Black Holes Seen Spinning at the Limits Predicted by Einstein

bh_spin_comp.thumbnail.jpg

The supermassive black holes that lurk at the hearts of the most massive galaxies might be spinning faster than astronomers ever thought. In fact, they might be spinning at the very limits predicted by Einstein’s theory of relativity. Perhaps it’s this extreme rotational speed that generates the energetic jets that blast out of the most massive and active galaxies.

Astronomers used NASA’s Chandra X-Ray Observatory to study 9 giant galaxies that seem to contain rapidly spinning supermassive black holes. These galaxies have large disturbances in their gaseous atmosphere, so the researchers calculated that these black holes must be spinning at near their maximum rates.

“We think these monster black holes are spinning close to the limit set by Einstein’s theory of relatively, which means that they can drag material around them at close to the speed of light,” said Rodrigo Nemmen, a visiting graduate student at Penn State University.

According to Einstein, when a black hole rotates at extreme speeds, it can actually catch up the surrounding space time and make that rotate as well. This effect, linked with the inflowing streams of gas can produce rotating, tightly wound towers of powerful magnetic fields. These fields channel the energy and inflowing gas into powerful jets which blast away from the black hole at nearly the speed of light.

It’s believed that black holes can acquire these extreme rotational speeds when galaxies merge. Fresh material falling onto the black hole just boosts its speed higher and higher until it reaches the hard limits allowed by relativity.

And it’s this extreme rate of spin that forms the power source for the jets. With the number of powerful jets seen pouring out of many galaxies, it might be that most supermassive black holes are spinning at extreme rates; we just haven’t detected them yet.

Supermassive black holes can be very disruptive to their local environments. The jets pump enormous amounts of energy into their surroundings, heating up gas. Since stars can only form when there are large clouds of cold gas, these process of heating can stall star formation in the host galaxy.

Astronomers want to work out the relationship between supermassive black holes and the rates of star formation in the most massive galaxies in the Universe.

Original Source: Chandra News Release

There May Be Hundreds of Rogue Black Holes in the Milky Way

globularclusterandblackhole.thumbnail.jpg

Uh oh, this doesn’t sound good. It turns out there could be hundreds of rogue black holes, each weighing thousands of times the mass of the Sun, hurtling though the Milky Way. Oh, and they’d be almost impossible to spot.

Vanderbilt astronomer Kelly Holley-Bockelmann presented the results of a supercomputer simulation at the Winter meeting of the American Astronomical Society.

The research focused on modeling the controversial “intermediate mass” black holes. These are the theorized black holes that should form within globular star clusters, containing a few thousand times the mass of the Sun; much heavier than the stellar mass black holes, but a fraction the mass of the supermassive variety. Astronomers have been looking for them for years, and even after all that searching, they’ve only come up with a couple of tentative candidates. So maybe these black holes are all around us, kicked out of their globular clusters, free to wander the galaxy.

Scientists have been hard at work modeling what might happen as two black holes merge. This is the realm where Einstein’s theory of relativity comes into play because of the tremendous forces and masses involved.

The simulations predict that as two black holes come together to form a new, even more massive black hole, it should receive a tremendous “kick” because of the conservation of momentum. The newly formed black hole should actually get kicked right out of the globular cluster in a random direction as fast as 4,000 kilometres a second.

Since the escape velocity of a globular cluster is only about 100 km/s, that black hole won’t ever come back to its home.

Now, if this research is true, the roughly 200 globular clusters in the Milky Way might have spawned intermediate-sized black holes, and then ejected them in random directions into the galaxy. There are probably several hundred black holes wandering invisibly through our galaxy.

Now don’t get too scared, “these rogue black holes are extremely unlikely to do any damage to us in the lifetime of the Universe,” soothed Holly-Bockelmann. “Their danger zone, the Schwarzschild radius, is really tiny, only a few hundred kilometers. There are far more dangerous things in our neighborhood.”

Original Source: Vanderbilt News Release

Hidden Quasars – Found!

rreyes08_hidden_quasars.thumbnail.jpg

Quasars are some of the brightest objects in the Universe. Just a single quasar can blaze more than a hundred times more brightly than our entire Milky Way galaxy. It turns out, though, that some of the brightest quasars in the Universe are hidden, cloaked behind a shroud of gas and dust. But now researchers have developed a technique to find the galaxies hiding these bright quasars. It turns out, they’re everywhere, we just couldn’t see them.

