Cassini’s Final Mission to Annihilation Starts April 22

This illustration shows Cassini above Saturn's northern hemisphere prior to one of its 22 Grand Finale dives. Credit: NASA/JPL-Caltech

Grab the tissues. This video nearly had the Cassini team all choked up during today’s press briefing, and virtual sobs and sniffs were abundant on social media posts sharing the video.

“We get goosebumps and get emotional every time we see it,” said Earl Maize, Cassini project manager at JPL.

On April 22 the Cassini spacecraft will begin its ‘Grand Finale’ — the beginning of the end of this tremendous mission that has provided breathtaking images and so many new discoveries of Saturn, its rings and moons. The mission will end on September 15, 2017, when it makes a dramatic plunge into the gas giant.

Here’s the video that had everyone teary-eyed. Be prepared for some stunning visuals:

Today, Maize talked about how nineteen countries and three space agencies contributed to the success of the Cassini/Huygens mission, saying the mission has been truly an international triumph and a phenomenal achievement.

“Cassini’s legacy is assured. We are in the books!” Maize said. “But the best is yet to come. We are going to dive into the gap between the rings of Saturn and Saturn’s atmosphere, a place where no spacecraft has ever gone. We’ll be going 70,000 mph (112,634 km/hr) into a 1,500-mile-wide (2,400-kilometer) gap, operating the spacecraft from a billion miles away.”

Cassini has been a relatively trouble free mission, and has made many discoveries about the Saturn system. So why crash the spacecraft?

Cassini is running out of fuel, basically running on fumes at this point.* And NASA needs to follow the protocol of planetary protection, and not allow a spacecraft with possible microbes from Earth to crash into a potentially habitable moon such as Enceladus or Titan.

“Cassini’s own discoveries were its demise,” Maize said. “Enceladus has a warm, salt water ocean. We can’t risk an inadvertent contact with this pristine body. The only choice was to destroy it (Cassini) in a designed fashion.”

Maize said that back in 2010, the team decided they would make the mission last as long as possible and use every last kilogram of propellant to explore the Saturn system as thoroughly as they could.

Cassini vs. Saturn. As depicted in this illustration, Cassini will plunge into Saturn’s atmosphere on Sept. 15, 2017. Using its attitude control thrusters, the spacecraft will work to keep its antenna pointed at Earth while it sends its final data, including the composition of Saturn’s upper atmosphere. Credit: NASA/JPL-Caltech

The final flyby of Titan on April 22 will ultimately alter Cassini’s trajectory and push it toward the spacecraft’s final demise. Maize described the gravity slingshot from Titan as a “last kiss goodbye that will push Cassini into Saturn. This is a roller coaster ride that we’re not coming out of.”

You can plot Cassini’s trajectory in JPL’s “Eyes on Cassini” special section of their Eyes on the Solar System website.

Cassini will make 22 passes through the gap, and in doing so, further our understanding of how giant planets, and planetary systems everywhere, form and evolve.

Project Scientist Linda Spilker said Cassini will be able to make close up measurements of Saturn and its rings to finally help us understand the mass and internal structure of Saturn. And the images should be absolutely stunning.

There’s the risk of dust or debris hitting the spacecraft, potentially crippling Cassini. But the risk is worth it, because if the spacecraft survives through even just a few of the close passes, the scientific payback will be incredible. However, even if the spacecraft is crippled and can’t send back its final science observations, the end is inevitable, as the path toward destruction will be written by the final ‘kiss’ from Titan.

“This is something we couldn’t try at any other time,” Maize said. “But now is time.”

A computer-generated representation of all Cassini’s Saturn orbits -affectionately called the “ball of yarn” by mission planners. The time frame spans Saturn Orbit Insertion on July 1, 2004 to the end of mission on Sept. 15, 2017. Credit: NASA/JPL-Caltech.

The Cassini team said the end of the mission will likely be a combination of excitement, pride and a sense of loss.

“I think that once the signal is lost, it would mean the heartbeat of Cassini is gone,” said Spilker. “I think there will be tremendous cheers and applause for the completion of an absolutely incredible mission. Hugs, tears — the Kleenex box will be passed around — but we will rejoice at being part of such a wonderful mission.”

See more images and information about the Grand Finale here.

For more of an inside look at Cassini, I devote a chapter of my book to the mission, with more insight from Earl Maize, Linda Spilker and others about the history and discoveries of the Cassini/Huygens mission, and additional details about the Grand Finale. “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Channging Our View of the Cosmos.”

Artist’s concept of Cassini orbiter crossing Saturn’s ring plane.
Credit: NASA/Jet Propulsion Laboratory.

*One of the Cassini team members said that as of today (April 4, 2017) Cassini has 36kg of hydrazine left for the thrusters, which are used everyday to orient the spacecraft, point the antenna towards Earth, point the instruments to their desired targer, etc. For the Titan flyby on April 22, about 10-15 kg. As for the bipropellant that runs the main engines, that’s a little more unknown and the one the team is worried most about running out of fuel. The team member said there is about 10 kg of that fuel left, “plus or minus 20 kilos [meaning there is true uncertainty about how much of this fuel remains]. We could run out today, or we could have 30 kilos left.”

Warm Poles Suggest Enceladus’ Liquid Water Near Surface

Saturn's moon Enceladus could harbor microbial life in the warm salty water thought to exist under its frozen surface. Respondents in the study seemed to like that possibility. Credits: NASA/JPL-Caltech/Space Science Institute

One of the biggest surprises from the Cassini mission to Saturn has been the discovery of active geysers at the south pole of the moon Enceladus. At only about 500 km (310 miles) in diameter, the bright and ice-covered moon should be too small and too far from the Sun to be active. Instead, this little moon is one of the most geothermally active places in the Solar System.

Now, a new study from Cassini data shows that the south polar region of Enceladus is even warmer than expected just a few feet below its icy surface. While previous studies have confirmed an ocean of liquid water inside Enceladus which fuels the geysers, this new study shows the ocean is likely closer to the surface than previously thought. Additionally – and most enticing – there has to be a source of heat inside the moon that is not completely understood.

