Stunning Flyover Videos of Saturn’s Moons

Saturn’s moons as you’ve never seen them before! By day, Dr. Paul Schenk works at the Lunar and Planetary Institute mapping the topography and geology of the moons of Saturn and Jupiter, as well as the icy bodies of the outer solar system. But because “it’s just plain cool,” he has created some flyover videos of Saturn’s satellites, using data from the Cassini spacecraft. Very cool, indeed! Above is a close-up, 3-D look at the walnut-shaped moon Iapetus. Scientists don’t know why there is a ridge along the moon’s equator, but in 2007, Cassini acquired a strip of color and stereo images along the ridge, and Schenk has created a flyover which shows the contrast in color and topography. There are “sharp peaks 15 to 20 kilometers above the surrounding dark cratered plains,” Schenk writes. “These are among the highest peaks in the Solar System. Patches of bright pure water ice can be seen flanking these dark peaks, which have the brightness of soot.”

And there’s more! Below is one of my favorites from Schenk’s collection of flyover videos, 3-D views of Inktomi, a very young crater on the moon Rhea.

Continue reading “Stunning Flyover Videos of Saturn’s Moons”

Amazing New Close-up Images of Enceladus

Caption: Looking down at a plume on Enceladus. Credit: NASA/Space Science Science Institute.

[/caption]

Oh, wow! This is one of the best images yet from the Cassini spacecraft of the “tiger stripes” in the south polar region of Saturn’s moon Enceladus. Over the weekend, Cassini flew by Enceladus, and has sent back some incredible new images, such as the one above. The tiger stripes are actually giant fissures that spew jets of water vapor and organic particles hundreds of kilometers, or miles, out into space, and here, Cassini is staring right down into one of the fissures. See more great images of Enceladus below, plus images of the moons Dione and Tethys.


Close-up of the cracked, crevassed surface of Enceladus. Credit: NASA/Space Science Institute.

While the winter is darkening the moon’s southern hemisphere, Cassini has its own version of “night vision goggles” — the composite infrared spectrometer instrument – to track heat even when visible light is low. It will take time for scientists to assemble the data into temperature maps of the fissures.

Enceladus against Saturn's limb. Credit: NASA/Space Science Institute.
More plumes on Enceladus. Credit: NASA/Space Science Institute.
Close-up of Tethys. Credit: NASA/Space Science Institute

Dione from 115,370 kilometers away. Credit: NASA/Space Science Institute

See more amazing images from Cassini’s latest at the CICLOPS website.

Emily Lakdawalla at the Planetary Blog also has created some very cool movies from the flyby images.


Hat tip to Stu Atkinson

Mini Moons Are Buzzing Through Saturn’s Rings

Using images obtained by NASA's Cassini mission, astronomers followed several of what are likely to be dozens of small moons orbiting within the outer edge of Saturn's A ring -- the outermost of the planet's large, dense rings -- from 2005 to 2009.

Scientists for NASA’s Cassini mission noticed some weird-looking propeller-like shapes in the outer edge of Saturn’s A ring. What could be creating these unusual contours? A closer look revealed they were being formed by dozens of moving moonlets. Normally, these kilometer-sized moons would have been almost impossible to see, since they are embedded within the rings. “However, their presence is betrayed by the large tell-tale ‘propeller’ structures they generate in the ring material on either side of them,” said Carolyn Porco, leader of the Cassini imaging team, and co-author on a new paper on these propeller moons. In an email, Porco said similar features had been seen earlier in other locations in Saturn’s rings, but were “much smaller, harder to see, and so numerous that there was no hope of following any one of them. The new propellers, and the moonlets that create them, are some ten times larger and much easier to identify and follow from image to image and year to year.”

[/caption]

The team said the ability to watch as the embedded moons’ orbits evolve over time could give scientists valuable new clues about how planets form and grow around stars in young solar systems.

“What is outstanding about these new findings is the insight they ultimately will provide into the early stages of solar system formation,” said Porco, “when growing planets become large enough to open gaps in the ring material around them and ultimately truncate their own growth.”