This blazing material surrounding a supermassive black hole is a quasar. The relatively tiny region around a black hole can blaze more than a hundred times as brightly as our own Milky Way galaxy. But there’s a paradox. The more powerful the quasar, the better a job it can do to hide itself within a shroud of gas and dust.

To see the hidden quasars, you can’t look in the visible spectrum. You need to use a wavelength that isn’t obscured by gas and dust, such as infrared and X-rays. However, previous surveys in these wavelengths have only revealed small portions of the sky.

Astronomers from Princeton and the Institute for Advanced Study announced today that they have developed a technique to see the telltale signs that a galaxy contains a bright quasar – without having to perform an extensive survey in these other wavelengths. By sifting through the Sloan Digital Sky Survey, looking for very special characteristics of the light coming from a galaxy, the team uncovered 887 hidden quasars; the largest number ever detected.

“We determined how common hidden quasars are, especially the most luminous ones. Perhaps more interestingly, we determined how common they are relative to normal quasars,” said team member Nadia Zakamska, a NASA Spitzer Fellow at the Institute for Advanced Study in Princeton.

“We found that hidden quasars make up at least half of the quasars in the relatively recent Universe, implying that most of the powerful black holes in our neighborhood had previously been unrecognized.”

This means that there are many hidden quasars out there. And it also means that quasars are much more efficient at converting matter into light than astronomers previously realized. In fact, most of the light released by quasars is probably absorbed by intervening gas and dust.

In other words, even though quasars are incredibly bright objects, blazing with hundreds of times the light of an entire galaxy, that’s probably just the tip of the iceberg.

They’re much much brighter.

Original Source: SDSS News Release

Black Holes Linked to Cosmic Rays

2007-1109auger.thumbnail.jpg

You know that big list of unsolved mysteries in astronomy? Well, you can remove, “what causes the highest energy cosmic rays?” Thanks to new research using the Pierre Auger Cosmic Ray Observatory in South America, the answer appears to be: supermassive black holes.

High energy cosmic rays are actually particles – protons mostly – accelerated to tremendous velocities. When they crash into the Earth’s atmosphere, they explode in a spray of energy and sub-particles that can be detected here on the surface. Fortunately our atmosphere protects us from damage, but out in space, they’re a real threat.

Just a single particle can have the same energy as fast moving tennis ball.

Astronomers have been wondering for years how particles can get boosted to such high energy levels. A massive team of 370 researchers from 17 countries have been working on the answer using the newly developed Pierre Auger Cosmic Ray Observatory, nestled in the mountains of South America.

The observatory is actually an array of detectors spread out over a 3,000 km2 area. As the cosmic rays collide with the atmosphere, the resulting spray of particles are caught by the detectors, which house large tanks of water. The detectors are so sensitive, they can detect a different in timing, which allow astronomers to triangulate the direction the cosmic ray came from. The particles are flung with such energy that they point back to their galaxies, like bullets coming from a gun.

Before the Pierre Auger observatory, cosmic ray detections were rare. Astronomers just didn’t have enough data to know where they were coming from. But over the last 3 years, the observatory has recorded a million cosmic rays, including 80 of the highest energy.

Astronomers now know that cosmic rays don’t come from all regions of the sky, but they’re shot out from actively feeding supermassive black holes.

The exact process that creates the cosmic rays isn’t fully understood, but astronomers think that the environment around an active supermassive black hole is ferocious, to say the least. Powerful magnetic fields are generated, which can act like natural particle accelerators, pushing protons to energy levels much higher than anything physicists could recreate with our technology.

Original Source: University of Chicago News Release

Podcast: Rising Winds from Supermassive Black Holes

2007-1102robinson.thumbnail.jpg

Astronomers now believe there’s a supermassive black hole lurking at the heart of every galaxy. When these monsters are actively feeding, an accretion disk of material builds up around them, like swirling water waiting to go down the drain. For the first time, astronomers have detected winds rising up from this disk of doomed material. And it turns out, these winds have a profound impact on the surrounding galaxy.

Dr. Andrew Robinson is an Associate Professor in the Department of Physics at the Rochester Institute of Technology. Andrew was part of a team that detected these winds, announced this week in the journal Nature.

Click here to download the podcast.

