Scott Alan Johnston (that’s me!) joined the Universe Today team just over a year ago. Since then, I’ve written over 50 space news stories for the website – time flies when you’re having fun! But when I’m not writing articles here on Universe Today, I’m a historian of science, and I recently released a new book about the history of timekeeping.
Have you ever wondered why we tell time the way we do? Well, history buffs, come along for a journey:
On October 19th, 2017, astronomers from the Haleakala Observatory in Hawaii announced the first-ever detection of an interstellar object in our Solar System. In honor of the observatory that first spotted it, this object (designated 1I/2017 U1) was officially named ‘Oumuamua by the IAU – a Hawaiian term loosely translated as “Scout” (or, “a messenger from afar arriving first.”)
Multiple follow-up observations were made as ‘Oumuamua left our Solar System and countless research studies resulted. For the most part, these studies addressed the mystery of what ‘Oumuamua truly was: a comet, an asteroid, or something else entirely? Into this debate, Dr. Shmuel Bialy and Prof. Avi Loeb of the Harvard Institute for Theory and Computation (ITC) argued that ‘Oumuamua could have been an extraterrestrial probe!
Having spent the past few years presenting this controversial theory before the scientific and astronomical community, Prof. Loeb has since shared the story of how he came to it in his new book, Extraterrestrial: The First Sign of Intelligent Life Beyond Earth. The book is a seminal read, addresses the mystery of ‘Oumuamua, and (most importantly) urges readers to take seriously the possibility that an extraterrestrial encounter took place
Editor’s note: “Eight Years to the Moon: The History of the Apollo Missions” is a new book, just out today, written by Universe Today’s Nancy Atkinson, with a foreword by Apollo 9 astronaut Rusty Schweickart. The book tells the unique personal stories of over 60 engineers and scientists who worked behind the scenes to make the Apollo program possible, and is filled with stories of the dedication and perseverance it took to overcome the challenges, hurdles and conflicts of doing things that had never been done before. The stories are fun, heart-warming and heart-breaking and they provide a glimpse into the lives of some of the hundreds of thousands of people who made it possible to land humans on the Moon.Read an excerpt of Chapter 1 here on Universe Today:
I was fortunate enough to spend half an hour with Dr. Alan Stern and Dr. David Grinspoon to talk about their new book: Chasing New Horizons – Inside the Epic First Mission to Pluto. We had a great conversation, all about the political and engineering hurdles it took to get the mission literally off the ground, and out to Pluto. We also talked about what future missions could be in the works to return to Pluto, the amazing recent discoveries made at the Pluto system, and the next target for New Horizons.
Where will science’s next big advance arise? Like Archimedes, maybe someone will jump up out of a tub of hot water, shout ‘Eureka’ and direct everyone to use the next great discovery. Or maybe some science-bureaucrats will gather together via some on-line meeting tool and choose to chase down the most promising opportunity. Given that experiments seem to be getting harder and harder to undertake, then it’s no surprise that one hugely successful space observatory arose from the latter. This is the main message of the book “Inventing a Space Mission – the Story of the Herschel Space Observatory” by a group of authors: Minier, Bonnet, Bontems, de Graauw, Griffin, Helmich, Pilbratt and Volonte. And in this book they really promote this collaborative method of advancing science.
Succeeding with any big space project requires the alignment of so many factors. There is need for an objective that has support across a broad swath of decision makers. There is need for perseverance as the project may need many decades to come to fruition. And there is need for stable funding to maintain impetus. This book illustrates how all these and many other factors made the Herschel Space Observatory successful. First, it acknowledges the skill of decision makers in choosing a science objective that was hugely challenging yet reasonably achievable. The book has a simple figure showing this; it’s the Technical Readiness Level (TRL) for the observatories subsystems over the years of development. In it one sees that all were at TRL Level 1 to begin in 1982. And the book then describes some of the progressive, subsequent steps to bringing these to the necessary TRL 8. The book also ably demonstrates perseverance as industry and government scientists were pushed continually to modify deliverables to meet budgets and requirements. And perhaps understated in the book is the underlying acknowledgement that none of this would have come to pass without stable, continual funding from the European Space Agency; funding be so vital for all science projects.
