Book Review: Our Improbable Universe

A long time ago, in our universe, everything (energy, matter and light) was contained within the volume of about a grapefruit. This is the starting point for Mallary. From this, he then shows how 14 fundamental relationships translated this existence to the one we live in today. Quarks and their conjugation-parity symmetry together with the four forces (gravitational, electromagnetic, and the strong and weak nuclear forces) are at one relational extreme. Reality in three dimensions and the exclusion of two electrons from being in the same quantum state are at another. Having set these, he demonstrates their effect in creating one human filled planet, ours, in a solar system within a somewhat average galaxy somewhere in the confines of existence.

As much as Mallary’s translations show how the grapefruit changed with time, he also shows how different translations would have led to a much different universe. For example, if the expansion rate of the early universe was greater, then atoms could not have coalesced into stars. If lower, then the universe would have collapsed into itself long before any human type life could have evolved. He brings this same perception to the formation of protons, atoms, stars, and planets. Without each of these particular translations, an alternative universe could exist but would be fundamentally quite different, though not perhaps any less probable, than our own. Physical properties balance our universe’s characteristics on a knife’s edge. Too much, more or less, could nullify a critical component and a resulting universe would be vastly different than ours.

Mallary gives this same treatment to life forms. Rather than a grapefruit size universe, he starts with RNA and DNA sequences. Again we read that a definitive prescription dictates life as we know it. Nevertheless, we get shown that particular conditions did shape the evolution of Earth’s life in a special way and many other outcomes could have been possible. For example, atmospheric changes from carbon dioxide to oxygen directly changed resident life forms. Without these changes, we wouldn’t likely be here. A more direct effect arose from, mass extinctions empowered certain species, one in particular that gave rise to the prominence of mammals and ourselves. Using a chronological outline, he steps through these conditions, arguing that most of these were important if not critical for development into today’s humans. In spite of this, he then goes on to note that these conditions are not particularly unique and life, human like or other, could and should easily occur elsewhere.

At about this point in the book, about half way through, Mallary stops using this scientific analysis for physical changes and starts applying it to people and societies. If you can imagine, it is like the ship ‘Scientific Analysis’ running hard into the ship ‘Philosophy’. Anthropomorphism gets mixed up with divine creation, which gets mixed up with randomness, which all leads to consider the question about the purpose of life, though he never directly raises this question. In summary, he nicely ties this into a discussion on our actions today, their reasonableness and what the future might have in store. His speculations about searching for the signature of a creator are particularly entertaining as he attempts to setup verifiable, scientific conditions.

However, this significant switch in style by the author is a bit disconcerting. The first of the book reads like a text. It gives examples, provides diagrams and discusses current theories and ideas. The later part of the book diverges into ‘ether’ like subjects, such as wondering if cyber viruses are life forms. In spite of this, the discussions provoke much contemplation such as the debate on the wisdom of contacting aliens.

For all we know, the only universe which we will ever sense is our own. There may be other universes but as Michael Mallary demonstrates in his book Our Improbable Universe ours is very unique and much of its constituents, including us, depends very much upon this uniqueness. Within this book, he also provides much insight into how these relationships shaped our existence, while cajoling us into using all our senses to making the best of ourselves during our life within our universe.

To get your own copy, visit Amazon.com.

Review by Mark Mortimer

Book Review: Apollo 12 The NASA Mission Reports, Volume Two

The Apollo 12 mission landed the second set of crewmen onto the moon. After the success of Apollo 11, the attitude had swung a bit from ‘can we make it’ to ‘what’s the best we can do’. The lunar orbit insertion technique changed, the landing had a distinct target (i.e. near Surveyor 3), and expectations for exploration and assessment were more detailed and grander. If everything else remained the same, this might be considered a trivial advance. But space travel was still new and with the complex and tightly coupled systems involved, something always sprang up. Godwin, in his compilation, provides the official view of many of these occurrences.

The book is loosely divided into three sections. The first examines the expectations and the operations, the second examines the equipment and experiments, while the third looks at equipment anomalies. The expectations centre about the men’s activity on the surface, the geological examination, scientific experiments and their own mobility. Coarse maps and photographs show routes and setups for surface equipment. The operations description describes the descent in some detail, including charts of altitude, pitch, yaw and roll as a function of time. In fact, by continually using a time reference, Godwin provides an excellent metric to keep tabs of what’s happening..

