Since the 1970s, astronomers have theorized that at the center of our galaxy, about 26,000 light-years from Earth, there exists a supermassive black hole (SMBH) known as Sagittarius A*. Measuring an estimated 44 million km (27.3 million mi) in diameter and weighing in at roughly 4 million Solar masses, this black hole is believed to have had a profound influence on the formation and evolution of our galaxy.
And yet, scientists have never been able to see it directly and its existence has only been inferred from the effect it has on the stars and material surrounding it. However, new observations conducted by the GRAVITY collaboration** has managed to yield the most detailed observations to date of the matter surrounding Sagittarius A*, which is the strongest evidence yet that a black hole exists at the center of the Milky Way. Continue reading “Astronomers Get as Close as They Can to Seeing the Black Hole at the Heart of the Milky Way”
Exotic dark matter theories. Gravitational waves. Observatories in space. Giant black holes. Colliding galaxies. Lasers. If you’re a fan of all the awesomest stuff in the universe, then this article is for you.
At the heart of the Milky Way Galaxy lurks a Supermassive Black Hole (SMBH) named Sagittarius A* (Sag. A-star). Sag. A* is an object of intense study, even though you can’t actually see it. But new images from the Atacama Large Millimetre/sub-millimetre Array (ALMA) reveal swirling high-speed clouds of gas and dust orbiting the black hole, the next best thing to seeing the hole itself.
The largest object in our night sky—by far!—is invisible to us. The object is the Super-Massive Black Hole (SMBH) at the center of our Milky Way galaxy, called Sagittarius A. But soon we may have an image of Sagittarius A’s event horizon. And that image may pose a challenge to Einstein’s Theory of General Relativity.
A team of researchers in the UK have observed matter falling into a black hole at 30% the speed of light. This is much faster than anything previously observed. The high velocity is a result of misaligned discs of material rotating around the black hole.
In 1915, Albert Einstein published his famous Theory of General Relativity, which provided a unified description of gravity as a geometric property of space and time. This theory gave rise to the modern theory of gravitation and revolutionized our understanding of physics. Even though a century has passed since then, scientists are still conducting experiments that confirm his theory’s predictions.
Thanks to recent observations made by a team of international astronomers (known as the GRAVITY collaboration), the effects of General Relativity have been revealed using a Supermassive Black Hole (SMBH) for the very first time. These findings were the culmination of a 26-year campaign of observations of the SMBH at the center of the Milky Way (Sagittarius A*) using the European Southern Observatory‘s (ESO) instruments.
The new infrared observations collected by these instruments allowed the team to monitor one of the stars (S2) that orbits Sagittarius A* as it passed in front of the black hole – which took place in May of 2018. At the closest point in its orbit, the star was at a distance of less than 20 billion km (12.4 billion mi) from the black hole and was moving at a speed in excess of 25 million km/h (15 million mph) – almost three percent of the speed of light.
Whereas the SINFONI instrument was used to measure the velocity of S2 towards and away from Earth, the GRAVITY instrument in the VLT Interferometer (VLTI) made extraordinarily precise measurements of the changing position of S2 in order to define the shape of its orbit. The GRAVITY instrument then created the sharp images that revealed the motion of the star as it passed close to the black hole.
The team then compared the position and velocity measurements to previous observations of S2 using other instruments. They then compared these results with predictions made by Newton’s Law of Universal Gravitation, General Relativity, and other theories of gravity. As expected, the new results were consistent with the predictions made by Einstein over a century ago.
As Reinhard Genzel, who in addition to being the leader of the GRAVITY collaboration was a co-author on the paper, explained in a recent ESO press release:
“This is the second time that we have observed the close passage of S2 around the black hole in our galactic center. But this time, because of much improved instrumentation, we were able to observe the star with unprecedented resolution. We have been preparing intensely for this event over several years, as we wanted to make the most of this unique opportunity to observe general relativistic effects.”
When observed with the VLT’s new instruments, the team noted an effect called gravitational redshift, where the light coming from S2 changed color as it drew closer to the black hole. This was caused by the very strong gravitational field of the black hole, which stretched the wavelength of the star’s light, causing it to shift towards the red end of the spectrum.