Supermassive Black Holes Shape Their Galaxies

2007-1101quasar.thumbnail.jpg

Astronomers are now understanding the connection between supermassive black holes and the galaxies they inhabit better and better. In fact, it now looks like the powerful winds that blow out of these monsters can have a significant effect on the galaxies they inhabit, helping determine their growth.

In a recent study, published in the journal Nature, a group of scientists from the Rochester Institute of Technology report on their study of the rotating winds the rise up above the accretion disks surrounding supermassive black holes in distant galaxies.

With millions of times the mass of the Sun, supermassive black holes pull strongly at the material in their host galaxy. Just like water going down a drain, this material backs up into a swirling accretion disk. The material heats up, and blazes with radiation visible clear across the Universe – this is a quasar.

Astronomers from RIT and the University of Hertfordshire in England studied one quasar, PG 1700+518, located about 3 billion light-years from Earth. They were able to detect winds of gas coming off the accretion disk for the first time, both moving vertically away from the disk, but also rotating at the same speed.

This helps solve the long-standing mystery of how the accretion disk rids itself of angular momentum. It turns out, this wind needs to happen. If gas wasn’t being removed this way, material would stop falling in, and the quasar would turn off as the supermassive black hole was starved for fuel.

This wind both helps manage the growth of the black hole, but it also regulates the evolution of the galaxy. As the wind moves out into more distant regions of the galaxy, it helps collapse pockets of cold hydrogen, leading to regions of star formation.

Original Source: RIT News Release

An Even More Massive Black Hole

2007-1030blackhole.thumbnail.jpg

Wait, stop the internet! Remember when I said the most massive black hole had been discovered? Sorry, that record has been broken by an even more “most massive black hole”. 16 times the mass of the Sun? Please. This new one raises the bar with a mass of 24 to 33 times the mass of our Sun.

As with the previous black hole, located in the nearby galaxy M33, this newly announced black hole is in a binary system. It’s located in the nearby dwarf galaxy IC 10, 1.8 million light-years from Earth in the constellation Cassiopeia. Since it’s orbiting another star, astronomers were able to calculate its mass – 24-33 solar masses.

The discovering team, led by Andrea Prestwich of the Harvard-Smithsonian Center for Astrophysics used NASA’s Chandra X-ray Observatory to study IC 10. They observed that the galaxy’s brightest X-ray source, IC 10 X-1, varied in brightness. This led them to believe that a star was periodically passing in front of a black hole, briefly obscuring it from view.

Follow up observations with NASA’s Swift satellite confirmed that the black hole was being eclipsed by the companion star, and gathered enough data that astronomers could work out the orbital period, and thus the masses of both objects.

A black hole this massive is surprising. Astronomers calculate that massive stars should throw off most of their gas before detonating as supernovae. No black hole should be able to exceed 15 times the mass of the Sun.

In the case of IC 10 X-1; however, it’s blown past that theoretical limit. Of course, it could have detonated as its largest size, and then consumed material from its companion article. But according to their calculations, it could only have gained 1 or 2 solar masses over the years.

So how did it get so large?

It probably started life with about 60 times the mass of the Sun. Since its host galaxy is deficient in any heavier elements, it was probably composed largely of hydrogen and helium. The heavier elements are actually easier to blow away from the star on the solar wind, so it maintained most of its mass right up until the end.

Original Source: CfA News Release

Hundreds of Hidden Black Holes Discovered

2007-1029quasar.thumbnail.jpg

Astronomers now believe there are supermassive black holes at the heart of every galaxy. When these black holes are actively feeding on material, they blaze with radiation, visible across the Universe. These active galaxies are known as quasars, and they were thought to be very common in the early Universe. But astronomers were having trouble finding almost any of them. It turns out, they were just hiding.

Supermassive black holes live at the very centre of galaxies, regions that can be thick with gas and dust. As the supermassive black hole goes into its actively feeding stage, the torrents of radiation that pour out collide with the dust. Instead of shining across the Universe, the radiation is smothered by dust.

These black holes are hidden, but they’re not entirely undetectable. Astronomers used NASA’s Spitzer Space Telescope to study 1,000 dusty, massive galaxies known to be furiously making stars. With all this gas and dust tearing around, you would think the supermassive black holes would be actively feeding, and blazing as quasars. But no quasars were seen.

Spitzer’s infrared view, however, allowed astronomers to pierce through the dusty veil surrounding the supermassive black hole, and see that 200 of the galaxies were producing an unusual amount of infrared light. The quasars heat up the dust in the surrounding doughnut cloud, and this cloud gives off the radiation detected by Spitzer.