Seeing as this is an official report, it is not surprising that the next section gives much more attention to the equipment and experiments rather than crew activities. Descriptions portray the purpose and composition of most of the experiments. Direct results are listed, such as identifying the number of rolls of film successfully taken. Charts show seismic output. Some of the equipment is profiled. The included pilot’s report gives the precise bureaucratic description of events from launch through to landing back on earth. A simple strip chart lists major events opposite ground elapsed time to permit quick review of activities. Suffice it to say that Apollo12’s mission objectives were almost all completed satisfactorily, that is, the equipment and experiments did what they needed to do.

One of the more interesting parts of this compilation is the review of the anomalies. Imagine sitting on more than 5 million pounds of propellent and then being struck twice by lightening as they were! No serious consequences ensued similarly with other less exciting anomalies. Filters backed up, valves stuck, electronics failed, just like the operation of any large piece of machinery. Perhaps what is more revealing is the small quantity of anomalies. To clarify each, the book provides a point by point description of the anomaly, the resolution and any subsequent action.

Upon reading this book, two powerful messages clearly jump out. The first is the overall complexity of the mission. With help being five days away at best, reliability was critical so care had to be taken and it is a wonder that things went as smoothly as they did. This may account for the pedantic nature of the operations and the dry tone of the reports in the book. The second message is that lessons were learned and actions taken; after all this was the 12th Apollo mission; the second that landed. However, where are these lessons now? Are they only in books like this and dusty government repositories? These unasked questions arise but no answers are present.

Fine as this book is, don’t forget its source, bureaucracy. Dry yes, but to liven your day just watch the included DVD. Astronauts rejoice on landing, sing while collecting geological samples and smile broadly while resting in quarantine. The live video pictures the launch from many angles, the lunar landing, many of the astronaut’s activities on the surface, the rendezvous and the recovery of the crew and capsule after splash down. This double sided disc gives many hours to recreate the mood and feeling of this great event.

What is missing from this book is any discussion, in particular where is the information on the importance of the mission and its objectives. Further, and more important, as most of the book focuses on the anomalies, the consequence of failure should have been added. Did the lightening strikes pose much of a danger? Did the mission ever come close to a hazardous situation and to what consequence? Taking the opportunity to add this perspective would have made this rich book more rewarding.

Von Braun’s vision of the lunar missions was as a stepping stone to bigger and better things. Robert Godwin’s compilation in ‘Apollo 12 The NASA Mission Reports, Volume Two‘ provides an excellently edited selection of the milestones that Apollo 12 achieved and the glitches that made its journey interesting. As a combination, the dry tone of the book and the lively feel of the included DVD make for an entertaining and informative reference for this lunar mission.

To get your own copy, visit Amazon.com.

Review by Mark Mortimer

Book Review: Virtual LM

The book starts with a very brief summary of the lunar module, its conception by John Houbolt, the design and production trials of Grumman and then the astronauts’ concerns. Brief, yet complete, this introduction flows directly into the main feature of the book, the images of the lunar module. These images do a fantastic job of depicting the complete lunar module and then allowing the focus to narrow to examine many of the individual components.

The lunar module came in two versions, first the H series, and a later version, the J series. Though similar, the later J series had a greater capability evidenced mostly by the addition of the lunar rover. First the H and then J type lunar modules have plates showing their totality from a top, bottom and each of the four distinct side perspectives. These provide a ready comprehension of the surface planes, shapes and material. Purposefully simplified for comprehension (e.g. no grommets or weld lines), adjacent archival photographs easily bring reality alongside to compare to the view.

With this overview complete, the book drops into detail mode as the focus shifts to the two stages; the descent stage and the ascent stage. The descent stage first gets the same treatment as the overall module, then it gets ‘blown apart’ so that its internal constituents appear, something like a virtual biology dissection of a frog. The descent module’s shape is cruciform; each of the four quadrants clearly highlight the framework for internal and external supports, fuel tanks and electrical lines. Vivid colours differentiate the control lines and the ‘plumbing’ lines. Often a brief in-line paragraph describes the operational procedures or the design elements.

The ascent stage comes next and it is certainly more fun to go through. This stage housed the two astronauts and allowed them to control the craft, gave them access to the moon’s surface and got them returned to the command module. The windows, keypad computer, many control panels and helmet storage all have detailed closeups. Some of these have their own blow-apart diagrams to show construction. Should the readers get perplexed on the purpose of all these switches, levers and wires, then they can easily resolve this by perusing the attached CD-ROM which has over 2000 pages of operation manuals, checklists and cue cards.