The change in the wavelength of light from S2 agrees precisely with what Einstein’s field equation’s predicted. As Frank Eisenhauer – a researcher from the Max Planck Institute of Extraterrestrial Physics, the Principal Investigator of GRAVITY and the SINFONI spectrograph, and a co-author on the study – indicated:
“Our first observations of S2 with GRAVITY, about two years ago, already showed that we would have the ideal black hole laboratory. During the close passage, we could even detect the faint glow around the black hole on most of the images, which allowed us to precisely follow the star on its orbit, ultimately leading to the detection of the gravitational redshift in the spectrum of S2.”
Whereas other tests have been performed that have confirmed Einstein’s predictions, this is the first time that the effects of General Relativity have been observed in the motion of a star around a supermassive black hole. In this respect, Einstein has been proven right once again, using one the most extreme laboratory to date! What’s more, it confirmed that tests involving relativistic effects can provide consistent results over time and space.
“Here in the Solar System we can only test the laws of physics now and under certain circumstances,” said Françoise Delplancke, head of the System Engineering Department at ESO. “So it’s very important in astronomy to also check that those laws are still valid where the gravitational fields are very much stronger.”
In the near future, another relativistic test will be possible as S2 moves away from the black hole. This is known as a Schwarzschild precession, where the star is expected to experience a small rotation in its orbit. The GRAVITY Collaboration will be monitoring S2 to observe this effect as well, once again relying on the VLT’s very precise and sensitive instruments.
As Xavier Barcons (the ESO’s Director General) indicated, this accomplishment was made possible thanks to the spirit of international cooperation represented by the GRAVITY collaboration and the instruments they helped the ESO develop:
“ESO has worked with Reinhard Genzel and his team and collaborators in the ESO Member States for over a quarter of a century. It was a huge challenge to develop the uniquely powerful instruments needed to make these very delicate measurements and to deploy them at the VLT in Paranal. The discovery announced today is the very exciting result of a remarkable partnership.”
And be sure to check out this video of the GRAVITY Collaboration’s successful test, courtesy of the ESO:
Shortly after Einstein published his Theory of General Relativity in 1915, physicists began to speculate about the existence of black holes. These regions of space-time from which nothing (not even light) can escape are what naturally occur at the end of most massive stars’ life cycle. While black holes are generally thought to be voracious eaters, some physicists have wondered if they could also support planetary systems of their own.
Looking to address this question, Dr. Sean Raymond – an American physicist currently at the University of Bourdeaux – created a hypothetical planetary system where a black hole lies at the center. Based on a series of gravitational calculations, he determined that a black hole would be capable of keeping nine individual Suns in a stable orbit around it, which would be able to support 550 planets within a habitable zone.
He named this hypothetical system “The Black Hole Ultimate Solar System“, which consists of a non-spinning black hole that is 1 million times as massive as the Sun. That is roughly one-quarter the mass of Sagittarius A*, the super-massive black hole (SMBH) that resides at the center of the Milky Way Galaxy (which contains 4.31 million Solar Masses).
As Raymond indicates, one of the immediate advantages of having this black hole at the center of a system is that it can support a large number of Suns. For the sake of his system, Raymond chose 9, thought he indicates that many more could be sustained thanks to the sheer gravitational influence of the central black hole. As he wrote on his website:
“Given how massive the black hole is, one ring could hold up to 75 Suns! But that would move the habitable zone outward pretty far and I don’t want the system to get too spread out. So I’ll use 9 Suns in the ring, which moves everything out by a factor of 3. Let’s put the ring at 0.5 AU, well outside the innermost stable circular orbit (at about 0.02 AU) but well inside the habitable zone (from about 2.7 to 5.4 AU).”
Another major advantage of having a black hole at the center of a system is that it shrinks what is known as the “Hill radius” (aka. Hill sphere, or Roche sphere). This is essentially the region around a planet where its gravity is dominant over that of the star it orbits, and can therefore attract satellites. According to Raymond, a planet’s Hill radius would be 100 times smaller around a million-sun black hole than around the Sun.
