Galaxy Bets On A Pair Of Black Holes

How X-rays Work
This main image is a composite of X-rays from Chandra (blue) and optical data from the Hubble Space Telescope (gold) of the spiral galaxy NGC 3393. Meanwhile, the inset box shows the central region of NGC 3993 as observed just by Chandra.

[/caption]

About 160 million light years away in the constellation of Hydra, spiral galaxy NGC 3393 has been keeping a billion year old secret. It might have a poker face, but it has a pair of black holes up its sleeve…

Using information obtained through NASA’s Chandra X-ray Observatory combined with Hubble Space Telescope imaging, scientists have uncovered first time evidence that NGC 3393 is harboring twin supermassive black holes. Residing only 490 light years apart, the duo may have been the product of a “minor merger” – where a small and large galaxy met. Although the hypothesis of two black holes within one galaxy isn’t new, it has been difficult to prove because the results of two galaxies combining material would result in a rather ordinary looking spiral.

“The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging.” says G. Fabbiano, lead author of a recent Nature paper. “Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years and exemplify the first stages of this gravitational interaction.”

If scientific calculations are correct, a smaller galaxy should have contained a smaller mass black hole. This leaves us with an odd situation. If both of these newly discovered black holes have similar mass, shouldn’t the merging pair also be of similar mass? If so, how could a minor merger be the answer?

“The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution.” says Fabbiano. “Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution.”

Lay down your bets, gentlemen… It seems the game changes each time it is played!

Original Story Source: Chandra News. For Further Reading: A close nuclear black-hole pair in the spiral galaxy NGC 3393.

More Details on the Black Hole that Swallowed a Screaming Star

Images from Swift's Ultraviolet/Optical (white, purple) and X-Ray telescopes (yellow and red) were combined to make this view of Swift J1644+57. Evidence of the flares is seen only in the X-ray image, which is a 3.4-hour exposure taken on March 28, 2011. Credit: NASA/Swift/Stefan Immler

Back in June we reported on the black hole that devoured a star and then hurled the x-ray energy across billions of light years, right at Earth. It was such a spectacular and unprecedented event, that more studies have been done on the source, known as Swift J1644+57, and the folks at the Goddard Space Flight Center mulitmedia team have produced an animation (above) of what the event may have looked like. Two new papers were published yesterday in Nature; one from a group at NASA studying the data from the Swift satellite and the Japanese Monitor of All-sky X-ray Image (MAXI) instrument aboard the International Space Station, and the other from scientists using ground-based observatories.

They have confirmed what happened was the result of a truly extraordinary event — the awakening of a distant galaxy’s dormant black hole as it shredded, sucked and consumed a star, and the X-ray burst was akin to the death screams of the star.

[/caption]

In the new studies, detailed analysis of MAXI and Swift observations revealed this was the first time that a nucleus with no previous X-ray emission had ever suddenly started such activity. The strong X-ray and rapid variation indicated that the X-ray came from a jet that was pointed right at Earth.

“Incredibly, this source is still producing X-rays and may remain bright enough for Swift to observe into next year,” said David Burrows, professor of astronomy at Penn State University and lead scientist for Swift’s X-Ray Telescope instrument. “It behaves unlike anything we’ve seen before.”

The galaxy is so far away, it took the light from the event approximately 3.9 billion years to reach Earth (that distance was updated from the 3.8 billion light years reported in June).

The black hole in the galaxy hosting Swift J1644+57, located in the constellation Draco, may be twice the mass of the four-million-solar-mass black hole in the center of the Milky Way galaxy. As a star falls toward a black hole, it is ripped apart by intense tides. The gas is corralled into a disk that swirls around the black hole and becomes rapidly heated to temperatures of millions of degrees.

The innermost gas in the disk spirals toward the black hole, where rapid motion and magnetism create dual, oppositely directed “funnels” through which some particles may escape. Jets driving matter at velocities greater than 90 percent the speed of light form along the black hole’s spin axis.