When growing up, I was overly fond of building plastic models. I was amazed at the accuracy and detail of these small plastic miniatures and in my mind they all grew to real size and were valid working copies of the actual subject. This book gives me the exact same feeling. Without ever having seen a lunar module, I have become very acquainted with this craft. I understand its major parts, their placement and, with the documents on the CD ROM, their usage. Careful with this CD ROM though as the book is soft cover. Do not bend.

The missing element for this book would be the operation procedures. Sure they are in the CD ROM, but more could have been in the text. For example, why did the book include detailed views of the circuit interrupt connectors and one of the four hardpoint connections? Are they critical for some procedure? Why is there a close up of the docking light and flood light? Also, having the author’s name on every second page gets distracting. A preferable replacement would have been a length scale to facilitate gauging the size of the subject of the view. Yet, these changes would only have made an already good book that much better.

Today’s ready access to computer aided design (CAD) stations makes the design and development of complex machinery relatively simple. The lunar module came long before these tools, even well before the personal computer. Scott Sullivan in “Virtual LM” uses these amazing present day tools to dissect the lunar module, re-build it and display it for everyone to readily see and understand. This book, together with the enclosed CD-ROM, will bring this amazing spacecraft right up close in front of you, even if it is only virtual.

To get your own copy, visit Countdown Creations.

Review by Mark Mortimer

Book Review: Rocket Science

Rocketry itself has a long history. Possibly its first instance saw gunpowder-driven, arrow-type rockets fired by the ancient Chinese. The modern history of rocketry, especially its science, gathered steam throughout the 1900s as advances in physics and the provisions of necessary materials made a thorough study possible. Within this book many of the relevant physical relationships show how to analyse rocket performance. These include the basics: the laws of thermodynamics, enthalpy and gravitational force, as well as the more particular: thrust, specific impulse and mass ratios. Whenever equations first arise, examples guide the reader (e.g. comparative specific impulses for turbojets, ramjets, scramjets and rockets). However, no derivations or messy calculus appear, so no one will be overcome by the mathematics often associated with rocketry.

The discussion of the necessary materials principally revolves around the fuel. This isn’t surprising, as fuel accounts for well above 90% of the mass of a typical rocket. The many possible fuel types have their pro’s and con’s listed, e.g. whether storable, cryogenic, hypergolic, expensive or toxic. The different containment shapes and methods get described, as do the metals used to contain and support the fuel. Esoteric fuels, such as nuclear fission or fusion, have their due but the authors acknowledge that these are not likely to be a fuel source in the near future.

To compete their overview of rocketry, the authors first identify some of the key players in the pre-World War II time frame. Then they show how the German’s successes with the V-1, V-2 and Rheinbote during World War II led directly to the acquisition and enhancement of this technology by the USA and the USSR. Next, however, the authors pointedly show how these two countries diverged in their pursuits. The USSR stayed with a few capable techniques and from there developed a workhorse capability that today is providing the sole support for the International Space Station. The USA, on the other hand, has pursued many technologies and techniques; almost regularly spending billions of dollars to get to a demonstration phase only to drop further development. With this in mind, a final brief but insightful expos? on the future of rocket development shortlists the needs required to further people’s adventure into space.

As an overview, this book brings together a lot of information into a short, concise, yet expansive text. Facts and figures support many observations and opinions. Quotes and quips from bygone movers and shakers (e.g. Von Braun) add spice and warmth to these numbers. Many tables and figures show the progress (or lack thereof) within the industry. Photographs, both colour and black and white, show many of the rocket systems in use today. Most of NASA’s dreams and hopes (e.g. the NERVA, the nuclear rocket engine) have schematics and/or photographs as well, to round out the information provided.

Perhaps what isn’t expected is the information on satellite production and usage, solar sail utility, sex in space and politics. That is, this book includes more about the rocket or space industry than just the science of rockets. Some of the diversions, however, are worthwhile. For example, the authors include business details like the ‘cost per mile’ or ‘cost per person’. All in all though, this breadth of information makes for a handy reference to a general practitioner or an excellent introduction to a young student with a burgeoning interest in space.