This means that a given region of space could stably fit 100 times more planets if they orbited a black hole instead of the Sun. As he explained:
“Planets can be super close to each other because the black hole’s gravity is so strong! If planets are little toy Hot wheels cars, most planetary systems are laid out like normal highways (side note: I love Hot wheels). Each car stays in its own lane, but the cars are much much smaller than the distance between them. Around a black hole, planetary systems can be shrunk way down to Hot wheels-sized tracks. The Hot wheels cars — our planets — don’t change at all, but they can remain stable while being much closer together. They don’t touch (that would not be stable), they are just closer together.”
This is what allows for many planets to be placed with the system’s habitable zone. Based on the Earth’s Hill radius, Raymond estimates that about six Earth-mass planets could fit into stable orbits within the same zone around our Sun. This is based on the fact that Earth-mass planets could be spaced roughly 0.1 AU from each other and maintain a stable orbit.
Given that the Sun’s habitable zone corresponds roughly to the distances between Venus and Mars – which are 0.3 and 0.5 AU away, respectively – this means there is 0.8 AUs of room to work with. However, around a black hole with 1 million Solar Masses, the closest neighboring planet could be just 1/1000th (0.001) of an AU away and still have a stable orbit.
Doing the math, this means that roughly 550 Earths could fit in the same region orbiting the black hole and its nine Suns. There is one minor drawback to this whole scenario, which is that the black hole would have to remain at its current mass. If it were to become any larger, it would cause the Hill radii of its 550 planets to shrink down further and further.
Once the Hill radius got down to the point where it was the same size as any of the Earth-mass planets, the black hole would begin to tear them apart. But at 1 million Solar masses, the black hole is capable of supporting a massive system of planets comfortably. “With our million-Sun black hole the Earth’s Hill radius (on its current orbit) would already be down to the limit, just a bit more than twice Earth’s actual radius,” he says.
Lastly, Raymond considers the implications that living in such a system would have. For one, a year on any planet within the system’s habitable zone would be much shorter, owing to the fact their orbital periods would be much faster. Basically, a year would last roughly 1.6 days for planets at the inner edge of the habitable zone and 4.6 days for planets at the outer edge of the habitable zone.
In addition, on the surface of any planet in the system, the sky would be a lot more crowded! With so many planets in close orbit together, they would pass very close to one another. That essentially means that from the surface of any individual Earth, people would be able to see nearby Earths as clear as we see the Moon on some days. As Raymond illustrated:
“At closest approach (conjunction) the distance between planets is about twice the Earth-Moon distance. These planets are all Earth-sized, about 4 times larger than the Moon. This means that at conjunction each planet’s closest neighbor appears about twice the size of the full Moon in the sky. And there are two nearest neighbors, the inner and outer one. Plus, the next-nearest neighbors are twice as far away so they are still as big as the full Moon during conjunction. And four more planets that would be at least half the full Moon in size during conjunction.”
He also indicates that conjunctions would occur almost once per orbit, which would mean that every few days, there would be no shortage of giant objects passing across the sky. And of course, there would be the Sun’s themselves. Recall that scene in Star Wars where a young Luke Skywalker is watching two suns set in the desert? Well, it would a little like that, except way more cool!
According to Raymond’s calculations, the nine Suns would complete an orbit around the black hole every three hours. Every twenty minutes, one of these Suns would pass behind the black hole, taking just 49 seconds to do so. At this point, gravitational lensing would occur, where the black hole would focus the Sun’s light toward the planet and distort the apparent shape of the Sun.
To illustrate what this would look like, he provides an animation (shown above) created by @GregroxMun – a planet modeller who develops space graphics for Kerbal and other programs – using Space Engine.
While such a system may never occur in nature, it is interesting to know that such a system would be physically possible. And who knows? Perhaps a sufficiently advanced species, with the ability to tow stars and planets from one system and place them in orbit around a black hole, could fashion this Ultimate Solar System. Something for SETI researchers to be on the lookout for, perhaps?
