A Monster Black Hole has been Found with 40 Billion Times the Mass of the Sun

A composite image of the Abell 85 galaxy cluster. The purple is multi-million degree gas detected in X-rays by NASA's Chandra X-ray Observatory and the other colors show galaxies in an optical image from the Sloan Digital Sky Survey. Image Credit: X-ray (NASA/CXC/SAO/A.Vikhlinin et al.); Optical (SDSS); Illustration (MPE/V.Springel)

If contemplating the vast size of astronomical objects makes you feel rather puny and insignificant, then this new discovery will make you feel positively infinitesimal.

It’s almost impossible to imagine an object this large: a super massive black hole that’s 40 billion times more massive than our Sun. But there it is, sitting in the center of a super-giant elliptical galaxy called Holmberg 15A. Holmberg 15A is about 700 million light years away, in the center of the Abell 85 galaxy cluster.

Continue reading “A Monster Black Hole has been Found with 40 Billion Times the Mass of the Sun”

Hubble Spots “Impossible” Debris Disk Around a Black Hole

Credit: NASA

The Hubble Space Telescope is like an old dog that is constantly teaching the astronomical community new tricks. In the course of its almost thirty years in operation, it has revealed vital data about the expansion of the Universe, its age, the Milky Way, supermassive black holes (SMBHs), other star systems and exoplanets, and the planets of the Solar System.

Most recently, an international team of researchers using Hubble made a discovery that was not only fascinating but entirely unexpected. In the heart of the spiral galaxy NGC 3147, they spotted a swirling thin disk of gas that was precariously close to a back hole that is about 250 million Solar masses. The find was a complete surprise since the black hole was considered too small to have such a structure around it.

Continue reading “Hubble Spots “Impossible” Debris Disk Around a Black Hole”

Astronomers See Evidence of Supermassive Black Holes Forming Directly in the Early Universe

An illustration of a Super-Massive Black Hole. Image Credit: Scott Woods, Western University

Super-Massive Black Holes (SMBH) are hard to explain. These gargantuan singularities are thought to be at the center of every large galaxy (our Milky Way has one) but their presence there sometimes defies easy explanation. As far as we know, black holes form when giant stars collapse. But that explanation doesn’t fit all the evidence.

Continue reading “Astronomers See Evidence of Supermassive Black Holes Forming Directly in the Early Universe”

Black Hole Simulation Solves a Mystery About Their Accretion Disks

Credit: ESA/Hubble, ESO, M. Kornmesser
Researchers at WSU have created a fluid with a negative effective mass for the first time, which could open the door to studying the deeper mysteries of the Universe. Credit: ESA/Hubble, ESO, M. Kornmesse

Black holes are one of the most awesome and mysterious forces in the Universe. Originally predicted by Einstein’s Theory of General Relativity, these points in spacetime are formed when massive stars undergo gravitational collapse at the end of their lives. Despite decades of study and observation, there is still much we don’t know about this phenomenon.

For example, scientists are still largely in the dark about how the matter that falls into orbit around a black hole and is gradually fed onto it (accretion disks) behave. Thanks to a recent study, where an international team of researchers conducted the most detailed simulations of a black hole to date, a number of theoretical predictions regarding accretion disks have finally been validated.

Continue reading “Black Hole Simulation Solves a Mystery About Their Accretion Disks”

There’s a Ring of Cool Gas Wrapped Around the Milky Way’s Supermassive Black Hole

Scientists using ALMA have for the first time captured an image of the cool gas near the black hole in the Milky Way. Image Credit: NRAO/AUI/NSF; S. Dagnello

There’s a lot going on at the center of our galaxy. A supermassive black hole named Sagittarius A-Star resides there, drawing material in with its inexorable gravitational attraction. In that mind-bending neighbourhood, where the laws of physics are stretched beyond comprehension, astronomers have detected a ring of cool gas.

Continue reading “There’s a Ring of Cool Gas Wrapped Around the Milky Way’s Supermassive Black Hole”

Is Dark Matter Made of Axions? Black Holes May Reveal the Answer

The early universe. Credit: Tom Abel & Ralf Kaehler (KIPACSLAC)/ AMNH/NASA

What is dark matter made of? It’s one of the most perplexing questions of modern astronomy. We know that dark matter is out there, since we can see its obvious gravitational influence on everything from galaxies to the evolution of the entire universe, but we don’t know what it is. Our best guess is that it’s some sort of weird new particle that doesn’t like to talk to normal matter very often (otherwise we would have seen it by now). One possibility is that it’s an exotic hypothetical kind of particle known as an axion, and a team of astronomers are using none other than black holes to try to get a glimpse into this strange new cosmic critter.