Rockets just might be the pinnacle technical achievement of humankind. With artful combinations of liquids within a shaped chamber or from the pull of materials from a cylinder’s wall, a rocket counters the force of gravity to send people and material off our world. Alfred J. Zaehringer and Steve Whitfield in their book ‘Rocket Science‘ provide the facts, figures and photos to guide any interested person in some of the wizardry of rockets. Rocket science can appear daunting but with this book, anyone can easily delve into the magic.

To get your own copy, visit Countdown Creations.

Review by Mark Mortimer

Book Review: Mars: A Warmer Wetter Planet

This book is an in-depth, technically precise narrative on the geology of Mars. The wealth of provided satellite imagery makes it easily understood by the layman. Images mostly come from Mars Global Surveyor’s MOC system and the Mars Odyssey THEMIS system. Comparisons to the author’s own photographs of Earth’s geological magic magnify the similarities. Yet this is not a picture book. Rather, Kargel does a magnificent job of tying the features into appropriate geological processes. For example, size, frequency and quantity of craters indicate age and tectonics. Crater rim condition demonstrates weathering. Alluvial fans, valleys, and moraines indicate fluid flow. All together these and others lead Kargel to believe and to show us that, at times, the surface of Mars must have had significant amounts of liquid flowing and pooling on its surface. That is, Mars was a much wetter planet than it is today.

But where has this liquid come from and gone to? We don’t know for sure, but Kargel believes the liquid was and still is present on Mars. Warmer equatorial regions have liquid frozen at great depth; mid-latitude regions have this material close to or at the surface; while the polar ice caps and their glaciers act as high density fluid moving at an amazingly slow pace. Kargel’s supposition is that Mars began with a comparatively homogeneous mantle but transitions occurred via ‘MEGAOUTFLO’ events. These episodes of internal geologic activity, such as volcanism, together with cycles of changing orbital eccentricity and obliquity, led to climatic oscillations. Hence, he concludes that though today Mars is very dry, it must have been, at least once before, both a warmer and wetter planet.

The shear breadth of this book can be daunting. Rock types and their personalities abound. Chemical compounds, their formations and their significance also get a solid billing. This is not surprising as after all, Kargel is a pre-eminent geologist and the forward by Harrison Schmitt leaves no doubt whatsoever about the subject. Topics within the text include active outgassing of juvenile volatiles from the mantle, glaciers that flow like condensed laminar fluid down an inclined plane and the forming of the mineral jarosite which requires many times its mass of water.

However this book is not a dry technical treatise. Kargel uses everyday language to discuss what is seen on Mars today, why it came to be, and what use can be made of this new knowledge. He considers the views of Cydonia Clanists and Percival Lowell and how unique life may exist on Mars and where it may be hiding. A very high level view presents the planet’s life cycle starting with accretion and concluding with the charring of its surface during our sun’s final explosion and subsequent collapse into a white dwarf star. He also discusses optimal landing locations for explorers and colonists of Mars, together with processes and techniques for power generation, water provisioning and infrastructure build-out. Still, the focus of this book is Mars’ surface geology and the deductions that result.

And in keeping with the progress of scientific investigation, Kargel is quick to point out that much is needed before any scientific advance is considered valid. This must be kept in mind throughout the book as the phraseology continually changes between observed fact and speculation. Also, given the complexity of the subject, the breadth of discussion is perhaps too broad. This is reminiscent of a wedding guest who waxes too eloquently when they get in front of the microphone. Still, for those who want to know what those amazing pictures of Mars are telling us, this is an excellent book.

Further, just as the proof of this book was nearing completion, the two Martian probes Opportunity and Spirit landed. Some of their early images appear but certainly much is left out. However, the book focuses on planet wide issues as seen through expansive satellite views so the probes’ information would likely be complementary to rather than a replacement of the supposition.

Some people say that we already know that Mars has a lot of rocks on it so why do we keep sending probes to see more rocks? Well a diamond on a wedding band can equally be considered just a rock and isn’t of great value, only don’t tell that to the wearer. Each picture of Martian rocks is much more than just another picture. Jeffrey Kargel in his book Mars: A Warmer Wetter Planet, provides us with the information and background to interpret the pictures and be thankful for their provision. Then, by placing these images into a geologic context, he gives a whole lot of understanding of the planet Mars and its rock formations.

Read more reviews, or order a copy online from Amazon.com.

