The First Triple Star System Found Containing a Black Hole

V404 Cygni in the process of consuming a nearby star while a second star orbits at a distance. Credit: Jorge Lugo

Neutron stars and black holes are the remnants of dead stars. They typically form as part of a supernova explosion, where the outer layers of an old star are violently cast off while the core of the star collapses to form the remnant. This violent origin can have significant consequences for both the remnant and the surrounding environment.

Continue reading “The First Triple Star System Found Containing a Black Hole”

A Black Hole has Destroyed a Star, and Used the Wreckage to Pummel Another Star

Illustration of a tidal disruption event. Credit: NASA/CXC/SAO and Soheb Mandhai/The Astro Phoenix

When a supermassive black hole consumes a star, it doesn’t just swallow it whole. It shreds the star, ripping it apart bit by bit before consuming the remains. It’s a messy process known as a tidal disruption event (TDE). Astronomers occasionally catch a glimpse of TDEs, and one recent one has helped solve a mystery about a type of transient X-ray source.

Continue reading “A Black Hole has Destroyed a Star, and Used the Wreckage to Pummel Another Star”

Primordial Holes Could be Hiding in Planets, Asteroids, and Here on Earth

An artistic take on primordial black holes. Credit: NASA’s Goddard Space Flight Center

Small primordial black holes (PBHs) are one of the hot topics in astronomy and cosmology today. These hypothetical black holes are believed to have formed soon after the Big Bang, resulting from pockets of subatomic matter so dense that they underwent gravitational collapse. At present, PBHs are considered a candidate for dark matter, a possible source of primordial gravitational waves, and a resolution to various problems in physics. However, no definitive PBH candidate has been observed so far, leading to proposals for how we may find these miniature black holes.

Recent research has suggested that main-sequence neutron and dwarf stars might contain small PBHs in their interiors that are slowly consuming their gas supply. In a recent study, a team of physicists extended this idea to include a new avenue for potentially detecting PBHs. Basically, we could search inside objects like planets and asteroids or employ large plates or slabs of metal to detect PBHs for signs of their passage. By detecting the microchannels these bodies would leave, scientists could finally confirm the existence of PBHs and shed light on some of the greatest mysteries in cosmology today.

Continue reading “Primordial Holes Could be Hiding in Planets, Asteroids, and Here on Earth”

Researchers Mimic Extracting Energy From Black Holes in the Lab

Illustration of a rapidly rotating black hole. Credit: ESO, ESA/Hubble, M. Kornmesser

When you get close to a black hole, things can get pretty intense. The tremendous gravity can squeeze gas to ionizing temperatures, and fierce magnetic fields can accelerate plasma into jets speeding at nearly the speed of light. That’s a lot of power, and wherever there is power someone will figure out how to harness it.

Continue reading “Researchers Mimic Extracting Energy From Black Holes in the Lab”

Astronomers Find the Longest Black Hole Jets Ever Seen

An artist's illustration of the longest black hole jet system ever observed.

Black holes often appear in science fiction movies, largely because elements of their existence are still a mystery. They have fascinating impacts on the surrounding region of space too with distortions in space and time high on the list. A team of astronomers have found a supermassive black hole with twin jets blasting out an incredible 23 million light years, the longest yet. To put this into context, if you lined up 140 Milky Way galaxies side by side, then that’s the length of the jet! 

Continue reading “Astronomers Find the Longest Black Hole Jets Ever Seen”

The Early Universe Had a Lot of Black Holes

The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)

The Hubble Deep Field and its successor, the Hubble Ultra-Deep Field, showed us how vast our Universe is and how it teems with galaxies of all shapes and sizes. They focused on tiny patches of the sky that appeared to be empty and revealed the presence of countless galaxies. Now, astronomers are using the Hubble Ultra-Deep Field and follow-up images to reveal the presence of a large number of supermassive black holes in the early Universe.

This is a shocking result because, according to theory, these massive objects shouldn’t have been so plentiful billions of years ago.

Continue reading “The Early Universe Had a Lot of Black Holes”

A Star Was Kicked Out of a Globular Cluster by an Intermediate-Mass Black Hole

The M15 Globular Cluster (aka. Great Hercules Cluster). Astronomers suspect the existence of one or more intermediate-mass black holes at its heart. Credit: NASA/ESA/HST
The M15 Globular Cluster (aka. Great Hercules Cluster). Astronomers suspect the existence of one or more intermediate-mass black holes at its heart. Credit: NASA/ESA/HST

Astronomers have solid evidence for the existence of stellar-mass black holes and supermassive black holes. However, evidence for Intermediate Black Holes (IMBHs) is more elusive. Their existence remains hypothetical.

However, study by study, evidence is accumulating for IMBHs. The latest comes from the globular cluster M15, where a fast-moving star suggests the presence of something massive. Could it be an elusive IMBH?

Continue reading “A Star Was Kicked Out of a Globular Cluster by an Intermediate-Mass Black Hole”

Future Gravitational Wave Observatories Could See the Earliest Black Hole Mergers in the Universe

A simulation of two merging black holes. Credit: Simulating eXtreme Spacetimes (SXS) Project

In February 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) confirmed they made the first-ever detection of gravitational waves (GWs). These events occur when massive objects like neutron stars and black holes merge, sending ripples through spacetime that can be detected millions (and even billions) of light-years away. Since the first event, more than 100 GW events have been confirmed by LIGO, the Advanced VIRGO collaboration, and the Kamioka Gravitational Wave Detector (KAGRA).

Moreover, scientists have found numerous applications for GW astronomy, from probing the interiors of supernovae and neutron stars to measuring the expansion rate of the Universe and learning what it looked like one minute after the Big Bang. In a recent study, an international team of astronomers proposed another application for binary black hole (BBH) mergers: using the earliest mergers in the Universe to probe the first generation of stars (Population III) in the Universe. By modeling how the events evolved, they determined what kind of GW signals the proposed Einstein Telescope (ET) could observe in the coming years.

Continue reading “Future Gravitational Wave Observatories Could See the Earliest Black Hole Mergers in the Universe”

A Black Hole has Almost Halted Star Formation in its Galaxy

This is a quiescent galaxy in the early Universe named GS-10578 but nicknamed ‘Pablo’s Galaxy’. It has an SMBH in its center, and astronomers have used the NASA/ESA James Webb Space Telescope to confirm that supermassive black holes can starve their host galaxies of the fuel they need to form new stars. Image Credit: JADES Collaboration

When the James Webb Space Telescope was launched on Christmas Day in 2021, it faced a whole host of intriguing questions. By the time it finally launched, astronomers had a big list of targets begging for the type of detailed observations that only the powerful infrared space telescope could perform. One of the targets was an ancient, massive galaxy that’s basically dead and forms no new stars.

The results are in, and an international team of astronomers know what happened to the quiescent galaxy.

Continue reading “A Black Hole has Almost Halted Star Formation in its Galaxy”

Two Supermassive Black Holes on a Collision Course With Each Other

An artist's concept of what two merging supermassive black holes might look like. Each one is surrounded by an accretion disk of hot gas and material streaming away via jets. CourtesyNASA, ESA, Joseph Olmsted (STScI)
An artist's concept of what two merging supermassive black holes might look like. Each one is surrounded by an accretion disk of hot gas and material streaming away via jets. CourtesyNASA, ESA, Joseph Olmsted (STScI)

Galaxy collisions are foundational events in the Universe. They happen when two systems mingle stars in a cosmic dance. They also cause spectacular mergers of supermassive black holes. The result is one very changed galaxy and a singular, ultra-massive black hole.

Continue reading “Two Supermassive Black Holes on a Collision Course With Each Other”