “How do Black Holes Make a Shadow?”

Ultra-Massive Black Holes: How Does the Universe Produce Objects So Massive?

Illustration of the supermassive black hole at the center of the Milky Way. Credit: NRAO/AUI/NSF
Illustration of the supermassive black hole at the center of the Milky Way. It's huge, with over 4 times the mass of the Sun. But ultramassive black holes are even more massive and can contain billions of solar masses. Image Credit: Credit: NRAO/AUI/NSF

Black holes are the most massive objects that we know of in the Universe. Not stellar mass black holes, not supermassive black holes (SMBHs,) but ultra-massive black holes (UMBHs.) UMBHs sit in the center of galaxies like SMBHs, but they have more than five billion solar masses, an astonishingly large amount of mass. The largest black hole we know of is Phoenix A, a UMBH with up to 100 billion solar masses.

How can something grow so massive?

Continue reading “Ultra-Massive Black Holes: How Does the Universe Produce Objects So Massive?”

A Mysterious Blob Near the Milky Way’s Supermassive Black Hole Might Finally Have an Explanation

Orbits of stars near Sagittarius A*. Credit: ESO/M. Parsa/L. Calçada

At the center of the Milky Way, there is a massive persistent radio source known as Sagittarius A*. Since the 1970s, astronomers have known that this source is a supermassive black hole (SMBH) roughly 4 million times the mass of our Sun. Thanks to advancements in optics, spectrometers, and interferometry, astronomers have been able to peer into Galactic Center. In addition, thanks to the international consortium known as the Event Horizon Telescope (EHT), the world got to see the first image of Sagittarius A* (Sgr A*) in May 2022.

These efforts have allowed astronomers and astrophysicists to characterize the environment at the center of our galaxy and see how the laws of physics work under the most extreme conditions. For instance, scientists have been observing a mysterious elongated object around the Sgr A* (named X7) and wondered what it was. In a new study based on two decades’ worth of data, an international team of astronomers with the UCLA Galactic Center Group (GCG) and the Keck Observatory have proposed that it could be a debris cloud created by a stellar collision.

Continue reading “A Mysterious Blob Near the Milky Way’s Supermassive Black Hole Might Finally Have an Explanation”

Supermassive Black Holes on a Collision Course

Artist's impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS
Artist's impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS

The early Universe was swimming with dwarf galaxies only a few hundred million years after the Big Bang. They merged with each other over time, building larger and more massive galaxies. At the same time, the giant black holes inside these dwarfs merged, too.

Continue reading “Supermassive Black Holes on a Collision Course”