Review by Mark Mortimer

Book Review: The Living Universe

Astrobiology is the study of life in the universe. It broadly encompasses many fields but purely for its own purposes. Early astrobiology (not that long ago) was, “a jumble of names with a variety of backgrounds and motivations and no central brain”. Its principal goal, to understand the inception of life, gave rise to many fundamental questions. What is life? How can or will we detect life on other worlds? How did life arise on Earth? What does life need to sustain itself? The questions were many and most still have no clear answer. As we read in this book, NASA had a strong influence in astrobiology in its early days and almost single handedly is keeping it going today.

Not all of the investigations related to astrobiology focussed directly on these lofty queries. For instance, space travel began and gave rise to the possibility of cross-planet contamination. Earth probes landing on foreign bodies (i.e. Viking) or especially when returning from foreign bodies (i.e. Apollo), shouldn’t transfer any harmful life forms. Other foretelling work included Stanley Miler’s experiment that simulated early Earth conditions and resulted in the formation of amino acids. Sidney Fox and his spherical proteinoids or Tom Cech and his RNA World thought they had tagged the beginnings of life in their own way though, not all agree. James Lovelock’s proposal, called Gaia, credited living things with having a dramatic effect on the atmospheric conditions on our planet. The early days were indeed a jumble, often supported by short term NASA contracts and almost always directed to space concepts. Nevertheless, a certain cohesion sprang up, together with the first moniker, exobiology.

Today’s investigations, well documented in the book, identify researchers and provide details relevant to the context of the day. The spectre of a hunt for little green men shadowed the creation of the SETI program and forced its evolution to an independent organization. The asteroid found in the Antarctic was blasted off from Mars billions of years ago and may have traces of life, but shapes tens of nanometres across leave a lot to the imagination. Nevertheless this finding may have assured the Viking and follow on programs that headed to Mars. The hunt for planets, difficult and error prone in the beginning, is now progressing rapidly, with indications that planets frequently occur. Again, throughout, NASA is shown to have a significant presence in these investigations, often supporting the inception stage and sponsoring many workshops and principal investigators. Also a name change happened as exobiology became astrobiology.

The destination of astrobiology is perhaps the most telling. A simple equation says it all. This equation known as the Drake equation, estimates the number of other technological civilizations in the galaxy. As long as this equation results with a value of one or greater, then there is at least one other life form to whom we can communicate. Obviously, if true, this could require a big change in some religions as well as some serious societal circumspections. But until we have the evidence, first contact will remain in the realm of science fiction. Reading between the lines, it appears that NASA is contemplating this question and considering options!

Our living universe is a fascinating subject with lofty goals. Dick and Strick do the history of the field justice by accumulating a description of so many of the activities, projects and workshops that relate to this topic. Sometimes the reading gets a bit dry. Typical passage are, ‘person x of department y at site z on date t did something’. Hundreds of names flow by, as well as contract descriptions, amounts, budgetary issues, personalities and the like. The style is more reminiscent of a memorial tomb than a Carl Sagan novel. Don’t be surprised by this as the funding for the book came from NASA. This does result in an apparent biassed result. For example, the first section of the book includes efforts from around the globe, while the remainder centres almost exclusively on NASA funded activities. Sometimes I got the feeling that this book was just a tool to justify NASA expenditures, which is a shame, as the subject is so interesting, and NASA has made a tremendous contribution. On the whole though, the book is well laid out, has only a few references to techno-speak and successfully covers a lot of information.

Hundreds of great scientists have contributed to astrobiology. This hunt for the understanding of life might be rationalized as the pursuit of knowledge for its own sake, or as a good preparation for contacting other worldly life. Either way, Steven Dick and James Strick in their book, The Living Universe – NASA and the development of Astrobiology, show the progress of these scientists and researchers and give credit to NASA’s support during the build up and implementation of this new research field.

Read more reviews, or order a copy online from Amazon.com.

Review by Mark Mortimer

Book Review: Centauri Dreams

First a bit of a background. We’ve a long way to go. Alpha Centauri is 4.3 light years away (about 13 zeros after the one when considering kilometres). Voyager 1, the fastest man made object, is speeding at 3.6 AU’s per year (about 8 zeros after the one in kilometres per year). Were a person to be on it, some 100,000 years would pass before entering Alpha Centauri’s solar system. This won’t happen as Voyager 1 travels another path, but this is the problem in a nutshell, it’s too far for today’s chemically driven rockets. With most people expecting a return on investment well within ten years then there would be little support in waiting thousands of generations for payback. Given this impracticality Gilster presents options and methods that might reduce the travel time to within one generation.