This illustration steps through the events that scientists think likely resulted in Swift J1644+57. Credit: NASA/Goddard Space Flight Center/Swift

The Swift satellite detected flares from this region back on March 28, 2011, and the flares were initially assumed to signal a gamma-ray burst, one of the nearly daily short blasts of high-energy radiation often associated with the death of a massive star and the birth of a black hole in the distant universe. But as the emission continued to brighten and flare, astronomers realized that the most plausible explanation was the tidal disruption of a sun-like star seen as beamed emission.

“The radio emission occurs when the outgoing jet slams into the interstellar environment, and by contrast, the X-rays arise much closer to the black hole, likely near the base of the jet,” said Ashley Zauderer, from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass, lead author of a study of the event from numerous ground-based radio observatories, including the National Radio Astronomy Observatory’s Expanded Very Large Array (EVLA) near Socorro, N.M.

“Our observations show that the radio-emitting region is still expanding at more than half the speed of light,” said Edo Berger, an associate professor of astrophysics at Harvard and a coauthor of the radio paper. “By tracking this expansion backward in time, we can confirm that the outflow formed at the same time as the Swift X-ray source.”

Swift launched in November 2004 and MAXI is mounted on the Japanese Kibo module on the ISS (installed in July 2009) and has been monitoring the whole sky since August 2009.

See more images and animations at the Goddard Space Flight Center Multimedia page.

Sources: Nature, JAXA, NASA

Pardon Me, But Your Black Hole Is Leaking…

Gaia BH1 is a Sun-like star co-orbiting with a black hole estimated at 10 times the Sun's mass. Credit: ESO/L. Calcada

[/caption]

Yes. We thought we knew everything there was to know about black holes. We know they are massive and compact. We know they possess a gravity so intense that it even bends “space time”. We know they won’t even allow light to escape. But what we weren’t really prepared for is that our human line of reasoning might be wrong. Black holes might consume everything… But they leak information.

Thanks to a new study done by Professor Samuel Braunstein and Dr Manas Patra of the University of York, we just might need to realign our way of thinking about black holes and one of the most fundamental forces of Nature – gravity. Professor Braunstein says: “Our results didn’t need the details of a black hole’s curved space geometry. That lends support to recent proposals that space, time and even gravity itself may be emergent properties within a deeper theory. Our work subtly changes those proposals, by identifying quantum information theory as the likely candidate for the source of an emergent theory of gravity.”

Are your quantum mechanics a bit rusty? Then blame a few holes in these theories. “This vision was motivated in part by Jacobson’s 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons.” says the team. “Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem.”

Like your elderly neighbor whose curtains twitch each time you take your telescope into the yard at night and hastens to grab the telephone to tell other neighbors, information can leak from a black hole. The neighbor knows you’re out there… And soon enough, the rest of the neighbors know as well. Professor Braunstein says: “Our results actually extend the predictions made by well-established techniques that rely on a detailed knowledge of space time and black hole geometry.”

Dr Patra adds: “We cannot claim to have proven that escape from a black hole is truly possible, but that is the most straight-forward interpretation of our results. Indeed, our results suggest that quantum information theory will play a key role in a future theory combining quantum mechanics and gravity.”

For Further Reading: Black Hole Evaporation Rates without Spacetime. Original News Source: University of York News Release.

Huge Reservoir of Water Discovered in Space 30 Billion Trillion Miles Away

This artist's concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. Image credit: NASA/ESA

[/caption]

From a Caltech Press Release:

Water really is everywhere. Two teams of astronomers, each led by scientists at the California Institute of Technology (Caltech), have discovered the largest and farthest reservoir of water ever detected in the universe. Looking from a distance of 30 billion trillion miles away into a quasar—one of the brightest and most violent objects in the cosmos—the researchers have found a mass of water vapor that’s at least 140 trillion times that of all the water in the world’s oceans combined, and 100,000 times more massive than the sun.