Perhaps most interesting about this book is that the authors do not deal much with the results of the observatory. At most the book recites numbers of dissertations and research papers that derived from the observatory’s data. Rather, this book pushes two main considerations: one, that ‘coopetition’ and ‘fair sociality’ were necessary community ideals and two, that TRL levels should not restrict science. Regarding the first, the book champions the differing attitudes within the Herschel community yet their necessity to cooperate in order to progress. The community needed to amicably pick and choose competing options, so as to allow some efforts to succeed and let other efforts disappear. Regarding the second, the book demonstrates that allowing for growth in the capabilities of industry and knowledge of science can actually be a solid instigator for change. Both of these were considered so valuable that the book continually championed them for future science projects.
So what does this book tell you about the Herschel Space Observatory itself? Simply put, it was a calculated, solid advance in viewing capability. By choice, it measured the very low wavelengths from 55 to 672 micrometres. It was huge with a 3.5metre antenna and, amazingly, over 2300litres of liquid Helium. Its measuring devices were kept at temperatures about 0.3Kelvin. And it spent a little over 4 years at the L2 location taking observations. It was conceived in 1982 and ended its capability in 2013. Over 23 institutes and 11 countries contributed, together with hundreds of people. Through its requirements, many technologies were advanced and it prepared the road to further advancements. As a science project, this book speaks proudly of the Herschel Space Observatory’s success.
Keep in mind though that this book is a report with many authors. As such, it is very formal and perhaps slightly political. The writing is dry. The subject material is wholly big science. Most figures are graphs and plots, likely from slide shows. Sometimes the detail seems too fine, as with that for the cold SQUID multiplexer. And sometimes the focus seems too diverse, as with the co-citation map. Nevertheless, it’s obvious that the authors were passionate about their subject and this comes across solidly throughout the book.
Advances to science and knowledge can come from anywhere at any time. But today most advances require a huge amount of preparation and effort. Space missions are prime examples of this and the book “Inventing a Space Mission – the Story of the Herschel Space Observatory” by Minier, Bonnet, Bontems, de Graauw, Griffin, Helmich, Pilbratt and Volonte presents a very solid view of the mission as a well-managed, research project. And it describes a very reasonable and perhaps optimal way for continuing the use of particular projects to advance big science.
What will Curious George grow up to be? Being curious, then George will ask a lot of questions. And if lucky then physics will be George’s destiny, for physics seems to have so many answers. From the biggest to the smallest, that’s its purview. And for Delia Perlov and Alex Vilenkin in their book “Cosmology for the Curious” aim to answer a great many of those questions. Or at least those questions pertaining to mankind’s place in space.
Cosmology is all about space and time. Which means that this book begins by traveling back in time. Traveling to the time of the Greeks. Hundreds of years b.c.e. Apparently the Greek philosophers did a lot of pondering about the smallest of things they called atoms. And the largest, they called planetary epicycles. From this baseline the book very quickly progresses through the traditional growth of knowledge with some choice descriptions.
As an example it proposes energy as nature’s ultimate currency. And it allows the reader to wonder. Wonder why the sky is black at night. And ask questions. As in “why is the speed of light the same as the Earth travels about the Sun?”
Most of the descriptions rely on Newtonian mechanics for explanation but it is only a slight passing for the book quickly raises Einstein’s field equations, particularly emphasizing inertial frames of reference. With this, the reader is accorded a pleasant view of Lorentz transforms, a somewhat abstract view of the Sun being flung out of the solar system by a very large golf club and a realization of how the GPS navigation system incorporates gravitational time dilation. Still all this is simply the cosmological baseline for the reader.
Now the neat thing about cosmology is that there is simply no first hand observation. Most everything of interest happened a long time ago and in a somewhat different relative location. And this is the book’s next and most rewarding destination. Through many arguments or thought experiments, it associates the cosmic microwave background with redshifts and the changing spatial dimensions.