The first chapter sets the background of who’s doing what, where they are keeping themselves busy and, sometimes, when their activities first appear upon the scene. Scores of researchers’ names arise, especially physicists, mathematicians and astronomers, but a sprinkling of other esoteric specialists such as Internet designers, clearly demonstrates the broad response to this challenge. NASA’s programs and facilities predominate. CERN appears as does the Brookhaven National Laboratory. Early visionaries from the 1800’s and even earlier make a brief appearance. Applicable science fiction stories from the early 1900’s get noted, while the predominance of technically valid work dates from about 1960 on. This shows that on the whole, considerable thought and work has gone into advancing concepts for high speed interstellar travel.

Five chapters follow and represent the real meat of this book. These look at different methods of getting a useful payload to our neighbouring stars and they focus on well known and lesser known means of propulsion. Antimatter, sails, ramjets and fusion runways get their dues. Field-drives, providing force from the interaction of matter and fields get an honourable mention. Each chapter clearly and simply describes the methods of the chosen propulsion and the state (or technical level) of the research. Interviews with today’s investigators provide a superb insider’s view of activities. If you’re looking to identify locations for grad studies, there is a bonus as key investigating sites get identified alongside. Exciting sections detail the latest in experiments and technical investigations. The Planetary Society’s solar sail lifts off soon, antimatter is getting expansive new containers, lasers push model crafts up against Earth’s gravitational pull and a mini-magentospheric plasma propulsion prototype undergoes testing. Each of these might answer the riddle about how we propel ourselves at near light speed but as pointed out, the breakthrough technology may yet be around the corner.

One chapter seems a little bit like a lost child. This deals with communication and guidance. Of course these issues will need to be addressed, but it seems a bit early to be worrying about setting up extra-planetary webs or designing their communication protocol for that real long distance feeling. The guidance/navigation portion seems equally out of place. As the propulsion method so drastically constrains the mission, this discussion is preemptive. Still, as the title states, this book plans for interstellar exploration, hence communication and guidance are relevant and their consideration is warranted.

And yes, the title says it all. Alpha Centauri is a dreamers destination but dreams are only the beginning. Imagination gets us out of the constraints of everyday thinking and planning will see that effort gets well applied. As depicted within the book, many people share this dream. Some are incredibly lucky and can make it their life’s work. Others contribute directly in their part time or indirectly whether through related research, writing fiction or, as Gilster is undertaking, performing outreach activities. The link from imagination, to serious consideration and eventual trials constantly arises as either a sign of humanity’s adaptability or perhaps a sign of genetic coding. Nevertheless, time and again, imaginations are shown to conceive of the knowledge that thrusts plans out of the realm of fiction and into the laboratory where researchers make it reality.

Stars twinkle all about us at night. Perhaps maliciously inviting or teasing like a temptress, either way they remain today too far to fathom visiting today. Science fiction had imaginaries who gave detailed if somewhat fanciful means of propulsion between the stars. Paul Gilster in Centauri Dreams: Imagining and Planning Interstellar Exploration shows that real science is advancing technologies that could make this trip practical. The plans of the scientists and other technical may soon bear fruit and future generations of humans would have a much better and more exciting life amongst the stars.

Read more reviews online or order your own copy from Amazon.com.

Review by Mark Mortimer

Book Review: Earth from Space

This book is somewhere between a coffee table art book and a grade school science book. It has over three hundred stunning images of the Earth and, in particular, man-made structures divided up into eight chapters. The break down isn’t immediately obvious, but the overall result is. These views from remote sensing satellites help us understand the forces at work and in particular man’s influence. Seeing the drastic changes due to mankind causes some deep retrospection.

A typical chapter starts with a couple of pages detailing the importance of a particular topic. Often side bars therein contain small pictures of the earth (on the typical lat/lon perspective) that focus on one measurable parameter, such as surface temperature or ozone level. The main text discusses these and other related subjects all within the broad topic. Mineral content, for example, includes surface geology, presence of craters and shapes of desert plumes.

The pages after the text contain many large format (25cm by 25cm) images that highlight the topic. A view’s extent ranges from continental to citywide. The colour format can be real, infrared, or false coloured for highlighting. Also, a caption adjoining each image clearly describes the feature of interest, a bit of background of its significance (e.g. longest river in the world), the originating satellite and the acquisition date.