“These observations provide a unique insight into what is going on beneath the surface,” said Alice Le Gall, who is part of the Cassini RADAR instrument team, from Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), and Université Versailles Saint-Quentin (UVSQ), France. “They show that the first few meters below the surface of the area that we investigated, although at a glacial 50-60 K, are much warmer than we had expected: likely up to 20 K warmer in some places. This cannot be explained only as a result of the Sun’s illumination and, to a lesser extent, Saturn’s heating so there must be an additional source of heat.”

Tiger stripes on the south pole of Enceladus. The region studied is indicated by the coloured band. NASA/JPL-Caltech/Space Science Institute; Acknowledgement: A. Lucas

Microwave data taken during a close flyby in 2011 shows there is excess heat at three fractures in the surface of Enceladus. While similar to the so-called “tiger-stripe” features on this moon that are actively venting ice and water molecules into space, these three fractures don’t appear to be active, at least not in 2011.

Scientists say the seemingly dormant fractures lying above the moon’s warm, underground sea point to the dynamic character of Enceladus’ geology, suggesting the moon might have experienced several episodes of activity, in different places on its surface.

The 2011 flyby provided the first – and unfortunately, the only — high-resolution observations of Enceladus’ south pole at microwave wavelengths.

It looked at a narrow, arc-shaped swathe of the southern polar region, about 25 km (15 miles) wide, and located just 30 km to 50 km (18-30 miles) north of the tiger-stripe fractures.

The heat that was detected appears to be lying under a much colder layer of frost.

Because of operational constraints of the 2011 flyby, it was not possible to obtain microwave observations of the active fractures themselves. But this allowed the scientists to observe that the thermally anomalous terrains of Enceladus extend well beyond the tiger stripes.

Cassini’s view down into a jetting “tiger stripe” in August 2010. Credit: NASA

Their findings show it is likely that the entire south pole region is warm underneath, meaning Enceladus’ ocean could be just 2 km under the moon’s icy surface in that area. The finding agrees with a 2016 study, led by another Cassini team member, Ondrej Cadek, which estimated the thickness of the crust on Enceladus’ south pole to be less than the rest of the moon. That study estimated the depth of the ice shell to be less than 5 km (1.2 miles) at the south pole, while average depth on other areas of Enceladus is between 18–22 km (11-13 miles).

What generates the internal heat at Enceladus? The main source of heat remains a mystery, but scientists think gravitational forces between Enceladus, Saturn, and another moon, Dione pull and flex Enceladus’ interior. Known as tidal forces, the tugging causes the moon’s interior to rub, creating friction and heat. It also creates stress compressions and deformations on the crust, leading to the formation of faults and fractures. This in turn creates more heat in the sub-surface layers. In this scenario, the thinner icy crust in the south pole region is subject to a larger tidal deformation that means more heat being created to help keep the underground water warm.

Dramatic plumes, both large and small, spray water ice out from many locations along the famed “tiger stripes” near the south pole of Saturn’s moon Enceladus. Credit: NASA/JPL/Space Science Institute

Since the geysers weren’t known until Cassini’s arrival at Saturn, the spacecraft didn’t have a specific payload to study them, but scientists used the instruments at their disposal to make the best observations they could, flying the spacecraft to within 49 km (30 miles) of the surface. To fully study the tidal heating — or to determine if there is another source of heat — scientists will continue to study the data already taken by various Cassini instruments. But since the mission will be ending in September 2017, it may require another mission to this intriguing moon to fully figure out this mystery.

“This discovery opens new perspectives to investigate the emergence of habitable conditions on the icy moons of the gas giant planets,” says Nicolas Altobelli, ESA’s Project Scientist for Cassini–Huygens. “If Enceladus’ underground sea is really as close to the surface as this study indicates, then a future mission to this moon carrying an ice-penetrating radar sounding instrument might be able to detect it.”

“Finding temperatures near these three inactive fractures that are unexpectedly higher than those outside them adds to the intrigue of Enceladus,” said Cassini Project Scientist Linda Spilker at the Jet Propulsion Laboratory. “What is the warm underground ocean really like and could life have evolved there? These questions remain to be answered by future missions to this ocean world.”

Feel free to submit your mission proposals in the comment section below…

An artist’s illustration of Cassini entering orbit around Saturn. Credit: NASA/JPL.

Sources: ESA
JPL
Paper: Thermally anomalous features in the subsurface of Enceladus’s south polar terrain” by A. Le Gall et al. (2017), published in Nature Astronomy

Fried Egg? Flying Saucer? Nope. Just Cool New Closeups of Saturn’s Moon Pan

Saturn's "UFO moon" Pan up close. Credit: NASA/JPL/Space Science Institute
This new view of Saturn’s moon Pan is the closest yet, snapped by Cassini from a distance of 15,268 miles (24,572 km) on March 7, 2017. Pan measures 22 miles wide by 14 miles across and displays a number of small craters along with parallel ridges and grooves. Its broad, thinner equatorial ridge displays fine, parallel striations. Credit: NASA/JPL/Space Science Institute

Besides Earth, Saturn may be the only other planet where you can order rings with a side of ravioli. Closeup photos taken by the Cassini probe of the the planet’s second-innermost moon, Pan, on March 7 reveal remarkable new details that have us grasping at food analogies in a feeble attempt to describe its unique appearance.

A side view of Pan better shows its thin and wavy ridge likely built up through the accumulation of particles grabbed from Saturn’s rings. The ridge is between 0.9 and 2.5 miles (1-4 km) thick. Credit: NASA/JPL/Space Science Institute

 

As Pan moves along the Encke Gap its gravity creates ripples in Saturn’s A-ring. Credit:
NASA/JPL/Space Science Institute

The two-part structure of the moon is immediately obvious: a core body with a thin, wavy ridge encircling its equator. How does such a bizarre object form in the first place? There’s good reason to believe that Pan was once part of a larger satellite that broke up near Saturn long ago. Much of the material flattened out to form Saturn’s rings while large shards like Pan and another ravioli lookalike, Atlas, orbited within or near the rings, sweeping up ring particles about their middles. Tellingly, the ridges are about as thick as the vertical distances each satellite travels in its orbit about the planet.

Pan casts its shadow on Saturn’s A-ring from within the 200-mile-wide (325 km) Encke Gap, which is maintained by the presence of the moon. Pan shares the gap with several diffuse ringlets from which it may still be gathering additional material around its equatorial ridge. Credit: NASA/JPL/Space Science Institute

Today, Pan orbits within and clears the narrow Encke Gap in Saturn’s outer A-ring of debris. It also helps create and shape the narrow ringlets that appear in the gap It’s lookalike cousin Atlas orbits just outside the A-ring.

