Future Gravitational Wave Observatories Could See the Earliest Black Hole Mergers in the Universe

A simulation of two merging black holes. Credit: Simulating eXtreme Spacetimes (SXS) Project

In February 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) confirmed they made the first-ever detection of gravitational waves (GWs). These events occur when massive objects like neutron stars and black holes merge, sending ripples through spacetime that can be detected millions (and even billions) of light-years away. Since the first event, more than 100 GW events have been confirmed by LIGO, the Advanced VIRGO collaboration, and the Kamioka Gravitational Wave Detector (KAGRA).

Moreover, scientists have found numerous applications for GW astronomy, from probing the interiors of supernovae and neutron stars to measuring the expansion rate of the Universe and learning what it looked like one minute after the Big Bang. In a recent study, an international team of astronomers proposed another application for binary black hole (BBH) mergers: using the earliest mergers in the Universe to probe the first generation of stars (Population III) in the Universe. By modeling how the events evolved, they determined what kind of GW signals the proposed Einstein Telescope (ET) could observe in the coming years.

Continue reading “Future Gravitational Wave Observatories Could See the Earliest Black Hole Mergers in the Universe”

A Black Hole has Almost Halted Star Formation in its Galaxy

This is a quiescent galaxy in the early Universe named GS-10578 but nicknamed ‘Pablo’s Galaxy’. It has an SMBH in its center, and astronomers have used the NASA/ESA James Webb Space Telescope to confirm that supermassive black holes can starve their host galaxies of the fuel they need to form new stars. Image Credit: JADES Collaboration

When the James Webb Space Telescope was launched on Christmas Day in 2021, it faced a whole host of intriguing questions. By the time it finally launched, astronomers had a big list of targets begging for the type of detailed observations that only the powerful infrared space telescope could perform. One of the targets was an ancient, massive galaxy that’s basically dead and forms no new stars.

The results are in, and an international team of astronomers know what happened to the quiescent galaxy.

Continue reading “A Black Hole has Almost Halted Star Formation in its Galaxy”

Two Supermassive Black Holes on a Collision Course With Each Other

An artist's concept of what two merging supermassive black holes might look like. Each one is surrounded by an accretion disk of hot gas and material streaming away via jets. CourtesyNASA, ESA, Joseph Olmsted (STScI)
An artist's concept of what two merging supermassive black holes might look like. Each one is surrounded by an accretion disk of hot gas and material streaming away via jets. CourtesyNASA, ESA, Joseph Olmsted (STScI)

Galaxy collisions are foundational events in the Universe. They happen when two systems mingle stars in a cosmic dance. They also cause spectacular mergers of supermassive black holes. The result is one very changed galaxy and a singular, ultra-massive black hole.

Continue reading “Two Supermassive Black Holes on a Collision Course With Each Other”

The Milky Way’s Supermassive Black Hole Might Have Formed 9 Billion Years Ago

This is the first image of Sgr A*, the supermassive black hole at the center of our galaxy. A reanalysis of EHT data by NAOJ scientist suggests its accretion disk may be more elongated than shown in this image. Image Credit: EHT
This is the first image of Sgr A*, the supermassive black hole at the center of our galaxy. A reanalysis of EHT data by NAOJ scientist suggests its accretion disk may be more elongated than shown in this image. Image Credit: EHT

Large galaxies like ours are hosts to Supermassive Black Holes (SMBHs.) They can be so massive that they resist comprehension, with some of them having billions of times more mass than the Sun. Ours, named Sagittarius A* (Sgr A*), is a little more modest at about four million solar masses.

Astrophysicists have studied Sgr A* to learn more about it, including its age. They say it formed about nine billion years ago.

Continue reading “The Milky Way’s Supermassive Black Hole Might Have Formed 9 Billion Years Ago”

Simulating the Accretion Disk Around a Black Hole

Supercomputer simulations reveals the nature of turbulence in black hole accretion disks

Black holes are by their very nature, challenging to observe and difficult to spot. It’s usually observations of the accretion disk that reveal properties of the hidden black hole. There is often enough material within the accretion disk to make them shine so brightly that they can often be among the brightest objects in space. A wonderful image has been released which shows the highest resolution simulation of a black hole accretion disk ever created. 

Continue reading “Simulating the Accretion Disk Around a Black Hole”

The Surprising Source of Radiation Coming From Black Holes

A visualization of how turbulent plasma moves through a black hole accretion disk threaded with strong magnetic fields. Image credit: Jani Narhi.
A visualization of how turbulent plasma moves through a black hole accretion disk threaded with strong magnetic fields. Image credit: Jani Närhi.

Black holes are famous for sucking in everything that crosses their event horizons, including light. So, why do astronomers see energetic radiation coming from the environment of a black hole in an X-ray binary system? It’s a good question that finally has an answer.

Continue reading “The Surprising Source of Radiation Coming From Black Holes”

Dark Matter Could Have Driven the Growth of Early Supermassive Black Holes

An image from the Event Horizon Telescope shows lines of polarization, a signature of magnetic fields, around the shadow of the Milky Way's central supermassive black hole. Astronomers want to know how massive black holes like this one formed early in cosmic history. (Credit: EHT Collaboration)
An image from the Event Horizon Telescope shows lines of polarization, a signature of magnetic fields, around the shadow of the Milky Way's central supermassive black hole. Astronomers want to know how massive black holes like this one formed early in cosmic history. (Credit: EHT Collaboration)

The James Webb Space Telescope (JWST) keeps finding supermassive black holes (SMBH) in the early Universe. They’re in active galactic nuclei seen only 500,000 years after the Big Bang. This was long before astronomers thought they could exist. What’s going on?

Continue reading “Dark Matter Could Have Driven the Growth of Early Supermassive Black Holes”

A New Test Proves How to Make the Event Horizon Telescope Even Better

This image shows the Atacama Large Millimeter/submillimeter Array (ALMA) looking up at the supermassive black hole at our galactic centre. ALMA is part of the Event Horizon Telescope. Courtesy EHT.
This image shows the Atacama Large Millimeter/submillimeter Array (ALMA) looking up at the supermassive black hole at our galactic centre. ALMA is part of the Event Horizon Telescope. Courtesy EHT and ESO.

Want a clear view of a supermassive black hole’s environment? It’s an incredible observational challenge. The extreme gravity bends light as it passes through and blurs the details of the event horizon, the region closest to the black hole. Astronomers using the Event Horizon Telescope (EHT) just conducted test observations aimed at “deblurring” that view.

Continue reading “A New Test Proves How to Make the Event Horizon Telescope Even Better”

We Know When a Black Hole Will Have its Next Feast

Black holes are notoriously destructive to stars near them. Astronomers often see flashes representing the death throes of stars collapsing past the event horizon, a black hole they got too close to. However, in rare instances, a star isn’t wholly swallowed by its gigantic neighbor and is pulled into an orbit, causing a much slower death, which would probably be more painful if stars could feel anything. A new study using X-ray results from Chandra and some other instruments details a supermassive black hole at the center of a galaxy far, far away that is slowly devouring a star it has captured in an orbit, and it could teach them more about a variety of interest physical processes. 

Continue reading “We Know When a Black Hole Will Have its Next Feast”