Because the quasar is so far away, its light has taken 12 billion years to reach Earth. The observations therefore reveal a time when the universe was just 1.6 billion years old. “The environment around this quasar is unique in that it’s producing this huge mass of water,” says Matt Bradford, a scientist at NASA’s Jet Propulsion Laboratory (JPL), and a visiting associate at Caltech. “It’s another demonstration that water is pervasive throughout the universe, even at the very earliest times.” Bradford leads one of two international teams of astronomers that have described their quasar findings in separate papers that have been accepted for publication in the Astrophysical Journal Letters.

Read Bradford & team’s paper here.

A quasar is powered by an enormous black hole that is steadily consuming a surrounding disk of gas and dust; as it eats, the quasar spews out huge amounts of energy. Both groups of astronomers studied a particular quasar called APM 08279+5255, which harbors a black hole 20 billion times more massive than the sun and produces as much energy as a thousand trillion suns.

Since astronomers expected water vapor to be present even in the early universe, the discovery of water is not itself a surprise, Bradford says. There’s water vapor in the Milky Way, although the total amount is 4,000 times less massive than in the quasar, as most of the Milky Way’s water is frozen in the form of ice.

Nevertheless, water vapor is an important trace gas that reveals the nature of the quasar. In this particular quasar, the water vapor is distributed around the black hole in a gaseous region spanning hundreds of light-years (a light-year is about six trillion miles), and its presence indicates that the gas is unusually warm and dense by astronomical standards. Although the gas is a chilly –53 degrees Celsius (–63 degrees Fahrenheit) and is 300 trillion times less dense than Earth’s atmosphere, it’s still five times hotter and 10 to 100 times denser than what’s typical in galaxies like the Milky Way.

The water vapor is just one of many kinds of gas that surround the quasar, and its presence indicates that the quasar is bathing the gas in both X-rays and infrared radiation. The interaction between the radiation and water vapor reveals properties of the gas and how the quasar influences it. For example, analyzing the water vapor shows how the radiation heats the rest of the gas. Furthermore, measurements of the water vapor and of other molecules, such as carbon monoxide, suggest that there is enough gas to feed the black hole until it grows to about six times its size. Whether this will happen is not clear, the astronomers say, since some of the gas may end up condensing into stars or may be ejected from the quasar.

Bradford’s team made their observations starting in 2008, using an instrument called Z-Spec at the Caltech Submillimeter Observatory (CSO), a 10-meter telescope near the summit of Mauna Kea in Hawaii. Z-Spec is an extremely sensitive spectrograph, requiring temperatures cooled to within 0.06 degrees Celsius above absolute zero. The instrument measures light in a region of the electromagnetic spectrum called the millimeter band, which lies between infrared and microwave wavelengths. The researchers’ discovery of water was possible only because Z-Spec’s spectral coverage is 10 times larger than that of previous spectrometers operating at these wavelengths. The astronomers made follow-up observations with the Combined Array for Research in Millimeter-Wave Astronomy (CARMA), an array of radio dishes in the Inyo Mountains of Southern California.

This discovery highlights the benefits of observing in the millimeter and submillimeter wavelengths, the astronomers say. The field has developed rapidly over the last two to three decades, and to reach the full potential of this line of research, the astronomers—including the study authors—are now designing CCAT, a 25-meter telescope to be built in the Atacama Desert in Chile. CCAT will allow astronomers to discover some of the earliest galaxies in the universe. By measuring the presence of water and other important trace gases, astronomers can study the composition of these primordial galaxies.

The second group, led by Dariusz Lis, senior research associate in physics at Caltech and deputy director of the CSO, used the Plateau de Bure Interferometer in the French Alps to find water. In 2010, Lis’s team was looking for traces of hydrogen fluoride in the spectrum of APM 08279+5255, but serendipitously detected a signal in the quasar’s spectrum that indicated the presence of water. The signal was at a frequency corresponding to radiation that is emitted when water transitions from a higher energy state to a lower one. While Lis’s team found just one signal at a single frequency, the wide bandwidth of Z-Spec enabled Bradford and his colleagues to discover water emission at many frequencies. These multiple water transitions allowed Bradford’s team to determine the physical characteristics of the quasar’s gas and the water’s mass.