Pan and Altas (25×22 miles) orbit within Saturn’s ring plane and may both be fragments from a larger moon breakup that created Saturn’s rings. Both have swept up material from the rings to form equatorial ridges. Credit: NASA/JPL/Space Science Institute

Moons embedded in rings can have profound effects on that material from clearing gaps to creating new temporary ringlets and raising vertical waves of material that rise above and below the ring plane. All these effects are produced by gravity, which gives even small objects like Pan dominion over surprisingly vast regions.

Enjoy this animated gif created from photos of the close flyby of Pan. Credit:
NASA/JPL/Space Science Institute

 

Cassini Images Of Enceladus Highlight Possible Cradle For Life

Saturn's moon Enceladus, in all its glory. Captured by the Cassini probe. Image: NASA/JPL-Caltech/Space Science Institute

During its long mission to Saturn, the Cassini spacecraft has given us image after spectacular image of Saturn, its rings, and Saturn’s moons. The images of Saturn’s moon Enceladus are of particular interest when it comes to the search for life.

At first glance, Enceladus appears similar to other icy moons in our Solar System. But Cassini has shown us that Enceladus could be a cradle for extra-terrestrial life.

Our search for life in the Solar System is centred on the presence of liquid water. Maybe we don’t know for sure if liquid H2O is required for life. But the Solar System is huge, and the effort required to explore it is immense. So starting our search for life with the search for liquid water is wise. And in the search for liquid water, Enceladus is a tantalizing target.

Cassini captured this image of Enceladus with Saturn’s rings. The vapor plumes are slightly visible at the south polar region (bottom of image). Image: NASA/JPL/Space Science Institute

Though Enceladus looks every bit like a frozen, lifeless world on its surface, it’s what lies beneath its frigid crust that is exciting. Enceladus appears to have a subsurface ocean, at least in it’s south polar region. And that ocean may be up to 10 km. deep.

Before we dive into that, (sorry), here are a few basic facts about Enceladus:

  • Enceladus is Saturn’s sixth largest moon
  • Enceladus is about 500 km in diameter (Earth’s Moon is 3,474 km in diameter)
  • Enceladus was discovered in 1789 by William Herschel
  • Enceladus is one of the most reflective objects in our Solar System, due to its icy surface

In 2005, Cassini first spied plumes of frozen water vapor erupting from the southern polar region. Called cryovolcanoes, subsequent study of them determined that they are the likely source of Saturn’s E Ring. The existence of these plumes led scientists to suspect that their source was a sub-surface ocean under Enceladus’ ice crust.

This close up image of Enceladus clearly shows multiple plumes erupting into space. Image: NASA/JPL/Space Science Institute

Finding plumes of water erupting from a moon is one thing, but it’s not just water. It’s salt water. Further study showed that the plumes also contained simple organic compounds. This advanced the idea that Enceladus could harbor life.

This image of Enceladus shows the features known as “Tiger stripes”. They are the source of the vapor plumes that erupt from the surface. Credit: Cassini Imaging Team, SSI, JPL, ESA, NASA

The geysers aren’t the only evidence for a sub-surface ocean on Enceladus. The southern polar region has a smooth surface, unlike the rest of the moon which is marked with craters. Something must have smoothed that surface, since it is next to impossible that the south polar region would be free from impact craters.

In 2005, Cassini detected a warm region in the south, much warmer than could be caused by solar radiation. The only conclusion is that Enceladus has a source of internal heating. That internal heat would create enough geologic activity to erase impact craters.

So now, two conditions for the existence of life have been met: liquid water, and heat.

In 2005, data from Cassini showed that the so-called “Tiger Stripe” features on Enceladus’ south pole region are warm spots. Image:NASA/JPL/GSFC/SwRI/SSI

The source of the heat on Enceladus was the next question facing scientists. That question is far from settled, and there could be several sources of heat operating together. Among all the possible sources for the heat, two are most intriguing when it comes to the search for life: tidal heating, and radioactive heating.

Tidal heating is a result of rotational and orbital forces. In Enceladus’ case, these forces cause friction which is dissipated as heat. This heat keeps the sub-surface ocean in liquid form, but doesn’t prevent the surface from freezing solid.

Radioactive heating is caused by the decay of radioactive isotopes. If Enceladus started out as a rocky body, and if it contained enough short-lived isotopes, then an enormous amount of heat would be produced for several million years. That action would create a rocky core surrounded by ice.

Then, if enough long-lived radioactive isotopes were present, they would continue producing heat for a much longer period of time. However, radioactive heating isn’t enough on its own. There would have to be tidal heating also.

Gravity measurements by NASA’s Cassini spacecraft and Deep Space Network suggest that Saturn’s moon Enceladus, which has jets of water vapor and ice gushing from its south pole, also harbors a large interior ocean beneath an ice shell, as this illustration depicts.
Image Credit:
NASA/JPL-Caltech

More evidence for a large, sub-surface ocean came in 2014. Cassini and the Deep Space Network provided gravitometric measurements showing that the ocean is there. Those measurements showed that there is likely a regional, if not global, ocean some 10 km thick. Measurements also showed that the ocean is under an ice layer 30 to 40 km thick.

This close up image of Enceladus show the variability of its icy features. The dark spots were originally called “Dalmatian” terrain when first imaged in 2005. There exact nature remained a mystery until ten years later, when Cassini flybys showed that they are actually blocks of bedrock ice scattered along a ridge. The blocks range in size from tens to hundreds of meters. Image: NASA/JPL/Cal-Tech.

The discovery of a warm, salty ocean containing organic molecules is very intriguing, and has expanded our idea of what the habitable zone might be in our Solar System, and in others. Enceladus is much too distant from the Sun to rely on solar energy to sustain life. If moons can provide their own heat through tidal heating or radioactive heating, then the habitable zone in any solar system wouldn’t be determined by proximity to the star or stars at the centre.

Cassini’s mission is nearing its end, and it won’t fly by Enceladus again. It’s told us all it can about Enceladus. It’s up to future missions to expand our understanding of Enceladus.