This hypothetical exercise was the second installment in two-part series by Raymond, titled “Black holes and planets”. In the first installment, “The Black Hole Solar System“, Raymond considered what it would be like if our system orbited around a black hole-Sun binary. As he indicated, the consequences for Earth and the other Solar planets would be interesting, to say the least!
This source, known as GW170817/GRB, has been the target of many follow-up surveys since it was believed that the merge could have led to the formation of a black hole. According to a new study by a team that analyzed data from NASA’s Chandra X-ray Observatory since the event, scientists can now say with greater confidence that the merger created a new black hole in our galaxy.
The study, titled “GW170817 Most Likely Made a Black Hole“, recently appeared in The Astrophysical Journal Letters. The study was led by David Pooley, an assistant professor in physics and astronomy at Trinity University, San Antonio, and included members from the University of Texas at Austin, the University of California, Berkeley, and Nazarbayev University’s Energetic Cosmos Laboratory in Kazakhstan.
For the sake of their study, the team analyzed X-ray data from Chandra taken in the days, weeks, and months after the detection of gravitational waves by LIGO and gamma rays by NASA’s Fermi mission. While nearly every telescope in the world had observed the source, X-ray data was critical to understanding what happened after the two neutron stars collided.
While a Chandra observation two to three days after the event failed to detect an X-ray source, subsequent observations taken 9, 15, and 16 days after the event resulted in detections. The source disappeared for a time as GW170817 passed behind the Sun, but additional observations were made about 110 and 160 days after the event, both of which showed significant brightening.
While the LIGO data provided astronomers with a good estimate of the resulting object’s mass after the neutron stars merged (2.7 Solar Masses), this was not enough to determine what it had become. Essentially, this amount of mass meant that it was either the most massive neutron star ever found or the lowest-mass black hole ever found (the previous record holders being four or five Solar Masses). As Dave Pooley explained in a NASA/Chandra press release:
“While neutron stars and black holes are mysterious, we have studied many of them throughout the Universe using telescopes like Chandra. That means we have both data and theories on how we expect such objects to behave in X-rays.”
If the neutron stars merged to form a heavier neutron star, then astronomers would expect it to spin rapidly and generate and very strong magnetic field. This would have also created an expanded bubble of high-energy particles that would result in bright X-ray emissions. However, the Chandra data revealed X-ray emissions that were several hundred times lower than expected from a massive, rapidly-spinning neutron star.
By comparing the Chandra observations with those by the NSF’s Karl G. Jansky Very Large Array (VLA), Pooley and his team were also able to deduce that the X-ray emission were due entirely to the shock wave caused by the merger smashing into surrounding gas. In short, there was no sign of X-rays resulting from a neutron star.
This strongly implies that the resulting object was in fact a black hole. If confirmed, these results would indicate that the formation process of a blackhole can sometimes be complicated. Essentially, GW170817 would have been the result of two stars undergoing a supernova explosion that left behind two neutron stars in a sufficiently tight orbit that they eventually came together. As Pawan Kumar explained:
“We may have answered one of the most basic questions about this dazzling event: what did it make? Astronomers have long suspected that neutron star mergers would form a black hole and produce bursts of radiation, but we lacked a strong case for it until now.”
Looking ahead, the claims put forward by Pooley and his colleagues could be tested by future X-ray and radio observations. Next-generation instruments – like the Square Kilometer Array (SKA) currently under construction in South Africa and Australia, and the ESA’s Advanced Telescope for High-ENergy Astrophysics (Athena+) – would be especially helpful in this regard.
If the remnant turns out to be a massive neutron star with a strong magnetic field after all, then the source should get much brighter in the X-ray and radio wavelengths in the coming years as the high-energy bubble catches up with the decelerating shock wave. As the shock wave weakens, astronomers expect that it will continue to become fainter than it was when recently observed.
Regardless, future observations of GW170817 are bound to provide a wealth of information, according to J. Craig Wheeler, a co-author on the study also from the University of Texas. “GW170817 is the astronomical event that keeps on giving,” he said. “We are learning so much about the astrophysics of the densest known objects from this one event.”