The scientists have tracked eleven of these moons since 2006. Most are between one and several kilometers in diameter, too small to be imaged directly by Cassini’s cameras, but are only distinguishable by the unique double-armed propeller features.

The area in the middle of Saturn’s outermost dense A ring is now known as the “propeller belts,” and the new moonlets have been given appropriate names.

“You may find it amusing that these large propellers have unofficially been named after famous aviators,” Porco said. “Those flight enthusiasts among you will recognize Bleriot, Earhart, Santos-Dumont, and others.”

Cassini caught sight of Blériot (named after a French aviator) more than 100 times, allowing the researchers to map its path in detail. The propeller shape it created is several thousand kilometers long, or half the distance across the continental United States.

“You would expect any object that’s just orbiting Saturn on its own should stay in a constant path,” said lead author Matthew Tiscareno from Cornell University. “What we actually see is that the orbits are changing.”

The most likely explanation, he said, is that the moons are actually interacting with the disk: exchanging angular momentum with the ring particles around them either through gravity or by direct collisions.

Still, other explanations, like resonant interactions with more distant moons, have not been ruled out as causes.

Scientists will be keeping an eye on these wandering little moons in order to figure out if the disk itself is driving the changes, similar to the interactions that occur in young solar systems. If it is, Tiscareno said, this would be the first time such a measurement has been made directly.

Read the team’s paper.

More images at CICLOPS

Sources: NASA, Cornell, Porco email

Small Moon Makes Big Waves

A Cassini image of the moon Daphnis making waves in Saturn's rings. Credit: NASA/JPL/Space Science Institute

[/caption]

Saturn’s moon Daphnis is only 8 kilometers wide, but it has a fairly substantial effect on the A ring, making waves on the ring’s edge. According to Carolyn Porco on Twitter, this is the closest look yet at this mini, moving moon. Daphnis resides in the Keeler Gap, which is about 42 km wide, but the moon’s eccentric orbit causes its distance from Saturn to vary by almost 9 km, and its inclination causes it to move up and down by about 17 km. That may not sound like much, but within a small gap, this variability causes the waves seen in the edges of the gap. We’ve only known about Daphnis’ existence since 2005, one of the many discoveries made by the Cassini spacecraft, and this is the first image where Daphnis is more than just a little dot. Click on the image to get a closer look.

This image is hot off the presses, as it was taken on July 5, 2010, and sent to Earth just yesterday (July 6). See below for a great new look at Saturn’s ring.


New raw image of Saturn's rings. Credit: NASA/JPL/Space Science Institute

Click the image for a larger version, and prepare to be wowed!

Source: CICLOPS, with a hat tip to Stu Atkinson!

Latest Wall Art from Cassini

Rhea poses with Saturn's rings; Janus and Prometheus are off in the distance. Credit: NASA/JPL/Space Science Institute. Click for larger version

[/caption]

Oh, wow — what a gorgeous image! Just the latest from our resident artist in space, the Cassini spacecraft. Rhea, saturn’s second largest moon sits in front of the rings, joined by two smaller moons in the background. Rhea (1528 kilometers, 949 miles across) is in the center foreground. Janus (179 kilometers, 111 miles across) can be seen beyond the rings on the right of the image. Prometheus (86 kilometers, 53 miles across) is visible orbiting between the main rings and the thin F ring on the left of the image. Lit terrain seen on Rhea is on the area between that moon’s trailing hemisphere and anti-Saturn side. This view looks toward the northern, sunlit side of the rings from just above the ringplane.

If you like contrast images, there’s a great one below.

Saturn's rings contrast with the blackness of space. Credit: NASA/JPL/Space Science Institute

This image is a beautiful contrast between dark and light. Atlas can be seen just above the center of this Cassini spacecraft image as the moon orbits in the Roche Division between Saturn’s A ring and thin F ring.

