Galaxy Interactions Could Cause Overweight Black Holes

Two examples of galaxy pairs in the COSMOS survey (courtesy of the Chandra X-ray Center). The Hubble Space Telescope images show galaxies undergoing a close encounter (shown in gold). X-rays, as detected by Chandra, indicate which of the two galaxies hosts an AGN. In addition, diffuse X-ray emission from hot gas is present thus highlighting that such galaxy associations tend to reside in galaxy groups, an environment of rapid galaxy and black hole growth.

[/caption]

Yep. It’s true. Almost all galaxies are guilty of having a supermassive black hole in their centers. Some even tip the scales at millions – or even billions – of times more mass than the Sun. However, how they came to be so weighty is a true enigma. Thanks to research done by Dr. John Silverman (IPMU) and the international COSMOS team, the Chandra X-Ray Observatory and the European Southern Observatory’s Very Large Telescope have revealed that galaxy interactions may be responsible for the growth of supermassive black holes – and they’ve left behind some very important clues…

If you’re big – you’re big. As a general rule, supermassive black holes like to hang out in massive galaxies. Their mass is usually directly related to the central bulge. Now the consensus is that massive galaxies gained their girth (at least in part) by mergers and interactions with smaller galaxies. This act of cannibalism in galactic evolution has been postulated to explain how matter gathers toward the middle, eventually resulting in a supermassive black hole.

How do we determine this? One way is to take a closer look at galaxies currently in merger as compared to ones in isolation. While the concept is easy, carrying out the test hasn’t been. A supermassive black hole leaves visual observations “blinded by the light” while a quasar can effectively “outshine” an entire host galaxy, leaving an interactor almost impossible to detect. But, like a bulging waistline, such interactions should distort the overall contours of the galaxy.

Now the COSMOS team might have an answer to the riddle.. by assuming a galaxy is interacting if it has a nearby neighbor. It’s a test that can happen without needing to know if distortion is present in optical images. What makes it possible are accurate distance measurements of about 20,000 galaxies in the COSMOS field as provided by the zCOSMOS redshift survey with the European Southern Observatory’s Very Large Telescope. Isolated galaxies are used to give a comparison sample to lay the foundation as to whether an active galactic nucleus is common to interacting galaxies. With help from NASA’s Chandra Observatory, X-ray observations pinpoint galaxies which host an AGN. The X-ray emission signature dominates in growing SMBHs and X-rays are capable of cutting through the gas and dust of star-forming regions.

In their report to The Astrophysical Journal the team states that galaxies in close pairs are twice as likely to harbor AGNs as compared to galaxies in isolation. This answer may prove that beginning galaxy interactions can lead to “enhanced black hole growth”. Because it’s not a drastically common occcurrance, it means that only about 20% of SMBHs that break the scale happen via a merger event and that “final coalescence” might also play a role.

One thing we do know is that galaxies and their black holes, like people and their waistlines, all get a little heavier with time.

Original Story Source: Institute for Physics and Mathematics of the Univserse.

Black Hole Secrets… Water Vapor Gives Clues To Star Formation

Artist's Concept of Water Vapor in Black Hole Disk - Credit: Leiden University

[/caption]

A eye-opening discovery has been made by an international team of scientists led by astronomer Paul van der Werf (Leiden University, The Netherlands). They have discovered a black hole in the early Universe located about 12 billion light years away that’s surrounded by a nearly impenetrable disk of gas and dust. The halo isn’t the surprise, however… but the presence of star formation in dense water vapor is.

Using the sensitive radio telescopes of IRAM (Institut de Radioastronomie Millimétrique) at the Plateau de Bure in the French Alps, the team was searching for the signs of water vapor around a quasar – a distant galaxy which gathers its luminosity from the growth of a black hole which weighs in at hundreds of millions times more mass than Sol.

“Water in cosmic clouds is normally frozen to ice, but the ice can be evaporated by the strong radiation of the quasar or of young stars. Therefore we decided to search for water vapor in this object.” says van der Werf. “It is located so far away that we are looking back in time, to an era where the Universe was only 10% of its present age. This is one of the first searches ever conducted to find water in the early Universe.”

A shocking revelation? Not really. Water vapor has been discovered before. In this instance, however, the water amounted to about 1,000 trillion times the volume found on Earth. What’s more… it’s forming stars. It’s a dense disk, so thick that light barely escapes, and star propagation is rapid.