If these follow-up observations find that a heavy neutron star is what resulted from the merger, this discovery would challenge theories about the structure of neutron stars and how massive they can get. On the other hand, if they find that it formed a tiny black hole, then it will challenge astronomers notions about the lower mass limits of black holes. For astrophysicists, it’s basically a win-win scenario.
As co-author Bruce Grossan of the University of California at Berkeley added:
“At the beginning of my career, astronomers could only observe neutron stars and black holes in our own galaxy, and now we are observing these exotic stars across the cosmos. What an exciting time to be alive, to see instruments like LIGO and Chandra showing us so many thrilling things nature has to offer.”
Indeed, looking farther out into the cosmos and deeper back in time has revealed much about the Universe that was previously unknown. And with improved instruments being developed for the sole purpose of studying astronomical phenomena in greater detail and at even greater distances, there seems to be no limit to what we might learn. And be sure to check out this video of the GW170817 merger, courtesy of the Chandra X-ray Observatory:
Since the 1970s, astronomers have understood that a Supermassive Black Hole (SMBH) resides at the center of the Milky Way Galaxy. Located about 26,000 light-years from Earth between the Sagittarius and Scorpius constellations, this black hole has come to be known as Sagittarius A* (Sgr A*). Measuring 44 million km across, this object is roughly 4 million times as massive as our Sun and exerts a tremendous gravitational pull.
Since that time, astronomers have discovered that most massive galaxies have SMBHs at their core, which is what separates those that have an Active Galactic Nuclei (AGN) from those that don’t. But thanks to a recent survey conducted using NASA’s Chandra X-ray Observatory, astronomers have discovered evidence for hundreds or even thousands of black holes located near the center of the Milky Way Galaxy.
Using Chandra data, the team searched for X-ray binaries containing black holes that were in the vicinity of Sgr A*. To recap, black holes are not detectable in visible light. However, black holes (or neutron stars) that are locked in close orbits with a star will pull material from their companions, which will then be accreted onto the black holes’ disks and heated up to millions of degrees.
This will result in the release of X-rays which can then be detected, hence why these systems are called “X-ray binaries”. Using Chandra data, the team sought out X-ray of sources that were located within roughly 12 light years of Sgr A*. They then selected sources with X-ray spectra similar to those of known X-ray binaries, which emit relatively large amounts of low-energy X-rays.
Using this method, they detected fourteen X-ray binaries within about three light years of Sgr A*, all of which contained stellar-mass black holes (between 5 and 30 times the mass of our Sun). Two of these sources had been identified by previous studies and were eliminated from the analysis, while the remaining twelve (circled in red in the image above) were newly-discovered.
Other sources which relatively large amounts of high energy X-rays (labeled in yellow) were believed to be binaries containing white dwarfs. Hailey and his colleagues concluded that the majority of the dozen X-ray binaries were likely to contain black holes, based on their variability and the fact that their X-ray emissions over the course of several years was different from what is expected from binaries containing neutron stars.
Given that only the brightest X-ray binaries containing black holes are likely to be detectable around Sgr A* (given its distance from Earth), Hailey and his colleagues concluded that this detection implies the existence of a much larger population. By their estimates, there could be at least 300 and as many as one thousand stellar-mass black holes present around Sgr A*.
These findings confirmed what theoretical studies on the dynamics of stars in galaxies have indicated in the past. According to these studies, a large population of stellar mass black holes (as many as 20,000) could drift inward over the course of millions of years and collect around an SMBH. However, the recent analysis conducted by Hailey and his colleagues was the first observational evidence of black holes congregating near Sgr A*.
Naturally, the authors acknowledge that there are other explanations for the X-ray emissions they detected. This includes the possibility that half of the dozen sources they observed are millisecond pulsars – very rapidly rotating neutron stars with strong magnetic fields. However, based on their observations, Hailey and his team strongly favor the black hole explanation.
In addition, a follow-up study conducted by Aleksey Generozov (et al.) of Columbia University – titled “An Overabundance of Black Hole X-Ray Binaries in the Galactic Center from Tidal Captures” – indicated that there could be as many as 10,000 to 40,000 black holes binaries at the center of our galaxy. According to this study, these binaries would be the result of companions being captured by black holes.
