What Triggers a Type Ia Supernova? Chandra Finds New Evidence

This Chandra image of the Tycho supernova remnant contains new evidence for what triggered the original supernova explosion. Credit: NASA/CXC/Chinese Academy of Sciences/F. Lu et al.

[/caption]

What makes a star go boom? A new look at Tycho’s supernova remnant by the Chandra X-ray telescope has supplied astronomers with previously unseen evidence for what could trigger specific type of supernova, a Type Ia supernova explosion. Astronomers have spotted what appears to be material that was blasted off a companion star to a white dwarf when it exploded, creating the supernova seen by Danish astronomer Tycho Brahe in 1572. There is also evidence that this material blocked the explosion debris, creating an “arc” and a “shadow” in the supernova remnant.

There are two main types of supernovae. One is where a massive star – much bigger than our sun — burns all its nuclear fuel and collapses in on itself, which ignites a supernova explosion. Type Ia supernovae, however, are different. Smaller stars eventually turn into white dwarfs at the end of their lives, becoming an ultra-dense ball of carbon and oxygen about the size of the Earth, with the mass of our Sun. In some instances, though, a white dwarf somehow ignites, creating an explosion so bright that it can be seen billions of light years away, across much of the Universe. But astronomers really haven’t understood what causes these explosions to start.

There are a couple of popular theories: one scenario for Type Ia supernovas involves the merger of two white dwarfs. In this case, no companion star or evidence for material blasted off a companion should exist. In the other theory, a white dwarf pulls material from a “normal,” or Sun-like, companion star until a thermonuclear explosion occurs.

Both scenarios may actually occur under different conditions, but the latest Chandra result from Tycho supports the latter one.

This is an artist's impression showing an explanation from scientists for the origin of an X-ray arc in Tycho's supernova remnant. Credit: NASA/CXC/M.Weiss

The new Chandra images show the famous leftovers of Tycho’s supernova, and reveal for the first time an arc of X-ray emission within the supernova remnant. The shape of the arc is different from any other feature seen in the remnant. This supports the conclusion that a shock wave created the arc when a white dwarf exploded and blew material off the surface of a nearby companion star.

In addition, this new study seems to show how resilient some stars can be, as the supernova explosion appears to have blasted very little material off the companion star. Previously, studies with optical telescopes have revealed a star within the remnant that is moving much more quickly than its neighbors, hinting that it could be the missing companion.

“It looks like this companion star was right next to an extremely powerful explosion and it survived relatively unscathed,” said Q. Daniel Wang of the University of Massachusetts in Amherst, a member of the research team whose paper will appear in the May 1st issue of The Astrophysical Journal. “Presumably it was also given a kick when the explosion occurred. Together with the orbital velocity, this kick makes the companion now travel rapidly across space.”

This image shows iron debris in Tycho's supernova remnant. The site of the supernova explosion is shown, as inferred from the motion of the possible companion to the exploded white dwarf. The position of material stripped off the companion star by the explosion, and forming an X-ray arc, is shown by the white dotted line. This structure is most easily seen in an image showing X-rays from the arc's shock wave. Finally, the arc has blocked debris from the explosion creating a "shadow" in the debris between the red dotted lines, extending from the arc to the edge of the remnant. Credit: NASA/CXC/Chinese Academy of Sciences/F. Lu et al.

Using the properties of the X-ray arc and the candidate stellar companion, the team determined the orbital period and separation between the two stars in the binary system before the explosion. The period was estimated to be about 5 days, and the separation was only about a millionth of a light-year, or less than a tenth the distance between the Sun and the Earth. In comparison, the remnant itself is about 20 light-years across.

Other details of the arc support the idea that it was blasted away from the companion star. For example, the X-ray emission of the remnant shows an apparent “shadow” next to the arc, consistent with the blocking of debris from the explosion by the expanding cone of material stripped from the companion.

“This stripped stellar material was the missing piece of the puzzle for arguing that Tycho’s supernova was triggered in a binary with a normal stellar companion,” said Fangjun Lu of the Institute of High Energy Physics, Chinese Academy of Sciences in Beijing. “We now seem to have found this piece.”