“Water molecules are sensitive to infrared radiation, so we could use the water vapor detected as a cosmic infrared light meter. With this method we found that essentially all radiation is locked up in the gas disk surrounding the black hole.” team member Marco Spaans (University of Groningen, The Netherlands) explains. “This trapped radiation is so intense that it will build up enormous pressure and eventually blow away the gas and dust clouds surrounding the black hole.”

These findings add a new complexity to our understanding of black holes and the galaxies which hold them. Team member Alicia Berciano Alba (ASTRON, The Netherlands) says: “There is a mysterious relation between the masses of black holes in the centers of galaxies and the masses of the galaxies themselves, as if the formation of both is regulated by the same process. Our results show that these opaque gas disks, which will be ultimately blown away by the intense pressure of the trapped radiation, probably play a key role in this process.” IRAM director Pierre Cox, co-author of the paper, adds: “This discovery opens new possibilities for studying galaxies in the early Universe, using water molecules that probe regions closest to the central black hole, that are otherwise difficult to explore.”

Keep on going, because the IRAM team is up to the task and continuing to look for other sources of water vapor in the early Universe!

Original Story Source: Leiden University New Release. For Further Reading: Water vapor emission reveals a highly obscured, star forming nuclear region in the QSO host galaxy APM 08279+5255 at z=3.9.

Is M85 Missing a Black Hole?

[/caption]

The conventional wisdom of galaxies is that they should have a central massive black hole (CMBH). The presence of such objects has been confirmed in our own galaxy as well as numerous other galaxies, including the Andromeda galaxy (M31) and even some dwarf galaxies. The mass of these objects, several million times the mass of the Sun, has been found to be related to many properties of galaxies as a whole, indicating that their presence may be critical in the formation and evolution of galaxies as a whole. As such, finding a massive galaxy without a central black hole would be quite surprising. Yet a recent study by astronomers from the University of Michigan Ann Arbor seems to have found an exception: The well known M85.

To determine the mass of the CMBH, the team used the spectrograph on board the Hubble Space Telescope to examine the pull the central object had on stars in the nearby vicinity. The higher this mass is, the more quickly the stars should orbit. This orbital velocity is detected as a shift in the color of the light, blue as the stars move towards us, red as they move away. The amount the light is shifted is dependent on just how fast they move.

Doppler shift of gas and dust caused by M84's supermassive black hole. Image Credit: Gary Bower, Richard Green (NOAO), the STIS Instrument Definition Team, and NASA
Doppler shift of gas and dust caused by M84's supermassive black hole. Image Credit: Gary Bower, Richard Green (NOAO), the STIS Instrument Definition Team, and NASA
This technique has been used previously in other galaxies, including another large elliptical of similar brightness in the Messier catalog, M84. This galaxy had its CMBH probed by Hubble in 1997 and was determined to have a mass of 300 million solar masses.

When this method was applied to M85 the team did not discover a shift that would be indicative of a black hole with a mass expected for a galaxy of such size. Using another, indirect method of determining the CMBH mass by looking at the the amount of overall light from the galaxy, which is generally correlated with black hole mass, would indicate that M85 should contain a black hole of 300 million to 2 billion solar masses. Yet this study indicates that, if M85 contains a central black hole at all, the upper limit for the black hole would be around 65 million solar masses.

This study is not the first to report a non-detection for the galaxy, a 2009 study led by Alessandro Capetti from Osservatorio Astronoimco di Torino in Italy, searched M85 for signs of radio emission from the black hole region. Their study was unable to detect any significant radio waves from the core which, if M85 had a significant black hole, should be present, even with a small amount of gas feeding into the core.

Overall, these studies demonstrate a significant shortcoming in secondary methods of black hole mass estimation. Such indirect methods have been previously used with confidence and have even been the basis for studies drawing the connection between galaxy evolution and black hole mass. If cases like M85 are more common that previously thought, it may prompt astronomers to rethink just how connected black holes and a galaxies properties really are.

Looking Into The Eye Of A Monster – Active Galaxy Markarian 509

Active galaxy Markarian 509 as seen by the Hubble Space Telescope's WFPC2. Credits: NASA, ESA, J. Kriss (STScI) and J. de Plaa (SRON)

[/caption]

“The world is a vampire, sent to drain… Secret destroyers, hold you up to the flames…” Ah, yes. It’s the biggest vampire of all – the supermassive black hole. In this instance, it’s not any average, garden-variety black hole, but one that’s 300 million times the mass of the Sun and growing. Bullet with butterfly wings? No. This is more a case of butterfly wings with bullets.