Numerous missions have been talked about, including two that suggest flying through the plumes and sampling them. One proposal has a sample of the plumes being returned to Earth for study. Landing on Enceladus and somehow drilling through the ice remains a far-off idea better left to science fiction, at least for now.

Whether or not Enceladus can or does harbor life is a question that won’t be answered for a long time. In fact, not all scientists agree that there is a liquid ocean there at all. But whether it does or doesn’t harbor life, Cassini has allowed us to enjoy the tantalizing beauty of that distant object.

Enceladus. Cassini Imaging Team, SSI, JPL, ESA, NASA

Unprecedented Views of Saturn’s Rings as Cassini Dances Death Spiral

This image shows a region in Saturn's outer B ring. NASA's Cassini spacecraft viewed this area at a level of detail twice as high as it had ever been observed before. And from this view, it is clear that there are still finer details to uncover. Credit: NASA/JPL-Caltech/Space Science Institute

As the Cassini spacecraft moves ever closer to Saturn, new images provide some of the most-detailed views yet of the planet’s spectacular rings. From its “Ring-Grazing” orbit phase, Cassini’s cameras are resolving details in the rings as small as 0.3 miles (550 meters), which is on the scale of Earth’s tallest buildings.

On Twitter, Cassini Imaging Team Lead Carolyn Porco called the images “outrageous, eye-popping” and the “finest Cassini images of Saturn’s rings.”

Project Scientist Linda Spilker said the ridges and furrows in the rings remind her of the grooves in a phonograph record.

These images are giving scientists the chance to see more details about ring features they saw earlier in the mission, such as waves, wakes, and things they call ‘propellers’ and ‘straw.’

This Cassini image features a density wave in Saturn’s A ring (at left) that lies around 134,500 km from Saturn. Density waves are accumulations of particles at certain distances from the planet. This feature is filled with clumpy perturbations, which researchers informally refer to as “straw.” Credit: NASA/JPL-Caltech/Space Science Institute

As of this writing, Cassini just started the 10th orbit of the 20-orbit ring-grazing phase, which has the spacecraft diving past the outer edge of the main ring system. The ring-grazing orbits began last November, and will continue until late April, when Cassini begins its grand finale. During the 22 finale orbits, Cassini will repeatedly plunge through the gap between the rings and Saturn. The first of these plunges is scheduled for April 26.

The spacecraft is actually close enough to the ‘F’ ring that occasionally tenuous particle strike Cassini, said project scientist Linda Spilker, during a Facebook Live event today.

“These are very small and tenuous, only a few microns in size,” Spilker said, “like dust particles you’d see in the sunlight. We can actually ‘hear’ them hitting the spacecraft in our data, but these particles are so small, they won’t hurt Cassini.”

I talked with Spilker about ring particles for my book “Incredible Stories From Space:”

Spilker has envisioned holding a ring particle in her hand. What would it look like?

“We have evidence of the particles that have an icy core covered with fluffy regolith material that is very porous,” she said, “and that means the particle can heat up and cool down very quickly compared to a solid ice cube.”

The straw features are caused by clumping ring particles and the propellers are caused by small, embedded moonlets that creates propeller shaped wakes in the rings.

The wavemaker moon, Daphnis, is featured in this view, taken as NASA’s Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn’s rings on Jan. 16, 2017. This is the closest view of the small moon obtained yet. Daphnis is 5 miles or 8 kilometers across. Credit: NASA/JPL-Caltech/Space Science Institute

This stunning view of the moon Daphnis shows the moon interacting with the ring particles, creating waves in the rings around it.

A close-up of Saturn and its rings. Assembled using raw uncalibrated RGB filtered images taken by the Cassini spacecraft on January 18 2017. Credit:
NASA/JPL-Caltech/SSI/image editing by Kevin M. Gill

“These close views represent the opening of an entirely new window onto Saturn’s rings, and over the next few months we look forward to even more exciting data as we train our cameras on other parts of the rings closer to the planet,” said Matthew Tiscareno, a Cassini scientist who studies Saturn’s rings at the SETI Institute, Mountain View, California. Tiscareno planned the new images for the camera team.

Further reading: JPL, CICLOPS

The Incredible Story of How the Huygens Mission to Titan Succeeded When It Could Have Failed

Artist depiction of Huygens landing on Titan. Credit: ESA

Twelve years ago today, the Huygens probe landed on Titan, marking the farthest point from Earth any spacecraft has ever landed. While a twelfth anniversary may be an odd number to mark with a special article, as we said in our previous article (with footage from the landing), this is the last opportunity to celebrate the success of Huygens before its partner spacecraft Cassini ends its mission on September 15, 2017 with a fateful plunge into Saturn’s atmosphere.

But Huygens is also worth celebrating because, amazingly, the mission almost failed, but yet was a marvelous success. If not for the insistence of one ESA engineer to complete an in-flight test of Huygens’ radio system, none of the spacecraft’s incredible data from Saturn’s largest and mysterious moon would have ever been received, and likely, no one would have ever known why.

The first-ever images of the surface of a new moon or planet are always exciting. The Huygens probe was launched from Cassini to the surface of Titan, but was not able investigate the lakes and seas on the surface. Image Credit: ESA/NASA/JPL/University of Arizona
The first-ever images of the surface Titan, taken by the Huygens probe. Image Credit: ESA/NASA/JPL/University of Arizona

As I detail in my new book “Incredible Stories From Space: A Behind-the-Scenes-Look at the Missions Changing Our View of the Cosmos,” in 1999, the Cassini orbiter and the piggybacking Huygens lander were on their way to the Saturn system. The duo launched in 1997, but instead of making a beeline for the 6th planet from the Sun, they took a looping path called the VVEJGA trajectory (Venus-Venus-Earth-Jupiter Gravity Assist), swinging around Venus twice and flying past Earth 2 years later.

While all the flybys gave the spacecraft added boosts to help get it to Saturn, the Earth flyby also provided a chance for the teams to test out various systems and instruments and get immediate feedback.

“The European group wanted to test the Huygens receiver by transmitting the data from Earth,” said Earl Maize, Project Manager for the Cassini mission at JPL, who I interviewed for the book. “That’s a great in-flight test, because there’s the old adage of flight engineers, ‘test as you fly, fly as you test.’”

