Hundreds of Massive Stars Have Simply Disappeared

This artist’s impression shows a possible seed for the formation of a supermassive black hole. Two of these possible seeds were discovered by an Italian team, using three space telescopes: the NASA Chandra X-ray Observatory, the NASA/ESA Hubble Space Telescope, and the NASA Spitzer Space Telescope.

The lifecycle of a star is regularly articulated as formation taking place inside vast clouds of gas and dust and then ending either as a planetary nebula or supernova explosion. In the last 70 years however, there seems to be a number of massive stars that are just disappearing! According to stellar evolution models, they should be exploding as supernova but instead, they just seem to vanish. A team of researchers have studied the behaviour of star VFTS 243 – a main sequence star with a black hole companion – and now believe it, like the others, have just collapsed, imploding into a black hole!

Continue reading “Hundreds of Massive Stars Have Simply Disappeared”

Merging Black Holes Could Give Astronomers a Way to Detect Hawking Radiation

Simulation of merging supermassive black holes. Credit: NASA's Goddard Space Flight Center/Scott Noble
Simulation of merging supermassive black holes. New research shows how dark matter overcomes the Final Parsec Problem. Credit: NASA's Goddard Space Flight Center/Scott Noble

Nothing lasts forever, including black holes. Over immensely long periods of time, they evaporate, as will other large objects in the Universe. This is because of Hawking Radiation, named after Stephen Hawking, who developed the idea in the 1970s.

The problem is Hawking Radiation has never been reliably observed.

Continue reading “Merging Black Holes Could Give Astronomers a Way to Detect Hawking Radiation”

A New Way to Measure the Rotation of Black Holes

Sometimes, astronomers get lucky and catch an event they can watch to see how the properties of some of the most massive objects in the universe evolve. That happened in February 2020, when a team of international astronomers led by Dheeraj (DJ) Pasham at MIT found one particular kind of exciting event that helped them track the speed at which a supermassive black hole was spinning for the first time.

Continue reading “A New Way to Measure the Rotation of Black Holes”

Black Holes are Firing Beams of Particles, Changing Targets Over Time

Black holes seem to provide endless fascination to astronomers. This is at least partly due to the extreme physics that takes place in and around them, but sometimes, it might harken back to cultural touchpoints that made them interested in astronomy in the first place. That seems to be the case for the authors of a new paper on the movement of jets coming out of black holes. Dubbing them “Death Star” black holes, researchers used data from the Very Long Baseline Array (VLBA) and the Chandra X-ray Observatory to look at where these black holes fired jets of superheated particles. And over time the found they did something the fiction Death Star could also do – move.

Continue reading “Black Holes are Firing Beams of Particles, Changing Targets Over Time”

Not All Black Holes are Ravenous Gluttons

This artist’s impression shows the record-breaking quasar J059-4351, the bright core of a distant galaxy that is powered by a supermassive black hole. The light comes from gas and dust that's heated up before it's drawn into the black hole. Credit: ESO/M. Kornmesser

Some Supermassive Black Holes (SMBHs) consume vast quantities of gas and dust, triggering brilliant light shows that can outshine an entire galaxy. But others are much more sedate, emitting faint but steady light from their home in the heart of their galaxy.

Observations from the now-retired Spitzer Space Telescope help show why that is.

Continue reading “Not All Black Holes are Ravenous Gluttons”

Webb Sees Black Holes Merging Near the Beginning of Time

The field in which the ZS7 galaxy merger was observed by JWST. Courtesy ESA/Webb, NASA, CSA, J. Dunlop, D. Magee, P. G. Pérez-González, H. Übler, R. Maiolino, et. al
The field in which the ZS7 galaxy merger was observed by JWST. Courtesy ESA/Webb, NASA, CSA, J. Dunlop, D. Magee, P. G. Pérez-González, H. Übler, R. Maiolino, et. al

A long time ago, in two galaxies far, far away, two massive black holes merged. This happened when the Universe was only 740 million years old. A team of astronomers used JWST to study this event, the most distant (and earliest) detection of a black hole merger ever.

Continue reading “Webb Sees Black Holes Merging Near the Beginning of Time”

Supermassive Black Holes Got Started From Massive Cosmic Seeds

The J0148 quasar circled in red. Two insets show, on top, the central black hole, and on bottom, the stellar emission from the host galaxy. Credit: NASA

Supermassive black holes are central to the dynamics and evolution of galaxies. They play a role in galactic formation, stellar production, and possibly even the clustering of dark matter. Almost every galaxy has a supermassive black hole, which can make up a small fraction of a galaxy’s mass in nearby galaxies. While we know a great deal about these gravitational monsters, one question that has lingered is just how supermassive black holes gained mass so quickly.

Continue reading “Supermassive Black Holes Got Started From Massive Cosmic Seeds”

Roman Space Telescope Will Be Hunting For Primordial Black Holes

This artist's illustration shows what primordial black holes might look like. In reality, the black holes would struggle to form accretion disks, as shown. Image Credit: NASA’s Goddard Space Flight Center

When astrophysicists observe the cosmos, they see different types of black holes. They range from gargantuan supermassive black holes with billions of solar masses to difficult-to-find intermediate-mass black holes (IMBHs) all the way down to smaller stellar-mass black holes.

But there may be another class of these objects: primordial black holes (PBHs) that formed in the very early Universe. If they exist, the Nancy Grace Roman Space Telescope should be able to spot them.

Continue reading “Roman Space Telescope Will Be Hunting For Primordial Black Holes”

Fall Into a Black Hole With this New NASA Simulation

NASA used a supercomputer to visualize falling into a black hole much like the one in the center of the Milky Way. Image Credit: NASA’s Goddard Space Flight Center /J. Schnittman and B. Powell

No human being will ever encounter a black hole. But we can’t stop wondering what it would be like to fall into one of these massive, beguiling, physics-defying singularities.

NASA created a simulation to help us imagine what it would be like.

Continue reading “Fall Into a Black Hole With this New NASA Simulation”

Neutron Stars Could be Capturing Primordial Black Holes

This magnetar is a highly magnetized neutron star. This artist's illustration shows an outburst from a magnetar. Neutron stars that spin rapidly and give out radiation are called pulsars, and specific pulsars are rare in the core of the Milky Way. Credit: NASA/JPL-CalTech
This magnetar is a highly magnetized neutron star. This artist's illustration shows an outburst from a magnetar. Neutron stars that spin rapidly and give out radiation are called pulsars, and specific pulsars are rare in the core of the Milky Way. Credit: NASA/JPL-CalTech

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to explain this for years. One of the more interesting ideas comes from a team of astronomers in Europe and invokes dark matter, neutron stars, and primordial black holes (PBHs).

Continue reading “Neutron Stars Could be Capturing Primordial Black Holes”