These quasars are between 9 and 11 billion light-years away. In other words, we see the light they gave off when they were only 2.5 – 4.5 billion years old. Before now, only the rare, extremely energetic quasar was visible – after they had cleared away the surrounding gas and dust. This expanded population gives astronomers a much better understanding of galaxy evolution in the early Universe.

This discovery also downplays the role that galaxy collisions might have had in the early Universe, “theorists thought that mergers between galaxies were required to initiate this quasar activity, but we now see that quasars can be active in unharassed galaxies,” said co-author David Alexander of Durham University, United Kingdom.

The observations were made as part of the Great Observatories Origins Deep Survey, the most sensitive survey to date of the distant universe at multiple wavelengths.

Original Source: NASA News Release

Heaviest Stellar Mass Black Hole Discovered

2007-1017blackhole.thumbnail.jpg

Black holes come in two varieties: supermassive and stellar. The supermassive variety can have millions of times
the mass of a star, while the stellar varieties are usually just a few times the mass of a single sun. Using the Chandra X-Ray Observatory, astronomers have turned up the most massive stellar mass black hole ever seen, weighing in at 15.7 times the mass of the Sun, lurking in a nearby galaxy.

M33 is a relatively nearby galaxy, located only 3 million light years from Earth. This newly discovered black hole has been designated as M33 X-7.

Astronomers using NASA’s Chandra X-Ray Observatory and the Gemini telescope on Mauna Kea were able to precisely determine the black hole’s mass because it’s actually in a binary system. Its binary partner is unusual too; a star with 70 times the mass of the Sun.

M33 X-7 orbits its companion star every 3.5 days, briefly passing behind it. This blocks the torrent of X-rays streaming from the environment around the black hole, so that astronomers were able to calculate its orbit. Once they could calculate the orbits of the two binary objects, it’s relatively straightforward to calculate their respective masses.

The fate of the companion star will eventually match its partner. “This is a huge star that is partnered with a huge black hole,” said coauthor Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. “Eventually, the companion will also go supernova and then we’ll have a pair of black holes.”

Although the black hole has less mass today, it must have started out with more. With more mass in the original star, it would have consumed its fuel more quickly, and detonated as a supernova earlier.

Here’s a puzzle, though. Before the black hole formed, the two stars wouldn’t have been able to orbit so closely. In fact, they would have been orbiting inside each other. This means that they were once further apart, and the process of sharing their outer atmospheres brought their orbits closer together.

Original Source: Chandra News Release

Are We Made of Quasarstuff Too?

2007-1009blackhole.thumbnail.jpg

Carl Sagan noted that we’re all made of starstuff; the elements fused together in stars and detonating supernovae. But maybe we’re made of something else too, outflowing dust from actively feeding supermassive black holes – known as quasars – that populated the early Universe. New observations made by NASA’s Spitzer Space Telescope has found evidence of dust pouring out of distant quasars. Dust that might have gone on to form more complex molecules, and even life. We’re all made of quasarstuff?

Our Sun formed in a region of the Milky Way enriched by the deaths of massive stars. As these monsters detonated as supernovae, they created the heavier elements and spread them far and wide around the region. But what about the early Universe, before generations of massive stars had a chance to live and then die as supernovae? Where did all the raw materials come from?

Researchers from the University of Manchester in the U.K. have written a new research article describing how they have discovered dust pouring out of supermassive black holes in the early Universe. Known as quasars, and bright enough to be seen clear across the Universe, these actively feeding black holes are actually quite messy. They eject more material out in polar jets than they’re actually able to consume.

And according to Spitzer, the material they’re ejecting contains plenty of complex dust. In one example, a quasar 8 billion light-years away is spewing out a mix of ingredients that make up glass, sand, marble and even precious gems like rubies and sapphires.

This is quite surprising, since the main ingredient of sand, crystalline silicate, can’t last long in space. The radiation from stars should be blasting the molecules back to a glass-like state. If there’s crystalline silicate, there must be a source replenishing it faster than the radiation can break it down. That source seems to be quasars.

It now appears that both supernovae and quasars work together to seed galaxies with heavier elements and complex molecules. So, we might not only be starstuff, we could also be quasarstuff.

Original Source: NASA/JPL/Spitzer News Release