Man-made marvels take up a good portion. Toronto’s Skydome stabs upwards. Robert Smithson’s artwork ‘Spiral Jetty’ is just that, an impressive 450m long sculpture of placed rocks curling into Great Salt Lake of Utah. One awe inspiring view shows the al Haram mosque in Mecca with 400,000 worshipers surrounding the Ka’bah.

Though man-made features predominate, nature gets to show off as well. North America’s spring and fall foliage have gorgeous comparative views. Volcanoes and lava flows strut their fire and aftereffects. Hurricanes and glaciers meander in pleasant streams of vortices and funnels. The sand dunes from Yemen look like a beach shore at your toes until you read that the camera is at 800km and the average dune’s height is tens of metres. The Lena River in Siberia appears refreshingly green except for the vivid slashes of red scars throughout, the result of natural forest fires. Nature apparently makes great art without really trying.

Yet in a very unassuming way, the author highlights the main purpose of the remote sensing satellites; to identify the processes at work on the Earth’s surface. Though no preaching occurs, the images of the quickly disappearing Aral sea, the removal of the rain forests in the Amazon or the irrigation of crops in deserts serve this purpose well. Interestingly enough, the natural views tend to have smooth shapes and colours that gently flow from one type to another. However, the influence of humankind takes this smooth melody and introduces sharp discordant chords, breaking the rhythm. Mind you, nature can make its own sour music; just see the lava flow that slices right through the city of Goma. Nevertheless, humankind’s influence on the Earth is usually front row centre throughout.

The clarity of the images, whether of humankind or natural subjects, are outstanding. Resolutions at about 2m by 2m per pixel enable you to see individual cars. Many shots from the space shuttle give more of an oblique angle that puts the viewer closer to the action. Play an out of this world game of ‘eye-spy’ by guessing the area before reading the caption. Missing from the book are discussions on the accomplishments of remote sensing; in particular views showing changes over time and ensuing reactions by people. The many artistic shots, though bright and sharp, tend to quickly drift out of memory from this lack of mandate for inclusion.

Having grown up in fairly flat surroundings I really appreciate views from height. Images from 800km up are definitely out of the ordinary. Andrew Johnston in his book, Earth from Space, provides a wonderful trip about Earth, seeing some of the best images available from this height. Their source, mostly remote sensing satellites, provide these great artistic pictures that also provide important insight into how humans change this world.

To read more reviews online, or to get your own copy, visit Amazon.com.

Review by Mark Mortimer

A Brief Interview With Sir Patrick Moore

Richard Pearson: How are you doing? Have you made a full recovery?

Sir Patrick: I am still here! Yes that was a nasty business and people had written me off at the time, however, I have made a good recovery. It was all caused by a duck egg, fortunately on this occasion I won, so yes I have. Very sadly, I have a crack in my spine, which over the last five years has prevented me from doing any kind of astronomical observations through my collection of telescopes, and during the war I had a knee injury which also causes problems now.

Have you been surprised by any changes in space exploration since you started presenting the Sky at Night almost 47 years ago?

I had expected manned exploration to continue after the Apollo program, and sadly the space shuttle has caused some problems leading to the loss of life, and the manned exploration of space seems to have stalled.

I was most surprised that the robotic exploration of our solar system has sprinted a head, and today space probes have visited all of the planets, except Pluto. I did not think that such interplanetary probes would be able to travel as far as the planets Uranus or Neptune in the early Sky at Night days.

David A. Hardy once painted two space suited humans on the surface of Titan, looking up through a sky tinged green with methane at the parent planet Saturn. By 1978, he had painted a dirigible cruising through red smog, Saturn barely visible. Both represent the best available science of the time. Today the Cassini Huygens space probe has sent back a series of remarkable images of the Moon, and we now believe there are strange Cryogenic (Cold) volcanoes on its surface.

In your new book, Futures: 50 Years in Space, you state that Europa could contain life if the sub-ice seas do exist there. Do you believe that this may be our best chance to find extra-terrestrial life? Or do you believe that we may find life “out there” first through the work of organizations such as SETI?

Yes I did say that, however, I believe our best chance of finding life in our solar system is on the planet Mars. We now know that a lot of water once existed on this planet sometime in the past, and the latest surface rovers (Spirit and Opportunity), along side orbiting space probes like Mars Express, have shown that the Martian conditions are more favorable for life to evolve their today than at any time in the past. If the conditions are right, life will always find a way to exit. So right now, Mars is my number one choice.?

I am sure there are many people who are curious to know who you would pick to (eventually) replace you to become the future presenter of the BBC’s Sky At Night program … Could this be Chris Lintott?