Read Lis & team’s paper here.

Turning On A Supermassive Black Hole

A new study combining data from ESO’s Very Large Telescope and ESA’s XMM-Newton X-ray space observatory has turned up a surprise. Most of the huge black holes in the centres of galaxies in the past 11 billion years were not turned on by mergers between galaxies, as had been previously thought. Credit: CFHT/IAP/Terapix/CNRS/ESO

[/caption]

ESO’s Very Large Telescope and ESA’s XMM-Newton X-ray Space Observatory has just opened our eyes once again. While we thought that the massive black holes that lurk at the center of large galaxies (and they always lurk, don’t they? they never just lay about, lallygag, or loiter…) for the last 11 billion years were turned on by mergers, we’re finding out it just might not be so.

For all astronomers, we’re aware that galactic structure involves a mostly quiescent central black hole. But as we reach further out into the Universe, we’re finding that early, brighter galaxies have a middle monster – one which appears to be noshing on a material that emits intense radiation. So if a galaxy merger isn’t responsible, then where does the material originate to ignite a quiet black hole into an active galactic nucleus? Maybe the omni-present dark matter…

Viola Allevato (Max-Planck-Institut für Plasmaphysik; Excellence Cluster Universe, Garching, Germany) and an international team of scientists from the COSMOS collaboration have studied 600 active galaxies in an intensively mapped region called the COSMOS field. Spanning an area consisting of about five degrees of celestial real estate in the constellation of Sextans, the COSMOS field has been richly observed by multiple telescopes at multiple wavelengths. This gives astronomers a great “picture” from which to draw data.

What they found was pretty much what they had expected – most of the active galaxies in the past 11 billion years were only moderately bright. But what they weren’t prepared to understand is why the majority of these more common, less bright active galaxies weren’t triggered by mergers. It’s a problematic situation that had previously been tackled by the Hubble Space Telescope, but COSMOS is looking back even further in time and with greater detail – a three-dimensional map showing where the active galaxies reside. “It took more than five years, but we were able to provide one of the largest and most complete inventories of active galaxies in the X-ray sky,” said Marcella Brusa, one of the authors of the study.

These new charts could help further our understanding of distribution as the universe aged and further refine modeling techniques. The new information also points to active galactic nuclei being hosted in large galaxies with abundances of dark matter… against popular theory. “These new results give us a new insight into how supermassive black holes start their meals,” said Viola Allevato, who is lead author on the new paper. “They indicate that black holes are usually fed by processes within the galaxy itself, such as disc instabilities and starbursts, as opposed to galaxy collisions.”

Alexis Finoguenov, who supervised the work, concludes: “Even in the distant past, up to almost 11 billion years ago, galaxy collisions can only account for a small percentage of the moderately bright active galaxies. At that time galaxies were closer together so mergers were expected to be more frequent than in the more recent past, so the new results are all the more surprising.”

Original News Source: ESO Press Release.

Most Distant Quasar Opens Window Into Early Universe

Quasar
Quasar

[/caption]Astronomers have uncovered yet another clue in their quest to understand the Universe’s early life: the most distant quasar ever observed. At a redshift of 7.1, it is a relic from when the cosmos was just 770 million years old – just 5% of its age today.

Quasars are extremely old, outrageously luminous balls of radiation that were prevalent in the early Universe. Each is thought to have been fueled at its core by an incredibly powerful supermassive black hole. The most recent discovery (which carries the romantic name ULAS J1120+0641) is noteworthy for a couple of reasons. First of all, its supermassive black hole weighs approximately two billion solar masses – an impressive feat of gravity so soon after the Big Bang. It is also incredibly bright, given its great distance. “Objects that lie at such large distance are almost impossible to find in visible-light surveys because their light is stretched by the expansion of the universe,” said Dr. Simon Dye of the University of Nottingham, a member of the team that discovered the object. “This means that by the time their light gets to Earth, most of it ends up in the infrared part of the electromagnetic spectrum.” Due to these effects, only about 100 visible quasars exist in the sky at redshifts higher than 7.