The way the Huygens mission would work at the Saturn system was that Cassini would release Huygens when the duo approached Titan. Huygens would drop through Titan’s thick and obscuring atmosphere like a skydiver on a parachute, transmitting data all the while. The Huygens probe didn’t have enough power or a large enough dish to transmit all its data directly to Earth, so Cassini would gather and store Huygens’ data on board and later transmit it to Earth.

Boris Smeds was head of ESOC’s Systems and Requirements Section, Darmstadt, Germany. Credit: ESA.

ESA engineer Boris Smeds wanted to ensure this data handoff was going to work, otherwise a crucial part of the mission would be lost. So he proposed a test during the 1999 Earth flyby.

Maize said that for some reason, there was quite a bit of opposition to the test from some of the ESA officials, but Smeds and Claudio Sollazzo, Huygens’s ground operations manager at ESA’s European Space Operation Centre (ESOC) in Darmstadt, Germany were insistent the test was necessary.

NASA's Deep Space Network is responsible for communicating with Juno as it explores Jupiter. Pictured is the Goldstone facility in California, one of three facilities that make up the Network. Image: NASA/JPL
NASA’s Deep Space Network is responsible for communicating with spacecraft. Pictured is the Goldstone facility in California, one of three facilities that make up the Network. Image: NASA/JPL

“They were not to be denied,” Maize said, “so they eventually got permission for the test. The Cassini team organized it, going to the Goldstone tracking station [in California] of the Deep Space Network (DSN) and did what’s called a ‘suitcase test,’ broke into the signal, and during the Earth flyby, Huygens, Cassini and Goldstone were all programmed to simulate the probe descending to Titan. It all worked great.”

Except for one thing: Cassini received almost no simulated data, and what it did receive was garbled. No one could figure out why.

Six months of painstaking investigation finally identified the problem. The variation in speed between the two spacecraft hadn’t been properly compensated for, causing a communication problem. It was as if the spacecraft were each communicating on a different frequency.

Artist concept of the Huygens probe descending to Titan. Credit: ESA.

“The European team came to us and said we didn’t have a mission,” Maize said. “But we put together ‘Tiger Teams’ to try and figure it out.”

The short answer was that the idiosyncrasies in the communications system were hardwired in. With the spacecraft now millions of miles away, nothing could be fixed. But engineers came up with an ingenious solution using a basic principal known as the Doppler Effect.

The metaphor Maize likes to use is this: if you are sitting on the shore and a speed boat goes by close to the coast, it zooms past you quickly. But that same boat going the same speed out on the horizon looks like it is barely moving.
“Since we couldn’t change Huygens’ signal, the only thing we could change was the way Cassini flew,” Maize said. “If we could move Cassini farther away and make it appear as if Huygens was moving slower, it would receive lander’s radio waves at a lower frequency, solving the problem.”

Maize said it took two years of “fancy coding modifications and some pretty amazing trajectory computations.” Huygens’ landing was also delayed two months for the new trajectory that was needed overcome the radio system design flaw.

Additionally, with Cassini needing to be farther away from Huygens than originally planned, it would eventually fly out of range to capture all of Huygens’ data. Astronomers instigated a plan where radio telescopes around the world would listen for Huygens’ faint signals and capture anything Cassini missed.

Huygens was released from the Cassini spacecraft on Christmas Day 2004, and arrived at Titan on January 14, 2005. The probe began transmitting data to Cassini four minutes into its descent through Titan’s murky atmosphere, snapping photos and taking data all the while. Then it touched down, the first time a probe had landed on an extraterrestrial world in the outer Solar System.

Because of the communication problem, Huygens was not able to gather as much information as originally planned, as it could only transmit on one channel instead of two. But amazingly, Cassini captured absolutely all the data sent by Huygens until it flew out of range.

“It was beautiful,” Maize said, “I’ll never forget it. We got it all, and it was a wonderful example of international cooperation. The fact that 19 countries could get everything coordinated and launched in the first place was pretty amazing, but there’s nothing that compares to the worldwide effort we put into recovering the Huygens mission. From an engineering standpoint, that might trump everything else we’ve done on this mission.”

The view of Titan from the descending Huygens spacecraft on January 14, 2005. Credit: ESA/NASA/JPL/University of Arizona.

With its ground-breaking mission, Huygens provided the first real view of the surface of Titan. The data has been invaluable for understanding this unique and mysterious moon, showing geological and meteorological processes that are more similar to those on the surface of the Earth than anywhere else in the Solar System. ESA has details on the top discoveries by Huygens here.

Noted space journalist Jim Oberg has written several detailed and very interesting articles about the Huygens’ recovery, including one at IEEE Spectrum and another at The Space Review. These articles provide much more insight into the test, Smeds’ remarkable insistence for the test, the recovery work that was done and the subsequent success of the mission.

As Oberg says in IEEE Spectrum, “Smeds continued a glorious engineering tradition of rescuing deep-space missions from doom with sheer persistence, insight, and lots of improvisation.”

A modest Smeds was quoted by ESA: “This has happened before. Almost any mission has some design problem,” says Smeds, who says he’s worked on recovering from pre- and post-launch telecom issues that have arisen with several past missions. “To me, it’s just part of my normal work.”

For more stories about Huygens, Cassini and several other current robotic space missions, “Incredible Stories From Space” tells many behind-the-scenes stories from the amazing people who work on these missions.

Land On Titan With Huygens in Beautiful New Video

The view of Titan from the descending Huygens spacecraft on January 14, 2005. Credit: ESA/NASA/JPL/University of Arizona.

On December 25, 2004, the piggybacking Huygens probe was released from the ‘mothership’ Cassini spacecraft and it arrived at Titan on January 14, 2005. The probe began transmitting data to Cassini four minutes into its descent through Titan’s murky atmosphere, snapping photos and taking data all the while. Then it touched down, the first time a probe had landed on an extraterrestrial world in the outer Solar System.

JPL has released a re-mix of the data and images gathered by Huygens 12 years ago in a beautiful new video. This is the last opportunity to celebrate the success of Huygens before Cassini ends its mission in September of 2017.

Watch as the incredible view of Titan’s surface comes into view, with mountains, a system of river channels and a possible lakebed.

After a two-and-a-half-hour descent, the metallic, saucer-shaped spacecraft came to rest with a thud on a dark floodplain covered in cobbles of water ice, in temperatures hundreds of degrees below freezing.