An international team of astronomers using five different telescopes set their sites on 460 million light-year distant Markarian 509 to check out the action surrounding its huge black hole. The imaging team included ESA’s XMM-Newton, Integral, NASA/ESA Hubble Space Telescope, NASA’s Chandra and Swift satellites, and the ground-based telescopes WHT and PARITEL. For a hundred days they monitored Markarian 509. Why? Because it is known to have brightness variations which could mean turbulent inflow. In turn, the inner radiation then drives an outflow of gas – faster than a speeding bullet.

“XMM-Newton really led these observations because it has such a wide X-ray coverage, as well as an optical monitoring camera,” says Jelle Kaastra, SRON Netherlands Institute for Space Research, who coordinated an international team of 26 astronomers from 21 institutes on four continents to make these observations.

And the vampire reared its ugly head. Instead of the previously documented 25% changes, it jumped to 60%. The hot corona surrounding the black hole was spattering out cold gas “bullets” at speeds in excess of one million miles per hour. These projectiles are torn away from the dusty torus, but the real surprise is that they are coming from an area just 15 light years away from the center. This is a lot further than most astronomers speculate could happen.

“There has been a debate in astronomy for some time about the origin of the outflowing gas,” says Kaastra.

But there’s more than just bullets here. These new observations at multiple wavelengths are showing the coolest gas in the line of sight toward Markarian 509 has 14 different velocity components – all from different locations at the galaxy’s heart. What’s more, there’s indications the black hole accretion disc may have a shield of gas harboring temperatures ranging in the millions of degrees – the motivating force behind x-rays and gamma rays.

An artist's impression of the central engine of an active galaxy. A black hole is surrounded by matter waiting to fall in. Fearsome radiation from near the black hole drives an outflow of gas. Credits: NASA and M. Weiss (Chandra X-ray Center)

“The only way to explain this is by having gas hotter than that in the disc, a so-called ‘corona’, hovering above the disc,” Jelle Kaastra says. “This corona absorbs and reprocesses the ultraviolet light from the disc, energising it and converting it into X-ray light. It must have a temperature of a few million degrees. Using five space telescopes, which enabled us to observe the area in unprecedented detail, we actually discovered a very hot ‘corona’ of gas hovering above the disc. This discovery allows us to make sense of some of the observations of active galaxies that have been hard to explain so far.”

To make things even more entertaining, the study has also found the signature of interstellar gas which may have been the result of a one-time galaxy collision. Although the evidence may be hundreds of thousands of light years away from Mrk 509, it may have initially triggered this activity.

“The results underline how important long-term observations and monitoring campaigns are to gain a deeper understanding of variable astrophysical objects. XMM-Newton made all the necessary organisational changes to enable such observations, and now the effort is paying off,” says Norbert Schartel, ESA XMM-Newton Project Scientist.

Ah, Markarian 509… “Despite all my rage… I am still just a rat in cage.”

Original Story Source: ESA News. For Further Reading: Multiwavelength Campaign on Mrk 509 VI. HST/COS Observations of the Far-ultraviolet Spectrum.

AGNs As A New Standard Candle?

Hubble Space Telescope image of a 5000 light-year (1.5 kiloparsec) long jet being ejected from the active nucleus of the active galaxy M87, a radio galaxy. The blue synchrotron radiation of the jet contrasts with the yellow starlight from the host galaxy.

[/caption]

Nope. A standard candle isn’t the same red, green, blue, yellow and omni-present pink wax sticks that decorate your every day birthday cake. Until now a standard candle meant a Cepheid variable star – or more recently – a Type 1a supernova. But something new happens almost every day in astronomy, doesn’t it? So start thinking about how an active galactic nucleus could be used to determine distance…

“Accurate distances to celestial objects are key to establishing the age and energy density of the Universe and the nature of dark energy.” says Darach Watson (et al). “A distance measure using active galactic nuclei (AGN) has been sought for more than forty years, as they are extremely luminous and can be observed at very large distances.”