Up until recently, the most distant quasar observed was at a redshift of 6.4; but thanks to this discovery, astronomers can probe 100 million years further into the history of the Universe than ever before. Careful study of ULAS J1120+0641 and its properties will enable scientists to learn more about galaxy formation and supermassive black hole growth in early epochs. The research was published in the June 30 issue of Nature.

For further reading, see related paper by Chris Willot, Monster in the Early Universe

Source: EurekAlert

Cygnus X-1: Blue Supergiant Pairs With Black Hole

This X-ray image of Cygnus X-1 was taken by a balloon-borne telescope, the High Energy Replicated Optics (HERO) project. NASA image.

[/caption]

Discovered in 1964 during a rocket flight, Cygnus X-1 holds the record for being the strongest X-ray source seen from Earth. The blue supergiant star designated as HDE 226868 is just part of this high-mass X-ray binary system… the other is a black hole.

“We present a detailed study of the X-ray dust scattering halo of the black hole candidate based on two Chandra HETGS observations. Using 18 different dust models, including one modified by us (dubbed XLNW), we probe the interstellar medium between us and this source.” says Jingen Xiang, et al. “A consistent description of the cloud properties along the line of sight that describes at the same time the halo radial profile, the halo lightcurves, and the column density from source spectroscopy is best achieved with a small subset of these models… The remainder of the dust along the line of sight is close to the black hole binary.”

Located about 6,000 light years from Earth as measured by the Hipparcos satellite (but this value has a relatively high degree of uncertainty), Cygnus X-1 has been the topic for a huge amount of astronomical studies for nearly 50 years. We’re aware the blue supergiant variable star orbits its unseen companion at roughly 1/5 the distance of the Sun to the Earth (0.2 AU), and we surmised that stellar wind accounted for the accretion disk around the X-ray source. We are also aware of a pair of jets spewing material into interstellar space. Deep inside, superheated materials are sending out copious amounts of X-rays, but what else lay beyond? Can we separate star from event horizon with accuracy?

“We report a direct and accurate measurement of the distance to the X-ray binary Cygnus X-1, which contains the first black hole to be discovered. The distance of 1.86(-0.11,+0.12) kpc was obtained from a trigonometric parallax measurement using the Very Long Baseline Array. The position measurements are also sensitive to the 5.6 d binary orbit and we determine the orbit to be clockwise on the sky.” says Mark J. Reid, et al. “We also measured the proper motion of Cygnus X-1 which, when coupled to the distance and Doppler shift, gives the three-dimensional space motion of the system. When corrected for differential Galactic rotation, the non-circular (peculiar) motion of the binary is only about 21 km/s, indicating that the binary did not experience a large “kick” at formation.”

If you don’t think this is exciting news, then think again. “The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations.” says Lijun Gou. “We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole’s accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk.”

Determining the spin rate has been high on the list of observations – and difficult because it changed states periodically. Only when it is in a soft spectral state can accurate measurements be taken. Oddly enough, for all the countless observations taken of Cygnus X-1 over the years, it has never been caught in a thermally dominant state. To that end, the black hole spin is measured by estimating the inner radius of the accretion disk.

“Our results take into account all significant sources of observational and model-parameter uncertainties, which are dominated by the uncertainties in black hole mass, orbital inclination angle and distance.” says the team. “The uncertainties introduced by the thin-disk model we employ are particularly small in this case, given the disk’s low luminosity.”

Heisenberg would be so proud….

Original Story Souce: Cornell University Library with facts from Wikipedia.