Later, postulated dark matter and dark energy refocus the reader’s attention on the very beginning of the universe in a big bang. Or perhaps a multiverse of many shapes and various physical laws. Which of course leads to considerations about what’s next. How will our universe continue? Will it go to a quiet heat death or will we be gobbled up by another bubble universe? We can’t determine from our vantage point on Earth. But this book does provide its own vantage point.
Helping this book along are a number of pleasant additions. For one, often when an accomplished researcher is mentioned, there’s an accompanying, quite complementary photograph. And equations are liberally spread throughout as if teasing the reader to explore more. But the book has very little math. And best of all are the questions at the end of each chapter. Now these questions aren’t your typical textbook questions. For example, consider “Inflation is almost certainly eternal to the future. Is it eternal to the past too? Why/why not?” Isn’t this a great question? And one that you really can’t get wrong.
Which of course begs the question “Why aren’t you as curious as George?” There’s a whole universe out there waiting for us to explore and understand. Let’s not take it for granted. Let’s satisfy our curiosity perhaps with reading the marvellous book “Cosmology for the Curious” by Delia Perlov and Alex Vilenkin. After all you don’t want to be upstaged by George, do you?
Think of the ease. With a simple command of “Make it so” humans travelled from one star to the next in less time than for drinking a cup of coffee. At least that’s what happens in the time-restricted domain of television. In reality it’s not so easy. Nor does Rachel Armstrong misrepresent this point in her book of essays within “Star Ark – A Living Self-Sustaining Spaceship“; a book that brings some fundamental reality to star travel.
Yes, many people want to travel to other stars. We’re not ready for that. We’re still just planning on getting outside Earth’s protective atmosphere (again). Yet making preparations and doing judicious planning is the aim of this book. Wisely though, this book isn’t technical. It has no mention of specific impulse calculations or ion shields. Rather, this book takes a very liberal view of space travel and ponders deep questions such as whether the cosmos is an ecosystem.
Does our species have an appropriate culture for space travel? What exactly is a human? These concerns get raised in some very thought provoking sections. And given that the editor is an architect and one who apparently considers the emotional qualities of a structure as much as functional qualities, then this book’s presentation tends to be a little more on the philosophical side of things.
In particular, it looks at the benefits of living entities. For instance it notes that humans live in symbiotic relationships with a host of internal and external organisms. Most have already gone into space either within people who have traveled in space or possibly upon probes sent to other planets. So we aren’t the only species that’s traveled beyond Earth. But which beings are sufficient and necessary to keep humans alive for the generations needed to travel to another star? That question and many answers come up often.
As well, the essays get into bigger questions such as: What is life? Could the vessel be an organic construct? How might today’s humans evolve to tomorrow’s star travelers? Should humans travel in space and promote/continue panspermia? Yes, these questions and many more are raised in the essays collected within this book. And true to form for any book considering star travel, there aren’t any strict answers. There are however lots of ideas and concepts to better prepare humans.
Much of this book seems to center around the authors’ involvement with the Persephone project of Icarus Interstellar. Yet there’s very little description of either. However, the book does have wonderful descriptions of Biitschli experiments, explanations of living walls and critiques of theatrical productions.
There are a few fictional passages and some poetry. The long list of references indicates a broad knowledge of the technical issues, though the focus is on humanity and the living aspect. This focus flows through the essays, but having a collection of many authors makes for a disjointed flow. The writing styles are unique, the viewpoints are particular and the emphasis specialized for each. One common viewpoint does keep arising though. That is, we are already on a living spaceship; the Earth. Earth gives a unique platform for assessing the ability to travel to other stars. The essays state that it is or at least was a veritable, closed self-sustaining life support system. And, as seems to be the norm these days, the essays acknowledge that solutions for space travel would be just as good for people remaining behind upon Earth or travelling to the Moon or to Mars and so on. This care and concern for living organism keeps the book grounded, so to speak.
The all-encompassing-solution-finder may be a strength or a weakness to Rachel Armstrong’s collection within the book “Star Ark – A Living Self-Sustaining Spaceship”. As the book’s essays describe, humans have an incredible ability to think and act in abstract fashion. Just envisioning an attempt to send sentient beings to another star demonstrates this. But will we be able to enact this idea and what form might a star vessel take? Reading of this is easy. Will taking the necessary steps be just as easy?