In addition to revealing much about the dynamics of stars in our galaxy, this study has implications for the emerging field of gravitational wave (GW) research. Essentially, by knowing how many black holes reside at the center of galaxies (which will periodically merge with one another), astronomers will be able to better predict how many gravitational wave events are associated with them.
From this, astronomers could create predictive models about when and how GW events are likely to happen, and well as discerning what role they may play in galactic evolution. And with next-generation instruments – like the James Webb Space Telescope (JWST) and the ESA’s Advanced Telescope for High Energy Astrophysics (ATHENA) – astronomers will be able to determine exactly how many black holes reside near the center of our galaxy.
The first-ever detection of gravitational waves (which took place in September of 2015) triggered a revolution in astronomy. Not only did this event confirm a theory predicted by Einstein’s Theory of General Relativity a century before, it also ushered in a new era where the mergers of distant black holes, supernovae, and neutron stars could be studied by examining their resulting waves.
In addition, scientists have theorized that black hole mergers could actually be a lot more common than previously thought. According to a new study conducted by pair of researchers from Monash University, these mergers happen once every few minutes. By listening to the background noise of the Universe, they claim, we could find evidence of thousands of previously undetected events.
As they state in their study, every 2 to 10 minutes, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these are large enough that the resulting gravitational wave event can be detected by advanced instruments like the Laser Interferometer Gravitational-Wave Observatory and Virgo observatory. The rest, however, contribute to a sort of stochastic background noise.
By measuring this noise, scientists may be able to study much more in the way of events and learn a great deal more about gravitational waves. As Dr Thrane explained in a Monash University press statement:
“Measuring the gravitational-wave background will allow us to study populations of black holes at vast distances. Someday, the technique may enable us to see gravitational waves from the Big Bang, hidden behind gravitational waves from black holes and neutron stars.”
Drs Smith and Thrane are no amateurs when it comes to the study of gravitational waves. Last year, they were both involved in a major breakthrough, where researchers from LIGO Scientific Collaboration (LSC) and the Virgo Collaboration measured gravitational waves from a pair of merging neutron stars. This was the first time that a neutron star merger (aka. a kilonova) was observed in both gravitational waves and visible light.
The pair were also part of the Advanced LIGO team that made the first detection of gravitational waves in September 2015. To date, six confirmed gravitational wave events have been confirmed by the LIGO and Virgo Collaborations. But according to Drs Thrane and Smith, there could be as many as 100,000 events happening every year that these detectors simply aren’t equipped to handle.
These waves are what come together to create a gravitational wave background; and while the individual events are too subtle to be detected, researchers have been attempting to develop a method for detecting the general noise for years. Relying on a combination of computer simulations of faint black hole signals and masses of data from known events, Drs. Thrane and Smith claim to have done just that.
From this, the pair were able to produce a signal within the simulated data that they believe is evidence of faint black hole mergers. Looking ahead, Drs Thrane and Smith hope to apply their new method to real data, and are optimistic it will yield results. The researchers will also have access to the new OzSTAR supercomputer, which was installed last month at the Swinburne University of Technology to help scientists to look for gravitational waves in LIGO data.
This computer is different from those used by the LIGO community, which includes the supercomputers at CalTech and MIT. Rather than relying on more traditional central processing units (CPUs), OzGrav uses graphical processor units – which can be hundreds of times faster for some applications. According to Professor Matthew Bailes, the Director of the OzGRav supercomputer:
“It is 125,000 times more powerful than the first supercomputer I built at the institution in 1998… By harnessing the power of GPUs, OzStar has the potential to make big discoveries in gravitational-wave astronomy.”
What has been especially impressive about the study of gravitational waves is how it has progressed so quickly. From the initial detection in 2015, scientists from Advanced LIGO and Virgo have now confirmed six different events and anticipate detecting many more. On top of that, astrophysicists are even coming up with ways to use gravitational waves to learn more about the astronomical phenomena that cause them.
All of this was made possible thanks to improvements in instrumentation and growing collaboration between observatories. And with more sophisticated methods designed to sift through archival data for additional signals and background noise, we stand to learn a great deal more about this mysterious cosmic force.