Black Hole Devours Star and Hurls Energy Across 3.8 Billion Light Years

What University of Warwick researchers think the star may have looked like at the start of its disruption by a black hole at the center of a galaxy 3.8 billion light years distant resulting in the outburst known as Sw 1644+57. Credit: University of Warwick / Mark A. Garlick

[/caption]

Engaging the Hubble Space Telescope, Swift satellite and the Chandra X-ray Observatory, astronomers at the University of Warwick were quick to pick up a signal from Swift’s Burst Alert Telescope on March 28, 2011. In a classic line from Easy Rider, Jack Nicholson says: “It’s a UFO beaming back at you.” But this time it isn’t a UFO… it’s the death scream of a star being consumed by a black hole. The alert was just the beginning of a series of x-ray blasts that turned out to be the largest and most luminous event so far recorded in a distant galaxy.

Originating 3.8 billion light years from Earth in the direction of the constellation of Draco, the beam consisting of high energy X-rays and gamma-rays remained brilliant for a period of weeks after the initial event. As more and more material from the doomed star crossed over the event horizon, bright flares erupted signaling its demise. Says Dr. Andrew Levan, lead researcher on the paper from the University of Warwick; “Despite the power of this the cataclysmic event we still only happen to see this event because our solar system happened to be looking right down the barrel of this jet of energy”.

Dr Andrew Levan is a researcher at the University of Warwick.
Dr. Levan’s findings were published today in the Journal Science in a paper entitled “An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy”. His findings leave no doubt as to the origin of the event and it has been cataloged as Sw 1644+57.

“The only explanation that so far fits the size, intensity, time scale, and level of fluctuation of the observed event, is that a massive black at the very centre of that galaxy has pulled in a large star and ripped it apart by tidal disruption.” says Levan. “The spinning black hole then created the two jets one of which pointed straight to Earth.”

And straight into our eager eyes…

Original Story Source: Eurekalert.

Baby Black Holes Grew Up Fast

This composite image from NASA's Chandra X-ray Observatory and Hubble Space Telescope (HST) combines the deepest X-ray, optical and infrared views of the sky. X-ray: NASA/CXC/U.Hawaii/E.Treister et al; Infrared: NASA/STScI/UC Santa Cruz/G.Illingworth et al; Optical: NASA/STScI/S.Beckwith et al

[/caption]

For more than six weeks, the watchful eye of NASA’s Chandra X-ray Observatory kept track of a small portion of sky dubbed the Chandra Deep Field South (CDFS). Its object was to research 200 distant galaxies dating back to about 800 million to 950 million years old. What Chandra was looking for was evidence of massive black holes. The deepest evidence yet…

When combined with very deep optical and infrared images from NASA’s Hubble Space Telescope, the new Chandra data leads astronomers to speculate that young black holes may have evolved in unison with their young galaxies. “Until now, we had no idea what the black holes in these early galaxies were doing, or if they even existed,” said Ezequiel Treister of the University of Hawaii, lead author of the study appearing in the June 16 issue of the journal Nature. “Now we know they are there, and they are growing like gangbusters.”

What does this new information mean? The massive growth of the black holes in the CDFS are just shy of being a quasar – the super-luminous by-product of material slipping over the event horizon. “However, the sources in the CDFS are about a hundred times fainter and the black holes are about a thousand times less massive than the ones in quasars.” How often did it occur in the new data? Try between 30 and 100% of the case studies, resulting in a estimated 30 million supermassive black holes in the early Universe.

“It appears we’ve found a whole new population of baby black holes,” said co-author Kevin Schawinski of Yale University. “We think these babies will grow by a factor of about a hundred or a thousand, eventually becoming like the giant black holes we see today almost 13 billion years later.”

While the existence of these early black holes had been predicted, no observation had been made until now. Due to their natural “cloaking devices” of gas and dust, optical observation had been prohibited, but x-ray signatures don’t lie. The concept of tandem black hole / galaxy growth has been studied closer to home, but taking a look further back into time and space has revealed growth a hundred times more than estimated. These new Chandra results are teaching us that this connection begins at the beginning.