Huygens had to quickly collect and transmit all the images and data it could because shortly after landing, Cassini would drop below the local horizon, “cutting off its link to the home world and silencing its voice forever.”

How much of this video is actual images and data vs computer graphics?

Of course, the clips at the beginning and end of the video are obviously animations of the probe and orbiter. However, the slow descending 1st-person point-of-view video is made using actual images from Huygens. But Huygens did not take a continuous movie sequence, so a lot of work was done by the team that operated Huygens’ optical imager, the Descent Imager/Spectral Radiometer (DISR), to enhance, colorize, and re-project the images into a variety of formats.

The view of the cobblestones and the parachute shadow near the end of the video is also created from real landing data, but was made in a different way from the rest of the descent video, because Huygens’ cameras did not actually image the parachute shadow. However, the upward looking infrared spectrometer took a measurement of the sky every couple of seconds, recording a darkening and then brightening to the unobstructed sky. The DISR team calculated from this the accurate speed and direction of the parachute, and of its shadow to create a very realistic video based on the data.

If you’re a data geek, there are some great videos of Huygens’ data by the University of Arizona Lunar and Planetary Laboratory team, such as this one:

The movie shows the operation of the DISR camera during the descent onto Titan. The almost 4-hour long operation
of DISR is shown in less than five minutes in 40 times actual sped up to landing and 100 times actual speed thereafter.

Erich Karkoschka from the UA team explained what all the sounds in the video are. “All parts of DISR worked together as programmed, creating a harmony,” he said. Here’s the full explanation:

Sound was added to mark various events. The left speaker follows the motion of Huygens. The pitch of the tone indicates the rotational speed. Vibrato indicates vibration of the parachute. Little clicks indicate the clocking of the rotation counter. Noise corresponds to heating of the heat shield, to parachute deployments, to the heat shield release, to the jettison of the DISR cover, and to touch down.

The sound in the right speaker follows DISR data. The pitch of the continuous tone goes with the signal strength. The 13 different chime tones indicate activity of the 13 components of DISR. The counters at the top and bottom of the list get the high and low notes, respectively.

You can see more info and videos created from Huygens’ data here.

Read some reminiscences about Huygens from some of the Cassini team here.

“Incredible Stories” From the Cassini Mission

An artist's illustration of Cassini entering orbit around Saturn. Credit: NASA/JPL.

When Cassini Project Scientist Linda Spilker thinks about her spacecraft, as it is out there gliding amidst the moons and rings of Saturn, there are times when she envisions it as a dancer or ice skater, spinning and turning to look at all the different targets.

“I picture Cassini as a she,” Spilker said, admitting to moments of anthropomorphizing, “because all good sailing ships are a she. She has these beautiful gold thermal blankets, and I see them as her golden flowing hair. I think she’s very joyful and curious and is definitely an explorer. That’s my view of what Cassini looks like.”

Does your spacecraft seem to have a personality?

That’s a question I asked every scientist and engineer who I interviewed for my book “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos,” which comes out on Dec. 20, 2016. The answers varied, sometimes even among people who worked on the same mission. But, it seems, we humans can’t help but sometimes think of our robots as being just like us.

“There is a personality there,” Spilker said of the Cassini spacecraft, “and I think it is a reflection of the Cassini team. We take good care of her and watch over her, making sure everything goes right. And if she curls up in the middle of the night and says ‘Help!’ we all come in and want to fix her and get her running again.”

But during its 13-year mission, the Cassini spacecraft has had few anomalies and difficulties. As the Cassini team gears up towards the end of the mission in September 2017, they look back with amazement, gratitude and a sense of accomplishment.

“Everything about the spacecraft is rock solid,” said Cassini Project Manager Earl Maize. “There were really no compromises in the hardware whatsoever. All the design lessons learned from Galileo, Voyager and Magellan went into Cassini.”

Plus, the spacecraft engineering and science teams have been absolutely meticulous in managing the mission, Maize said.

“If we find an idiosyncrasy that looks like it might trend into an issue, we work around it. We have cranky reaction wheels, and we have nursed them. Plus the spacecraft has been very good at diagnosing itself and the team is very good at working through the issues. We’ve had very few difficulties in flight,” Maize said, grinning, looking towards the wooden table in front of us, and giving it a few knocks. “It looks good for us to finish up the mission strong.”

The 37 NASA scientists and engineers I interviewed for over a dozen different missions all had stories to tell and they all had their favorites. Maize said the main story of the Cassini is its durability and endurance. Launched in 1997, the spacecraft arrived at Saturn in 2004. Over the years, Cassini’s findings have revolutionized our understanding of the entire Saturn system, providing intriguing insights on Saturn itself as well as revealing secrets held by moons such as Enceladus and Titan.

“The main story is the longevity,” Maize said. “Voyager will always have us beat, because Cassini is an orbiter and it has certain sets of consumables – for example, the propellant — that will run out. But the longevity of the mission is a tribute to the developers. We had some amazing system engineers whose history of working on previous missions will likely never be repeated.”

Like many of those engineers, early in her career as a planetary scientist, Spilker worked on the Voyager mission.

Saturn captured by Voyager. Image credit: NASA/JPL
Saturn captured by Voyager. Image credit: NASA/JPL

“After the Voyager flybys of Saturn in 1980 and 1981, we realized we couldn’t see through the atmosphere of Titan because we didn’t have the right filters,” Spilker said, as we chatted in her office at JPL. “So people started planning in the early 1980’s for a mission that would go back to Saturn, and to look at Titan.”

Wes Huntress, longtime JPL scientist and Director of NASA’s Solar System Exploration Division, was in charge of developing this new mission, and in 1988 he asked Spilker to be his deputy.

“This project ultimately became Cassini,” Spilker said. “It didn’t have a name yet and wasn’t funded at that time, but I’ve been with it ever since. Talk about longevity!”

Spilker added that the entire mission has been a “wonderful experience,” and that she has been fascinated by Saturn ever since she got a telescope when she was in 3rd grade.

Maize said one of the most memorable moments for him came early in the mission: orbit insertion at Saturn.

This view looks toward the sunlit side of the rings from about 17 degrees above the ringplane and was taken with the Cassini spacecraft wide-angle camera on Aug. 12, 2014. Credit:  NASA/JPL-Caltech/Space Science Institute.
This view looks toward the sunlit side of the rings from about 17 degrees above the ringplane and was taken with the Cassini spacecraft wide-angle camera on Aug. 12, 2014. Credit: NASA/JPL-Caltech/Space Science Institute.