I really do not know because it is not my decision. Chris Lintott is a very good speaker and comes across very well indeed. I had Chris on the program earlier this year, and he did very well, so I now have Chris Lintott on The Sky at Night more often.

If you’re interested in Futures: 50 Years in Space, please read Universe Today’s review. You can also visit Amazon.com to read more reviews, or purchase a copy online (or Amazon.co.uk). You can also BBC’s website for Sir Patrick Moore’s “The Sky at Night”.

Sir Patrick Moore was interviewed by Richard Pearson.

Book Review: How NASA Leaned to Fly in Space

Three programs got the USA to the moon. The Mercury program, conceived before Kennedy’s speech, was to achieve orbital flight and the recovery of a manned satellite. The Gemini program, an indirect result of Kennedy’s speech, had quickly to teach NASA if one could travel to the moon and how best to do so. The Apollo program used all the lessons learned and had to place a human on the moon. Or, in other words, Mercury was the child, Gemini was the teacher, and Apollo was the graduate.

Harland’s book opens with a brief description of the Mercury program, its association with von Braun and the prerequisites for a manned satellite. Here we see that ocean explorers had one advantage. They could stretch and walk about their ships! The Mercury capsule was effectively a flying chair encased in a protective steel shell. Once the challenge of the Moon race began, the Gemini capsule ensued. To test rendezvous requirements, two people were needed. One flew the craft while the other confirmed the rendezvous. Much as the Gemini capsule was second generation and fit two people, it wasn’t much better than its predecessor. Or as one pilot put it, ‘it was like sitting in the front end of a Volkswagen for days’. Apparently functionality kept winning over form.

Much of the remainder of the book presents each of the Gemini launches in a chronological order. The focus is on the human aspects of the Gemini program, principally the pilots. Benign actions and casual banter are judiciously presented. The early flights assessed endurance abilities. Some experimental work occurred but you will discover that even being in orbit can be boring. For example, the astronauts were advised to bring fiction books to while away the time. You will also discover how a House investigation was convened to discuss how sandwich crumbs ended up floating around the cabin.

A typical chapter begins with a description of the mission for the flight. Often it was an extension or elaboration of a preceding flight so the chapters smoothly flow together. Sometimes outside interests arose as the Air Force wanted to know if their special backpack could allow an astronaut to ‘visit’ an orbiting USSR satellite. The launch is also covered in detail. Sometimes they were tricky; one had a launch window of two seconds (it succeeded!). The flight themselves are presented firsthand by the use of conversations between the crew and the ground controllers of the stations of the World Wide Tracking Network (WWTN). When there is lots going on, these chapters get extensive. When an endurance record is set, the topics change such as centring on the best way to sleep in space. A brief summary concludes each chapter, usually including a reference to how the results affect future Gemini missions or Apollo designs.

One of the best feelings Harland raises is the sense of urgency. Though no or little information was known about space flight, a lot had to be learned very quickly. The ten Gemini flights were launched at an average of one every two months. There was little room for error even though target satellites failed or onboard equipment performed inadequately. Just looking at the pilots’ work cycle clearly shows this. First they help define their flights mission(s). Next, they train. Then they adapt to any mission specific tasks. Their launch pad experience may transcend many countdowns and mission scrubs. Finally they go and undertake their mission. Afterward they go through debriefings. Afterward they complete a stint as communications officer at one of the WWTN sites and then they’re back training for their next mission. Nothing like a deadline set by a president to provide inspirational feelings and timeliness.

This book does not contain much technical description of the Gemini craft, its launcher or the mathematical trickeries of orbital mechanics. There are descriptions but really, this book is about the people, their actions and their emotions. Many photographs identify the astronauts and their achievements. Perhaps some will find this a trifle too casual such as reading how an astronaut’s wife gave birth while he was in orbit. Yet this vantage contributes to the depiction of these craft as for humans and controlled by humans. The empirical data can happily stay in text books, this one is for the people.

The early explorers knew how to sail but didn’t know what they would find during their voyages. NASA’s Gemini program taught the USA how to sail through space to place their feet on the ever present moon. In David Harland’s book ,’How NASA Learned to Fly in Space’ you can read what they had to learn and how they learned it so that they, like the ocean’s explorers before them, could extend the travelogue of humankind.

To get your own copy, visit Countdown Creations.

Review by Mark Mortimer