“Most astronomers think in the present-day universe, black holes and galaxies are somehow symbiotic in how they grow,” said Priya Natarajan, a co-author from Yale University. “We have shown that this codependent relationship has existed from very early times.”

Theories also abound which imply neophyte black holes may have played “an important role in clearing away the cosmic “fog” of neutral, or uncharged, hydrogen that pervaded the early universe when temperatures cooled down after the Big Bang”. But to the contrary, the new Chandra findings point towards the pervasive materials stopping ultraviolet radiation before the re-ionization process can occur. Resultant stars and dormant black holes are the most likely culprit to have cleared space for the cosmic dawn.

Although the Chandra X-ray Observatory is up to the task of picking up on uber-faint objects at incredible distances, these baby black holes are so veiled that only a few photons can slip through, making individual detection impossible. To gather this new data, the team employed Chandra’s directional abilities and tallied the hits near the positions of distant galaxies and found a statistically significant signal.

Original Story Source: Chandra News.

Nearby Galaxy Has Two Monster Black Holes

Viewed in visible light, Markarian 739 resembles a smiling face. Inside are two supermassive black holes, separated by about 11,000 light-years. The galaxy is 425 million light-years away from Earth. Credit: Sloan Digital Sky Survey

[/caption]

Why does this galaxy appear to be smiling? The answer might be because it has been holding a secret that astrophysicists have only now just uncovered: there are two — count ‘em – two gigantic black holes inside this nearby galaxy, named Markarian 739 (or NGC 3758), and both are very active. While massive black holes are common, only about one percent of them are considered as active and powerful – called active galactic nuclei (AGN). Binary AGN are rarer still: Markarian 739 is only the second identified within half a billion light-years from Earth.

Markarian 739 is actually a pair of merging galaxies. For decades, astronomers have known that the eastern nucleus of Markarian 739 contains a black hole that is actively accreting matter and generating an exceptional amount of energy. Now, data from the Swift satellite along with the Chandra X-ray Observatory Swift has revealed an AGN in the western half as well. This makes the galaxy one of the nearest and clearest cases of a binary AGN.

The galaxy is 425 million light-years away from Earth.

How did the second AGN remain hidden for so long? “Markarian 739 West shows no evidence of being an AGN in visible, ultraviolet and radio observations,” said Sylvain Veilleux, a professor of astronomy at University of Maryland in College Park , and a coauthor of a new paper published in Astrophysical Journal Letters. “This highlights the critical importance of high-resolution observations at high X-ray energies in locating binary AGN.”

Since 2004, the Burst Alert Telescope (BAT) aboard Swift has been mapping high-energy X-ray sources all around the sky. The survey is sensitive to AGN up to 650 million light-years away and has uncovered dozens of previously unrecognized systems.

Michael Koss, the lead author of this study, from NASA’s Goddard Space Flight Center and UMCP, did follow-up studies of the BAT mapping and he and his colleagues published a paper in 2010 that revealed that about a quarter of the Swift BAT AGN were either interacting or in close pairs, with perhaps 60 percent of them poised to merge in another billion years.

“If two galaxies collide and each possesses a supermassive black hole, there should be times when both black holes switch on as AGN,” said coauthor Richard Mushotzky, professor of astronomy at UMCP. “We weren’t seeing many double AGN, so we turned to Chandra for help.”

Swift’s BAT instrument is scanning one-tenth of the sky at any given moment, its X-ray survey growing more sensitive every year as its exposure increases. Where Swift’s BAT provided a wide-angle view, the X-ray telescope aboard the Chandra X-ray Observatory acted like a zoom lens and resolved details a hundred times smaller.

The distance separating the two black holes is about 11,000 light-years , or about a third of the distance separating the solar system from the center of our own galaxy. The dual AGN of Markarian 739 is the second-closest known, both in terms of distance from one another and distance from Earth. However, another galaxy known as NGC 6240 holds both records.

Source: Swift Telescope webpage

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.