So how is it done? As we know, active galactic nuclei are home to supermassive black holes which unleash powerful radiation. When this radiation ionizes nearby gas clouds, they also emit their own light signature. With both emissions in range of data gathering telescopes, all that’s needed is a way to measure the time it takes between the radiation signal and the ionization point. The process is called reverberation mapping.

“We use the tight relationship between the luminosity of an AGN and the radius of its broad line region established via reverberation mapping to determine the luminosity distances to a sample of 38 AGN.” says Watson. “All reliable distance measures up to now have been limited to moderate redshift — AGN will, for the first time, allow distances to be estimated to z~4, where variations of dark energy and alternate gravity theories can be probed.”

The AGN Hubble diagram. The luminosity distance indicator =pF is plotted as a function of redshift for 38 AGN with H lag measurements. On the right axis the luminosity distance and distance modulus (m-M) are shown using the surface brightness fluctuations distance to NGC3227 as a calibrator. The current best cosmology is plotted as a solid line. The line is not fit to the data but clearly follows the data well. Cosmologies with no dark energy components are plotted as dashed and dotted lines. The lower panel shows the logarithm of the ratio of the data compared to the current cosmology on the left axis, with the same values but in magnitudes on the right. The red arrow indicates the correction for internal extinction for NGC3516. The green arrow shows where NGC7469 would lie using the revised lag estimate. NGC7469 is our largest outlier and is believed to be an example of an object with a misidentified lag.

The team hasn’t taken their research “lightly”. It means careful calculations using known factors and repeating the results with other variables thrown into the mix. Even uncertainty…

“The scatter due to observational uncertainty can be reduced significantly. A major advantage held by AGN is that they can be observed repeatedly and the distance to any given object substantially refined.” explains Watson. “The ultimate limit of the accuracy of the method will rely on how the BLR (broad-line emitting region) responds to changes in the luminosity of the central source. The current tight radius-luminosity relationship indicates that the ionisation parameter and the gas density are both close to constant across our sample.”

At the first standard candle we discovered the Universe was expanding. At the second we learned it was accelerating. Now we’re looking back to just 750 million years after the Big Bang. What will tomorrow bring?

Maybe a new kind of cake…

Original Story Source: A New Cosmological Distance Measure Using AGN.

Big Ol’ Black Hole Jets

This artist's concept illustrates what the flaring black hole called GX 339-4 might look like. Infrared observations from NASA's Wide-field Infrared Survey Explorer (WISE) reveal the best information yet on the chaotic and extreme environments of this black hole's jets. Image credit: NASA

[/caption]

Some 20,000 light years away, a black hole named GX 339-4 has produced one of the most exciting visible events possible – a massive flare. This searing jet is an extraordinary occurrence and astronomers using NASA’s Wide-field Infrared Survey Explorer (WISE) were able to capture elusive data to further refine their studies of the extreme environments surrounding black holes.

Over the last several decades we’ve learned a lot about these incredible phenomenon, but there’s always room for more. By studying the accretion disk, we know what feeds them and we’ve even seen jet activity through studies using X-rays, gamma rays and radio waves. However, until now, science has never gotten a clear look at the base of jet activity… and it’s exciting more than just the material around it!

“Imagine what it would be like if our Sun were to undergo sudden, random bursts, becoming three times brighter in a matter of hours, and then fading back again. That’s the kind of fury we observed in this jet,” said Poshak Gandhi, a scientist with the Japan Aerospace Exploration Agency (JAXA). He is lead author of a new study on the results appearing in the Astrophysical Journal Letters. “With WISE’s infrared vision, we were able to zoom in on the inner regions near the base of the stellar-mass black hole’s jet for the first time and the physics of jets in action.”

GX 339-4 isn’t particularly unique. It’s about six times solar mass and astronomers have been studying its companion star as the material is being pulled into it. But it’s what’s escaping at nearly the speed of light that’s making researchers sit up and take notice.

“To see bright flaring activity from a black hole you need to be looking at the right place at the right time,” said Peter Eisenhardt, the project scientist for WISE at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif. “WISE snapped sensitive infrared pictures every 11 seconds for a year, covering the whole sky, allowing it to catch this rare event.”

A variable jet? It would seem so. Thanks to NEOWISE, the same area of sky was repeatedly photographed – allowing the team to home in on the elusive base area. Just how elusive? Try to imagine an area the size of your thumbnail seen at the distance of the Sun! Its radius is approximately 15,000 miles (24,140 kilometers) with dramatic changes by as large as a factor of 10 or more. To see an event that lasted anywhere from 11 seconds to a few hours might seem incredulous, but these immense variations blasted through in infra-red.