Sources: CICLOPS, Cassini

Incredible Images of Enceladus From Cassini’s Latest Flyby

Titan, Saturn's rings and Enceladus. Credit: NASA/JPL/SSI

[/caption]

Wow. Cassini the artist has struck again, this time with amazing images from the close flyby of Enceladus that we wrote a preview about earlier this week. Cassini flew by Enceladus during the early hours of May 18 UTC, coming within about 435 kilometers (270 miles) of the moon’s surface. The raw images came in late last night, and in my inbox this morning was an email from Stuart Atkinson, (no relation, but great name) alerting me to the treasures. Stu himself has called this image “the new iconic image of the space age,” and Emily Lakdawalla of the Planetary Blog has called these images “some of the most amazing Cassini has captured yet.”

What you’re seeing here is hazy Titan, backlit by the Sun, with Saturn’s rings in the foreground– plus, at the way bottom is the limb of the night side of Enceladus’ south pole. Emily has created a flipped, annotated image (plus there’s more Enceladus jaw-droppers below:

nceladus, Titan, and the rings of Saturn (explained) Credit: NASA/JPL/SSI/annotated by Emily Lakdawa. Click for larger version.

The 'fountains' of Enceladus. Credit: NASA/JPL/SSI

Three huge “fountains” of Enceladus geysers are visible in this raw image taken by Cassini on May 18, 2010. The camera was pointing toward Enceladus at approximately 14,972 kilometers away, and the image was taken using the CL1 and CL2 filters. Emily, with her photo editing prowess, has created a movie from four different images as Cassini cruised closer to the moon.

Astro0 on UnmannedSpaceflight.com has put the two different images together to create a collage of what it would have looked like if the plumes were visible in the image with Titan. Gorgeous! Plus, here’s a color version Astro0 created.

Plus there’s this very interesting raw image from Cassini:

Raw image from Cassini on May 18. Credit: NASA/JPL/SSI

Explanations anyone?

Cassini will be flying by Titan in the early hours of May 20 UTC, coming within 1,400 kilometers (750 miles) of the surface. Although Cassini will primarily be doing radio science during this pass to detect subtle variations in the gravitational tug on the spacecraft by Titan, hopefully we’ll see some new visible light images of Titan, as well.

For more images from Cassini, see the Cassini website, and the section for the raw images.

Cassini’s Cruise: Close Flybys of Two Moons in Less Than Two Days

On the left, Saturn's moon Enceladus is backlit by the sun, showing the fountain-like sources of the fine spray of material that towers over the south polar region. On the right, is a composite image of Titan. Image credit: NASA/JPL/SSI and NASA/JPL/University of Arizona

[/caption]

It’s a space navigator’s dream! The Cassini spacecraft will perform close flybys of two of Saturn’s most enigmatic moons all within less than 48 hours, and with no maneuvers in between. Enceladus and Titan are aligned just right so that Cassini can catch glimpses of these two contrasting moons – one a geyser world and the other an analog to early Earth.

Cassini will make its closest approach to Enceladus late at night on May 17 Pacific time, which is in the early hours of May 18 UTC. The spacecraft will pass within about 435 kilometers (270 miles) of the moon’s surface.

The main scientific goal at Enceladus will be to watch the sun play peekaboo behind the water-rich plume emanating from the moon’s south polar region. Scientists using the ultraviolet imaging spectrograph will be able to use the flickering light to measure whether there is molecular nitrogen in the plume. Ammonia has already been detected in the plume and scientists know heat can decompose ammonia into nitrogen molecules. Determining the amount of molecular nitrogen in the plume will give scientists clues about thermal processing in the moon’s interior.

Then on to Titan: the closest approach will take place in the late evening May 19 Pacific time, which is in the early hours of May 20 UTC. The spacecraft will fly to within 1,400 kilometers (750 miles) of the surface.

Cassini will primarily be doing radio science during this pass to detect the subtle variations in the gravitational tug on the spacecraft by Titan, which is 25 percent larger in volume than the planet Mercury. Analyzing the data will help scientists learn whether Titan has a liquid ocean under its surface and get a better picture of its internal structure. The composite infrared spectrometer will also get its southernmost pass for thermal data to fill out its temperature map of the smoggy moon.

Cassini has made four previous double flybys and one more is planned in the years ahead.

For more information on the Enceladus flyby, dubbed “E10,” see this link.

For more information on the Titan flyby, dubbed “T68,” see this link.