“Tell me what time is it?” asked the stranger on the street.
A simple enough question that can be answered with a simple enough glance at the watch on your wrist. And so goes the appreciation of time for the average person. But is time simply a notation of events in our life? Or is it a truly robust dimensional attribute? For one answer read Paul Nahin’s book “Time Machine Tales” and you will soon discover that it is the latter. And that time may be much, much more.
If time is a dimension, then Nahin’s book has us believe that we can move along this dimension as easily as we move along a Euclidean spatial dimension. This means that time travel should be possible. Yet, as someone said, “If people can travel in time then why aren’t we seeing time travelers popping up all over?”
And in a sense, this conundrum shapes this book. From very many perspectives, Nahin explores and conjectures. From the viewpoint of ancient Greeks or Catholic scholars long since gone, the book gives rise to, what is time? does the past stop at the Big Bang? and is our future predefined?
This book presents philosophers’ quotes and their views from yesteryear and from today. Now philosophy is fascinating unto itself but throw in large quantiles of technical lore and this book’s perspective on time expands to a much larger knowledge base. That is, the book brings up exotics like Dirac radios, block universes, the bilking paradox, chronons and things smaller than the Planck length.
Intrigued by this? It gets better as the book takes the reader through the derivation of the Lorentz transformation and on to the backward and forward tilt of light cones. If this doesn’t get your interest up, then also consider that Nahin has liberally strewn quotes and references from science fiction throughout. This leaves the reader pondering if the fiction stories are forerunners to reality or merely offshoots of very active imaginations.
And a lasting question revolves around whether scientific discovery is attained through hard work, through thoughtful imagination or through provisions by a time traveler. That’s just one of the choices that you, as the reader, get to make. Just give yourself the time to decide.
Given the fascinating, current discussions on dimensionality, it’s not difficult to pique a science reader’s interest on time travel. And this book grabs and holds such a reader. However, abrupt swings like from the musings of H.G. Wells to the showcasing of the concerns of John Wheeler make for bumpy reading on occasion. Further, the introduction implies that teachers could use the book; implying that this book is a textbook. Yet where are the courses on time travel? Nevertheless, from the view of simply enjoying science, this book makes for enjoyable reading, homework assignments and all.
Will people travel in time? Will they only travel forward in time? Can they only travel between here and other universes? When will this take place? There are so many questions about time. If nothing else, use the time you have wisely.
Looking for great holiday gifts for that special someone who is interested in space and the stars? Two writers for Universe Today have you covered whether it’s exploration of the Solar System or learning what to look for in the night sky.
Universe Today’s Contributing Editor Nancy Atkinson shares the insights of over 35 NASA scientists and engineers in her new book “Incredible Stories from Space.” And if that gives you the itch to go outside and look up, be sure to get a copy of Bob King’s “Night Sky with the Naked Eye” to help you explore space from your own backyard.
In “Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing our View of the Cosmos” Nancy takes readers inside the robotic space missions that are transforming our understanding of the solar system and beyond.
Weaving together one-on-one interviews along with the extraordinary sagas of missions, this book provides a detailed look at both current and future unmanned missions. It chronicles the struggles and triumphs of nine current spacecraft and captures the true spirit of exploration and discovery. Full color images throughout reveal scientific discoveries and the stunning, breathtaking views of our universe, sent back to Earth by our robotic emissaries to the cosmos.
From the first-ever mission to Pluto to the unprecedented hunt for planets outside our solar system, readers will journey along with missions like New Horizons, Kepler, the Curiosity Mars rover, and the iconic Hubble Space Telescope as they unlock the mysteries of the universe. Learn more about the latest findings in our solar system with the Cassini mission to Saturn, Dawn’s visit to the asteroid belt, the Solar Dynamics Observatory, and the Mars and Lunar Reconnaissance Orbiters. Explore the future of space exploration with a preview of upcoming missions.
Over the next couple of weeks, Nancy will be sharing “writing-of” stories and other insights garnered during her interviews and travels for the book. Also look for a preview of one chapter here on Universe Today during the week of Dec. 19.