“If you think of the black hole’s jet as a firehose, then it’s as if we’ve discovered the flow is intermittent and the hose itself is varying wildly in size,” Poshak said.

But that’s not all the data. This new information has given science the best to-date values on black hole magnetic fields – ones that are 30,000 times more powerful than those that belong to planet Earth. It’s these fields that channels the flow of energy and accelerates it. But, there’s still that curiosity factor of why it varies, isn’t there?

We’ll keep asking questions. After all… Science is WISE.

Original Story Source: NASA News.

Primordial Black Holes, Dark Matter and Stellar Collisions… Oh, My!

Princeton and New York University researchers have simulated the effect of a primordial black hole passing through a star. Primordial black holes are among the objects hypothesized to make up dark matter -- the invisible substance thought to constitute much of the universe -- and astronomers could use the researchers' model to finally observe the elusive black holes. This image illustrates the resulting vibration waves as a primordial black hole (white dots) passes through the center of a star. The different colors correspond to the density of the primordial black hole and strength of the vibration. (Image by Tim Sandstrom)

[/caption]

Well, we’re off to see the Wizard again, my friends. This time it’s to explore the possibilities of primordial black holes colliding with stars and all the implications therein. If this theory is correct, then we should be able to observe the effects of dark matter first hand – proof that it really does exist – and deeper understand the very core of the Universe.

Are primordial black holes blueprints for dark matter? Postdoctoral researchers Shravan Hanasoge of Princeton’s Department of Geosciences and Michael Kesden of NYU’s Center for Cosmology and Particle Physics have utilized computer modeling to visualize a primordial black hole passing through a star. “Stars are transparent to the passage of primordial black holes (PBHs) and serve as seismic detectors for such objects.” says Kesden. “The gravitational field of a PBH squeezes a star and causes it to ring acoustically.”

If primordial black holes do exist, then chances are great that these type of collisions happen within our own galaxy – and frequently. With ever more telescopes and satellites observing the stellar neighborhoods, it only stands to reason that sooner or later we’re going to catch one of these events. But, the most important thing is simply understanding what we’re looking for. The computer model developed by Hanasoge and Kesden can be used with these current solar-observation techniques to offer a more precise method for detecting primordial black holes than existing tools.

“If astronomers were just looking at the Sun, the chances of observing a primordial black hole are not likely, but people are now looking at thousands of stars,” Hanasoge said.”There’s a larger question of what constitutes dark matter, and if a primordial black hole were found it would fit all the parameters — they have mass and force so they directly influence other objects in the Universe, and they don’t interact with light. Identifying one would have profound implications for our understanding of the early Universe and dark matter.”

Sure. We haven’t seen DM, but what we can see are galaxies that are hypothesized to have extended dark-matter halos and to study the effects the gravity has on their materials – like gaseous regions and stellar members. If these new models are correct, primordial black holes should be heavier than existing dark matter and when they collide with a star, should cause a rippling effect.

“If you imagine poking a water balloon and watching the water ripple inside, that’s similar to how a star’s surface appears,” Kesden said. “By looking at how a star’s surface moves, you can figure out what’s going on inside. If a black hole goes through, you can see the surface vibrate.”

Using the Sun as a model, Kesden and Hanasoge calculated the effects a PBH might have and then gave the data to NASA’s Tim Sandstrom. Using the Pleiades supercomputer at the agency’s Ames Research Center in California, the team was then able to create a video simulation of the collisional effect. Below is the clip which shows the vibrations of the Sun’s surface as a primordial black hole — represented by a white trail — passes through its interior.

“It’s been known that as a primordial black hole went by a star, it would have an effect, but this is the first time we have calculations that are numerically precise,” comments Marc Kamionkowski, a professor of physics and astronomy at Johns Hopkins University. “This is a clever idea that takes advantage of observations and measurements already made by solar physics. It’s like someone calling you to say there might be a million dollars under your front doormat. If it turns out to not be true, it cost you nothing to look. In this case, there might be dark matter in the data sets astronomers already have, so why not look?”

I’ll race you to the door…

Original Story Source: Princeton University News. For Further Reading: Transient Solar Oscillations Driven by Primordial Black Holes.