Continue reading “Is Dark Matter Made of Axions? Black Holes May Reveal the Answer”

It Looks Like LIGO/Virgo Have Detected a Black Hole Eating a Neutron Star. For the First Time Ever

A new signal detected by LIGO/Virgo may be the so-called ‘holy grail’ of astrophysics: the merger of a neutron star and a black hole. They’ve discovered pairs of black holes merging, and pairs of neutron stars merging, but until now, not a neutron star-black hole pair.

Continue reading “It Looks Like LIGO/Virgo Have Detected a Black Hole Eating a Neutron Star. For the First Time Ever”

Rapidly Spinning Black Hole is Spitting Out Blobs of Plasma

An artist's illustration of the black hole V404 Cygni. Image Credit: ICRAR.
An artist's illustration of the black hole V404 Cygni. Image Credit: ICRAR.

Black holes, those beguiling singularities that sit on the precipice of the known and the unknown, keep surprising us with their behaviour. As organizations like the Event Horizon Telescope have made clear, there’s a lot we don’t know about the holes, and worse than that, we don’t even know how much we don’t know.

Now scientists have observed a new phenomenon that adds to the black hole mystique: a rapidly spinning black hole that ejects massive blobs of plasma.

Continue reading “Rapidly Spinning Black Hole is Spitting Out Blobs of Plasma”

You Could Travel Through a Wormhole, but it’s Slower Than Going Through Space

Artist illustration of a spacecraft passing through a wormhole to a distant galaxy. Image credit: NASA.
Artist illustration of a spacecraft passing through a wormhole to a distant galaxy. Image credit: NASA.

Special Relativity. It’s been the bane of space explorers, futurists and science fiction authors since Albert Einstein first proposed it in 1905. For those of us who dream of humans one-day becoming an interstellar species, this scientific fact is like a wet blanket. Luckily, there are a few theoretical concepts that have been proposed that indicate that Faster-Than-Light (FTL) travel might still be possible someday.

A popular example is the idea of a wormhole: a speculative structure that links two distant points in space time that would enable interstellar space travel. Recently, a team of Ivy League scientists conducted a study that indicated how “traversable wormholes” could actually be a reality. The bad news is that their results indicate that these wormholes aren’t exactly shortcuts, and could be the cosmic equivalent of “taking the long way”!

Continue reading “You Could Travel Through a Wormhole, but it’s Slower Than Going Through Space”

It’s Finally here. The First Ever Image of a Black Hole

The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. In coordinated press conferences across the globe, EHT researchers revealed that they succeeded, unveiling the first direct visual evidence of the supermassive black hole in the centre of Messier 87 and its shadow. The shadow of a black hole seen here is the closest we can come to an image of the black hole itself, a completely dark object from which light cannot escape. The black hole’s boundary — the event horizon from which the EHT takes its name — is around 2.5 times smaller than the shadow it casts and measures just under 40 billion km across. While this may sound large, this ring is only about 40 microarcseconds across — equivalent to measuring the length of a credit card on the surface of the Moon. Although the telescopes making up the EHT are not physically connected, they are able to synchronize their recorded data with atomic clocks — hydrogen masers — which precisely time their observations. These observations were collected at a wavelength of 1.3 mm during a 2017 global campaign. Each telescope of the EHT produced enormous amounts of data – roughly 350 terabytes per day – which was stored on high-performance helium-filled hard drives. These data were flown to highly specialised supercomputers — known as correlators — at the Max Planck Institute for Radio Astronomy and MIT Haystack Observatory to be combined. They were then painstakingly converted into an image using novel computational tools developed by the collaboration. Credit: Event Horizon Telescope Collaboration



We have taken the first picture of a black hole.


EHT project director Sheperd S. Doeleman of the Center for Astrophysics | Harvard & Smithsonian.

What was once un-seeable can now be seen. Black holes, those difficult-to-understand singularities that may reside at the center of every galaxy, are becoming seeable. The Event Horizon Telescope (EHT) has revealed the first-ever image of a black hole, and with this image, and all the science behind it, they may help crack open one of the biggest mysteries in the Universe.

Continue reading “It’s Finally here. The First Ever Image of a Black Hole”