“Night Sky with the Naked Eye: How to Find Planets, Constellations, Satellites and Other Night Sky Wonders without a Telescope” will help you gain a deeper appreciation of the universe and our place in it while advancing your knowledge of the night sky.
Bob lays out a series of activities that are fun and educational while teaching you how to spot the International Space Station, follow the moon through its phases, forecast an aurora and watch a meteor shower along with traditional night sky activities like identifying the planets, stars and constellations. Unique illustrations and stunning photos help the reader understand the concepts presented.
Bob also shows readers how to use a smart phone, the Internet and other resources to enhance time spent under the stars, making this a truly modern and updated night sky book. Many people curious about the night sky think you need expensive equipment to enjoy it. You don’t. This book shows how we can learn a lot about the universe and deepen our appreciation of its beauty using nothing more than our eyeballs.
Both books were published by Page Street Publishing, a subsidiary of Macmillan. They are available at Amazon, Barnes & Noble and IndiBound (links below, with great discounts available at this time!) While Nancy’s book doesn’t come out until Dec. 20, its available for pre-order with delivery on the 20th, just in time for the holidays.
If we are indeed stardust, then what will our future hold? And what happened to all that other dust that isn’t in people or planets? These are pretty heady questions perhaps best left for late at night. Since the age of Galileo and perhaps even beforehand these inquisitive night goers have sought an understanding of “What’s out there?” Paul Murdin in his book “Rock Legends – the Asteroids and Their Discoverers” doesn’t answer the big questions directly but he does shed some capricious light upon what the night time reveals and what the future may hold.
We’re pretty confident that our solar system evolved from a concentration of dust. Let’s leave aside the question about where the dust came from and assume that, at a certain time and place, there was enough free dust that our Sun was made and so too all the planets. In a nice, orderly universe all the dust would have settled out. However, as we’ve discovered since at least the time of Galileo this didn’t happen. There are a plethora of space rocks — asteroids — out wandering through our solar system.
And this is where Murdin’s book steps up. Once people realized that there more than just a few asteroids out there, they took to identifying and classifying them. The book takes a loosely chronological look at this classification and at our increasing knowledge of the orbits, sizes, densities and composition of these space wanderers.
Fortunately this book doesn’t just simply list discovery dates and characteristics. Rather, it includes significant amounts of its contents on the juicy human story that tags along, especially with the naming. It shows that originally these objects were considered special and refined and thus deserved naming with as much aplomb as the planets; i.e. using Greek and Roman deities. Then the number of discovered asteroids outpaced the knowledge of ancient lore, so astronomers began using the names of royalty, friends and eventually pets. Today with well over a million asteroids identified setting a name to an asteroid doesn’t quite have the same lustre, as the author is quick to point out with his own asteroid (128562) Murdin. Yet perhaps there’s not much else to do while waiting for a computer program to identify a few hundred more accumulations of dust, so naming some of the million nameless asteroids could happily fill in some time.
With the identifying of the early asteroid discoverers and the fun names they chose, this part of the book is quite light and simple. It expands the fun by wandering a bit just like the asteroids. From it you learn of the discovery of palladium, the real spelling of Spock’s name and the meaning of YORP. Sometimes the wandering is quite far, as with the origins of the Palladium Theatre, the squabbling surrounding the naming of Ceres and the status of the Cubewanos. Yet it is this capriciousness that gives the book its flavour and makes it great for a budding astronomer or a reference for a generalist. The occasional bouts of reflection on the future of various asteroids and even of the Earth add a little seriousness to an otherwise pleasant prose.
So if you’re wondering about the next occultation of Eris or the real background of the name (3512) Eriepa then you’re into asteroids. And perhaps you’re learning how to survive on a few hours of sleep so you can search for one more faint orbiting mote. Whether that’s the case or you’re just interested in how such odd names came to represent these orbiting rocks then Paul Murdin’s book “Rock Legends – the Asteroids and Their Discoverers” will be a treat. Read it and maybe you can use it to place your own curve upon an asteroid’s name.