Even Small Galaxies Can Have Big Black Holes

Astronomers detected supermassive black holes in 28 distant, low-mass galaxies, including the four shown in these Hubble Space Telescope images. Image credit: A. Koekemoer, Space Telescope Science Institute.

[/caption]

The Hubble Space Telescope has done it again. By utilizing a slitless grism, the Wide Field Camera 3 has uncovered evidence that supermassive black holes are right at home in some very small galaxies. Apparently these central black holes began their life when their host galaxies were first forming!

“It’s kind of a chicken or egg problem: Which came first, the supermassive black hole or the massive galaxy? This study shows that even low-mass galaxies have supermassive black holes,” said Jonathan Trump, a postdoctoral researcher at the University of California, Santa Cruz. Trump is first author of the study, which has been accepted for publication in the Astrophysical Journal.

It’s another cosmic conundrum. As we’ve learned, large galaxies are host to central supermassive black holes and many of them are the AGN variety. But the real puzzle is why do some smaller galaxies contain them when most do not? By taking a closer look at dwarf galaxies some 10 billion light-years away, astronomers are reaching back in time to when the Universe was about an estimated quarter of its current age.

“When we look 10 billion years ago, we’re looking at the teenage years of the universe. So these are very small, young galaxies,” Trump said.

If your mind is still wondering what a “slitless grism” is, then wonder no more. It’s part of Hubble’s WFC3 infrared camera that provides spectroscopic information. Thanks to highly detailed information on the different wavelengths of light, the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) team could achieve separate spectra from each sector of the candidate galaxies and identify emissions from black hole sources.

“This is the first study that is capable of probing for the existence of small, low-luminosity black holes back in time,” said coauthor Sandra Faber, University Professor of astronomy and astrophysics at UC Santa Cruz and CANDELS principal investigator. “Up to now, observations of distant galaxies have consistently reinforced the local findings–distant black holes actively accreting in big galaxies only. We now have a big puzzle: What happened to these dwarf galaxies?”

It’s possible they are forerunners of the massive galaxies we see today. “Some may remain small, and some may grow into something like the Milky Way,” Trump said. But this theory is a juxtaposition in itself. According to Faber, “To become big galaxies today, the dwarf galaxies would have to grow at a rate much faster than standard models predict. If they remain small, then nearby dwarf galaxies should also have central black holes. There might be a large population of small black holes in dwarf galaxies that no one has noticed before.”

But these distant little dwarfs aren’t quiet – they are actively forming new stars. According to Trump, “Their star formation rate is about ten times that of the Milky Way. There may be a connection between that and the active galactic nuclei. When gas is available to form new stars, it’s also available to feed the black hole.”

But the Hubble wasn’t the only instrument interested in the 28 small galaxy studies. The team also employed x-ray data acquired by NASA’s Chandra X-ray Observatory. To help refine their information on such small, faint objects, the data was combined to improve the signal-to-noise ratio.

“This is a powerful technique that we can use for similar studies in the future on larger samples of objects,” Trump said. “Together the compactness of the stacked OIII spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.”

Original Story Source: University of Santa Cruz News. For Further Reading: A CANDELS WFC3 Grism Study of Emission-Line Galaxies at z~2: A Mix of Nuclear Activity and Low-Metallicity Star Formation.

Galaxy Bets On A Pair Of Black Holes

How X-rays Work
This main image is a composite of X-rays from Chandra (blue) and optical data from the Hubble Space Telescope (gold) of the spiral galaxy NGC 3393. Meanwhile, the inset box shows the central region of NGC 3993 as observed just by Chandra.

[/caption]

About 160 million light years away in the constellation of Hydra, spiral galaxy NGC 3393 has been keeping a billion year old secret. It might have a poker face, but it has a pair of black holes up its sleeve…

Using information obtained through NASA’s Chandra X-ray Observatory combined with Hubble Space Telescope imaging, scientists have uncovered first time evidence that NGC 3393 is harboring twin supermassive black holes. Residing only 490 light years apart, the duo may have been the product of a “minor merger” – where a small and large galaxy met. Although the hypothesis of two black holes within one galaxy isn’t new, it has been difficult to prove because the results of two galaxies combining material would result in a rather ordinary looking spiral.

“The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging.” says G. Fabbiano, lead author of a recent Nature paper. “Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years and exemplify the first stages of this gravitational interaction.”