“That was the must-do event,” he said. “We had a 45-minute burn and we were either a flyby mission or we were in business. I was feeling pretty good about the burn, but what was amazing about it was that if the burn was completed properly, we were going to be able to get some amazing images as the spacecraft came up over the ring plane of the planet. I was sitting with Ed Weiler the next morning at about 4:30 a.m., looking at those images and it was just amazing. I’ll never forget it. It was probably the hallmark moment for me.”

At that time, no spacecraft had ever been that close to Saturn’s rings before. Now, as the mission enters the beginning of the final phase of the mission –as it prepares to plunge into the gas giant in 2017 to protect any potential life on any of Saturn’s moons from contamination from the spacecraft — it will come even closer to the rings, diving close and through Saturn’s rings a total of 20 times.

“It’s taken years of planning, but now that we’re finally here, the whole Cassini team is excited to begin studying the data that come from these ring-grazing orbits,” said Spilker. “This is a remarkable time in what’s already been a thrilling journey.”

Cassini image of ice geysers on Enceladus (NASA/JPL/SSI)
Cassini image of ice geysers on Enceladus (NASA/JPL/SSI)

What will Cassini’s legacy be? Spilker offered a unique perspective.

“The biggest legacy will be how it has helped us realize all the different possibilities of where life might be found, even within our own solar system,” she said. “We’ve found that you don’t necessarily need to have a planet in the sweet spot from a star, where you could have liquid water on the surface. That might change the way we look at exoplanets. Yes, let’s find those earths or super-earths in that sweet spot, but when our instruments improve, let’s look for those giant planets that might have moons that might have life. That has broadened our places to look. From Cassini, I think we’ve learned that maybe there’s a lot more possibility for life than we had ever imagined.”

“Incredible Stories From Space” takes readers behind the scenes of the unmanned missions that are transforming our understanding of the solar system and beyond. Weaving together one-on-one interviews along with the extraordinary sagas of the spacecraft themselves, this book chronicles the struggles and triumphs of nine current space missions and captures the true spirit of exploration and discovery. Look for more “stories” and an excerpt from the book as the release date of Dec. 20 approaches.

Cassini’s First Ring-Grazing Orbit A Success

This graphic shows the closest approaches of Cassini's final two orbital phases. Ring-grazing orbits are shown in gray (at left); Grand Finale orbits are shown in blue. The orange line shows the spacecraft's Sept. 2017 final plunge into Saturn. Credit: NASA/JPL-Caltech

The Cassini-Huygens mission is coming to an end.

Cassini was launched in 1997 and reached Saturn in 2004. It will end its mission by plunging into the gas giant. But before then, it will dive through Saturn’s rings a total of 20 times.

An artist's illustration of Cassini entering orbit around Saturn. Public Domain, https://commons.wikimedia.org/w/index.php?curid=626636
An artist’s illustration of Cassini entering orbit around Saturn. Public Domain, https://commons.wikimedia.org/w/index.php?curid=626636

The first dive through the rings was just completed, and represents the beginning of Cassini’s final mission phase. On December 4th at 5:09 PST the 2,150 kg, plutonium-powered probe, crossed through a faint and dusty ring created by the moons Janus and Epimetheus. This brought it to within 11,000 km of Saturn’s F-ring.

Though the end of a mission might seem sad, people behind the mission are excited about this final phase, a series of close encounters with the most iconic structures in our Solar System: Saturn’s glorious rings.

“This is a remarkable time in what’s already been a thrilling journey.” – Linda Spilker, NASA/JPL

“It’s taken years of planning, but now that we’re finally here, the whole Cassini team is excited to begin studying the data that come from these ring-grazing orbits,” said Linda Spilker, Cassini project scientist at JPL. “This is a remarkable time in what’s already been a thrilling journey.”

Even casual followers of space news have enjoyed the steady stream of eye candy from Cassini. But this first orbit through Saturn’s rings is more about science than pictures. The probe’s cameras captured images 2 days before crossing through the plane of the rings, but not during the closest approach. In future ring-grazing orbits, Cassini will give us some of the best views yet of Saturn’s outer rings and some of the small moons that reside there.

Cassini is about more than just beautiful images though. It’s a vital link in a series of missions that have opened up our understanding of the Solar System we inhabit. Here are some of Cassini’s important discoveries:

New Moons

The Cassini mission discovered 7 new moons orbiting Saturn. Methone, Pallene and Polydeuces were all discovered in 2004. Daphnis, Anthe, and Aegaeon were discovered between 2005 and 2009. The final moon is currently named S/2009 S 1.

This image shows the moon Daphnis in the Keeler gap in Saturn's A ring. The moon's gravity causes the wave shapes in the rings. By NASA/JPL/Space Science Institute - http://www.esa.int/SPECIALS/Cassini-Huygens/SEM1XQ5TI8E_1.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=17953334
This image shows the moon Daphnis in the Keeler gap in Saturn’s A ring. The moon’s gravity causes the wave shapes in the rings. By NASA/JPL/Space Science Institute – http://www.esa.int/SPECIALS/Cassini-Huygens/SEM1XQ5TI8E_1.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=17953334

In 2014, NASA reported that yet another new moon may be forming in Saturn’s A ring.

This Cassini image shows what might be a new moon forming in Saturn's rings. The new moon, if it is one, is only about 1 km in diameter. By NASA/JPL-Caltech/Space Science Institute - http://photojournal.jpl.nasa.gov/jpeg/PIA18078.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=32184174
This Cassini image shows what might be a new moon forming in Saturn’s rings. The new moon, if it is one, is only about 1 km in diameter. By NASA/JPL-Caltech/Space Science Institute – http://photojournal.jpl.nasa.gov/jpeg/PIA18078.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=32184174

Huygens lands on Titan

The Huygens lander detached from the Cassini orbiter on Christmas Day 2004. It landed on the frigid surface of Saturn’s moon Titan after a 2 1/2 hour descent. The lander transmitted 350 pictures of Titan’s descent to the surface. An unfortunate software error caused the loss of another 350 pictures.