Source: JPL

Incredible! Cassini as Houdini Cuts Titan in Half

Saturn's rings, made dark in part as the planet casts its shadow across them, cut a striking figure before Saturn's largest moon, Titan. Credit: NASA/JPL/Space Science Institute

[/caption]

There’s nothing up the sleeves of the Cassini imaging team in this image; it is real! Is the moon Titan being cut in half by Saturn’s rings? What is actually happening here is that the middle part of the rings are made dark as Saturn casts its shadow across them. Cassini was just in the right place at the right time, making it appear as though Titan is being sliced in half! The night side of the planet is to the left, out of the frame of the image. Illuminated Titan can be seen above, below and through gaps in the rings. Click the image for a larger version.

As an added benefit in this shot, Mimas (396 kilometers, 246 miles across) is near the bottom of the image, and Atlas (30 kilometers, 19 miles across) can barely be detected near the thin F ring just above the center right of the image. Lit terrain seen here is the area between the leading hemisphere and Saturn-facing side of Titan (5,150 kilometers, 3,200 miles across). This view looks toward the northern, sunlit side of the rings from just above the ringplane.

Below are a few more magical images from Cassini:

Here the moon Enceladus appears strung along a wispy ring of Saturn, likely the G ring. Look close and Enceladus’ plumes are visible, too.

Enceladus and a wispy ring. Credit: NASA/JPL/Space Science Institute
Pandora and Epimetheus sit on Saturn's rings. Credit: NASA/JPL/Space Science Institute

Two of Saturn’s small moons appear to be sitting on Satun’s thin F ring in this image.

From the CICLOPS website:

Pandora (81 kilometers, 50 miles across) is on the left, and Epimetheus (113 kilometers, 70 miles across) is on the right. This view looks toward the northern, sunlit side of the rings from just above the ringplane. Both moons are closer to Cassini than the rings are. Pandora is slightly closer to Cassini than Epimetheus here.

The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Nov. 23, 2009. The view was acquired at a distance of approximately 1.3 million kilometers (808,000 miles) from Pandora and Epimetheus. Image scale is 8 kilometers (5 miles) per pixel.

For more great images from Cassini (which I contend is actually an artist and not a magician!) go to the CICLOPS website and NASA’s Cassini website.

Cassini Finds Patterns and Rhythm in Saturn’s Rings

cassini-rings.thumbnail.jpg

Cassini has been orbiting around Saturn for almost four years, and amazingly, the spacecraft keeps discovering new and unexpected features about this world and its system of rings and moons. Recently, in two of Saturn’s rings, Cassini found orderly lines of densely grouped, boulder-size icy particles that extend outward across the rings like ripples from a rock dropped in a calm pond. Surprisingly, the distances between these ring particles stay relatively equal even though their velocities may change. This type of pattern is completely new, as normally, the distances between particles change with their velocity.


The pattern was detected when Cassini sent out three signals toward Earth. The signals crossed Saturn’s rings, and the frequencies were scattered from the passing ring particles. Once the signals were captured by Earth-based antennas of NASA’s Deep Space Network, Cassini scientists saw a regular pattern in the received signal frequencies.

“This particular feature is the smallest and most detailed of anything seen in Saturn’s rings so far,” said Cassini radio science team member Essam Marouf. “In the chaotic environment of the rings, to find such regularity in the most cramped areas is nothing short of amazing.” The regular structure can only be found in locations where particles are densely packed together, such as the B ring and the innermost part of the A ring. The signals were sent to capture a complete view of the rings.

The unexpected pattern within Saturn’s rings may give scientists some new ideas of what to expect from other similar planets and solar systems.

Scientists call this pattern of particles “enormously extended natural diffraction grating.” A diffraction grating has parallel lines like a picket fence; when light hits this fence, it separates according to wavelength, from ultraviolet to infrared light.

“The signals showed that the particle groups were arranged in an unexpectedly regular formation that had rhythm within the rings of Saturn,'” said Marouf. “Each particle is in its own orbit, and sometimes they collide and move apart as their velocities change. As a result, you have particles bunched together into dense groups that extend across the ring in harmony with each other.”

Original News Source: Cassini Press Release