If scientific calculations are correct, a smaller galaxy should have contained a smaller mass black hole. This leaves us with an odd situation. If both of these newly discovered black holes have similar mass, shouldn’t the merging pair also be of similar mass? If so, how could a minor merger be the answer?

“The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution.” says Fabbiano. “Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution.”

Lay down your bets, gentlemen… It seems the game changes each time it is played!

Original Story Source: Chandra News. For Further Reading: A close nuclear black-hole pair in the spiral galaxy NGC 3393.

More Details on the Black Hole that Swallowed a Screaming Star

Images from Swift's Ultraviolet/Optical (white, purple) and X-Ray telescopes (yellow and red) were combined to make this view of Swift J1644+57. Evidence of the flares is seen only in the X-ray image, which is a 3.4-hour exposure taken on March 28, 2011. Credit: NASA/Swift/Stefan Immler

Back in June we reported on the black hole that devoured a star and then hurled the x-ray energy across billions of light years, right at Earth. It was such a spectacular and unprecedented event, that more studies have been done on the source, known as Swift J1644+57, and the folks at the Goddard Space Flight Center mulitmedia team have produced an animation (above) of what the event may have looked like. Two new papers were published yesterday in Nature; one from a group at NASA studying the data from the Swift satellite and the Japanese Monitor of All-sky X-ray Image (MAXI) instrument aboard the International Space Station, and the other from scientists using ground-based observatories.

They have confirmed what happened was the result of a truly extraordinary event — the awakening of a distant galaxy’s dormant black hole as it shredded, sucked and consumed a star, and the X-ray burst was akin to the death screams of the star.

[/caption]

In the new studies, detailed analysis of MAXI and Swift observations revealed this was the first time that a nucleus with no previous X-ray emission had ever suddenly started such activity. The strong X-ray and rapid variation indicated that the X-ray came from a jet that was pointed right at Earth.

“Incredibly, this source is still producing X-rays and may remain bright enough for Swift to observe into next year,” said David Burrows, professor of astronomy at Penn State University and lead scientist for Swift’s X-Ray Telescope instrument. “It behaves unlike anything we’ve seen before.”

The galaxy is so far away, it took the light from the event approximately 3.9 billion years to reach Earth (that distance was updated from the 3.8 billion light years reported in June).

The black hole in the galaxy hosting Swift J1644+57, located in the constellation Draco, may be twice the mass of the four-million-solar-mass black hole in the center of the Milky Way galaxy. As a star falls toward a black hole, it is ripped apart by intense tides. The gas is corralled into a disk that swirls around the black hole and becomes rapidly heated to temperatures of millions of degrees.

The innermost gas in the disk spirals toward the black hole, where rapid motion and magnetism create dual, oppositely directed “funnels” through which some particles may escape. Jets driving matter at velocities greater than 90 percent the speed of light form along the black hole’s spin axis.

This illustration steps through the events that scientists think likely resulted in Swift J1644+57. Credit: NASA/Goddard Space Flight Center/Swift

The Swift satellite detected flares from this region back on March 28, 2011, and the flares were initially assumed to signal a gamma-ray burst, one of the nearly daily short blasts of high-energy radiation often associated with the death of a massive star and the birth of a black hole in the distant universe. But as the emission continued to brighten and flare, astronomers realized that the most plausible explanation was the tidal disruption of a sun-like star seen as beamed emission.

“The radio emission occurs when the outgoing jet slams into the interstellar environment, and by contrast, the X-rays arise much closer to the black hole, likely near the base of the jet,” said Ashley Zauderer, from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass, lead author of a study of the event from numerous ground-based radio observatories, including the National Radio Astronomy Observatory’s Expanded Very Large Array (EVLA) near Socorro, N.M.

“Our observations show that the radio-emitting region is still expanding at more than half the speed of light,” said Edo Berger, an associate professor of astrophysics at Harvard and a coauthor of the radio paper. “By tracking this expansion backward in time, we can confirm that the outflow formed at the same time as the Swift X-ray source.”

Swift launched in November 2004 and MAXI is mounted on the Japanese Kibo module on the ISS (installed in July 2009) and has been monitoring the whole sky since August 2009.

See more images and animations at the Goddard Space Flight Center Multimedia page.

Sources: Nature, JAXA, NASA