The first-ever images of the surface of a new moon or planet are always exciting. This image was taken by the Huygens probe at its landing site on Titan. Image Credit: ESA/NASA/JPL/University of Arizona
The first-ever images of the surface of a new moon or planet are always exciting. This image was taken by the Huygens probe at its landing site on Titan. Image Credit: ESA/NASA/JPL/University of Arizona

Enceladus Flyby

Cassini performed several flybys of the moon Enceladus. The first was in 2005, and the last one was in 2015. The discovery of ice-plumes and a salty liquid ocean were huge for the mission. The presence of liquid water on Enceladus makes it one of the most likely places for microbial life to exist in our Solar System.

In 2005 Cassini discovered jets of water vapor and ice erupting form the surface of Enceladus. The water could be from an subsurface sea. Image Credit: Cassini Imaging Team, SSI, JPL, ESA, NASA
In 2005 Cassini discovered jets of water vapor and ice erupting form the surface of Enceladus. The water could be from an subsurface sea. Image Credit: Cassini Imaging Team, SSI, JPL, ESA, NASA

Each of Cassini’s final ring-grazing orbits will last one week. Cassini’s final orbit will bring it close to Saturn’s moon Titan. That encounter will change Cassini’s path. Cassini will leap over the rings and make the first of 22 plunges through the gap between Saturn and its rings.

In September 2017, the Cassini probe will finally reach the end of its epic mission. In order to prevent any possible contamination of Saturn’s moons, the probe will make one last glorious plunge into Saturn’s atmosphere, transmitting data until it is destroyed.

The Cassini mission is a joint mission between the European Space Agency, NASA, and the Italian Space Agency.

Cassini Is About To Graze Saturn’s Rings In Mission Endgame

A lovely view of Saturn and its rings as seen by the Cassini spacecraft on Aug. 12, 2009. Credit: NASA/JPL-Caltech/Space Science Institute.

There is a Twitter-bot that randomly tweets out “NOOOOOOOO Cassini can’t be ending!” (with varying amounts of “O’s”). @CassiniNooo represents the collective sigh of sadness and consternation felt by those of us who can’t believe the the historic and extensive Cassini mission will be over in just a matter of months.

And next week is the beginning of the end for Cassini.

On November 30, Cassini will begin a phase of the mission that the science team calls “Cassini’s Ring-Grazing Orbits,” as the spacecraft will start skimming past the outer edge of the rings, coming within – at times — 4,850 miles (7,800 kilometers) of the rings.

“The scientific return will be incredible,” Linda Spilker, Cassini project scientist, told me earlier this year. “We’ll be studying things we just couldn’t do any other place.”

Between November 30, 2016 and April 22, 2017 Cassini will circle high over and under the poles of Saturn, diving every seven days for a total of 20 times through the unexplored region at the outer edge of the main rings.

During the close passes, Cassini’s instruments will attempt to directly sample the icy ring particles and molecules of faint gases that are found close to the rings. Cassini will also capture some of the best high-resolution images of the rings, and garner the best views ever of the small moons Atlas, Pan, Daphnis and Pandora, which orbit near the rings’ outer edges.

During the first two ring-grazing orbits, the spacecraft will pass directly through an extremely faint ring produced by tiny meteors striking the two small moons Janus and Epimetheus. Later ring crossings in March and April will send the spacecraft through the dusty outer reaches of the F ring.

“Even though we’re flying closer to the F ring than we ever have, … there’s very little concern over dust hazard at that range,” said Earl Maize, Cassini project manager at JPL.

Of course, the ultimate ‘endgame’ is that Cassini will plunge into Saturn with its “Grand Finale,” ending the mission on September 15, 2017. Since Cassini is running out of fuel, destroying the spacecraft is necessary to ensure “planetary protection,” making sure any potential microbes from Earth that may still be attached to the spacecraft don’t contaminate any of Saturn’s potentially habitable moons.

This graphic illustrates the Cassini spacecraft's trajectory, or flight path, during the final two phases of its mission. The view is toward Saturn as seen from Earth. The 20 ring-grazing orbits are shown in gray; the 22 grand finale orbits are shown in blue. The final partial orbit is colored orange. Image credit: NASA/JPL-Caltech/Space Science Institute
This graphic illustrates the Cassini spacecraft’s trajectory, or flight path, during the final two phases of its mission. The view is toward Saturn as seen from Earth. The 20 ring-grazing orbits are shown in gray; the 22 grand finale orbits are shown in blue. The final partial orbit is colored orange. Image credit: NASA/JPL-Caltech/Space Science Institute

To prepare for the Grand Finale, Cassini engineers have been slowly adjusting the spacecraft’s orbit since January of this year, doing maneuvers and burns of the engine to bring Cassini into the right orbit so that it can ultimately dive repeatedly through the narrow gap between Saturn and its rings, before making its mission-ending plunge. During some of those final orbits, Cassini will pass as close as 1,012 miles (1,628 kilometers) above the cloudtops of Saturn.

One question for Cassini’s engineering team is how much fuel is actually left in the tank for Cassini’s main engines, which do the majority of the work for orbit adjustments. Each time they’ve used the main engines this past year, the team has held their breath, hoping there is enough fuel.

One final burn of the main engine remains, on December 4. This maneuver is important for fine-tuning the orbit and setting the correct course to enable the remainder of the mission, said Maize.

“This will be the 183rd and last currently planned firing of our main engine,” he said. “Although we could still decide to use the engine again, the plan is to complete the remaining maneuvers using thrusters,” said Maize.

A montage of images from Cassini of various moons and the rings around Saturn. Credit: NASA/JPL-Caltech/Space Science Institute
A montage of images from Cassini of various moons and the rings around Saturn. Credit: NASA/JPL-Caltech/Space Science Institute

When I visited with Maize and Spilker earlier this year, Spilker wistfully said that they had begun to experience some of the “lasts” of the mission — the final flyby of Enceladus and other moons. And there’s one big “last” coming up: on Nov. 29, 2016, Cassini will come within 6,800 miles (11,000 km) of Titan, the final flyby of this eerily Earthlike but yet totally alien moon.

This final flyby, named Flyby T-125 has two primary goals: Mapmaking of Titan’s surface, and enabling the change in Cassini’s orbit to begin the end of the mission. But it also might be the most daring and thrilling part of Cassini’s nearly 20-year mission.

But still ….. NOOOOOO!

Keep track of Cassini’s latest endeavours at the Cassini website