Because Type Ia supernova are all of similar brightness, they are used as a standard candle to measure the expansion of the Universe, and this new observation by Chandra has helped to answer at least part of the long-standing – and critical — question of what triggers these bright explosions.

Source: Chandra

Space Telescopes Observe Unprecedented Explosion

mages from Swift's Ultraviolet/Optical (white, purple) and X-ray telescopes (yellow and red) were combined in this view of GRB 110328A. The blast was detected only in X-rays, which were collected over a 3.4-hour period on March 28. Credit: NASA/Swift/Stefan Immler

[/caption]

From a NASA press release:

NASA’s Swift, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts yet observed. More than a week later, high-energy radiation continues to brighten and fade from its location.

Astronomers say they have never seen anything this bright, long-lasting and variable before. Usually, gamma-ray bursts mark the destruction of a massive star, but flaring emission from these events never lasts more than a few hours.

Although research is ongoing, astronomers say that the unusual blast likely arose when a star wandered too close to its galaxy’s central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its rotational axis. A powerful blast of X- and gamma rays is seen if this jet is pointed in our direction.

On March 28, Swift’s Burst Alert Telescope discovered the source in the constellation Draco when it erupted with the first in a series of powerful X-ray blasts. The satellite determined a position for the explosion, now cataloged as gamma-ray burst (GRB) 110328A, and informed astronomers worldwide.

This is a visible-light image of GRB 110328A's host galaxy (arrow) taken on April 4 by the Hubble Space Telescope's Wide Field Camera 3. The galaxy is 3.8 billion light-years away. Credit: NASA/ESA/A. Fruchter (STScI)

As dozens of telescopes turned to study the spot, astronomers quickly noticed that a small, distant galaxy appeared very near the Swift position. A deep image taken by Hubble on April 4 pinpoints the source of the explosion at the center of this galaxy, which lies 3.8 billion light-years away.

That same day, astronomers used NASA’s Chandra X-ray Observatory to make a four-hour-long exposure of the puzzling source. The image, which locates the object 10 times more precisely than Swift can, shows that it lies at the center of the galaxy Hubble imaged.

“We know of objects in our own galaxy that can produce repeated bursts, but they are thousands to millions of times less powerful than the bursts we are seeing now. This is truly extraordinary,” said Andrew Fruchter at the Space Telescope Science Institute in Baltimore.

NASA's Chandra X-ray Observatory completed this four-hour exposure of GRB 110328A on April 4. The center of the X-ray source corresponds to the very center of the host galaxy imaged by Hubble (red cross). Credit: NASA/CXC/ Warwick/A. Levan

“We have been eagerly awaiting the Hubble observation,” said Neil Gehrels, the lead scientist for Swift at NASA’s Goddard Space Flight Center in Greenbelt, Md. “The fact that the explosion occurred in the center of a galaxy tells us it is most likely associated with a massive black hole. This solves a key question about the mysterious event.”

Most galaxies, including our own, contain central black holes with millions of times the sun’s mass; those in the largest galaxies can be a thousand times larger. The disrupted star probably succumbed to a black hole less massive than the Milky Way’s, which has a mass four million times that of our sun

Astronomers previously have detected stars disrupted by supermassive black holes, but none have shown the X-ray brightness and variability seen in GRB 110328A. The source has repeatedly flared. Since April 3, for example, it has brightened by more than five times.

Scientists think that the X-rays may be coming from matter moving near the speed of light in a particle jet that forms as the star’s gas falls toward the black hole.

“The best explanation at the moment is that we happen to be looking down the barrel of this jet,” said Andrew Levan at the University of Warwick in the United Kingdom, who led the Chandra observations. “When we look straight down these jets, a brightness boost lets us view details we might otherwise miss.”

This brightness increase, which is called relativistic beaming, occurs when matter moving close to the speed of light is viewed nearly head on.

Astronomers plan additional Hubble observations to see if the galaxy’s core changes brightness.

For more information see this NASA press release.

New Look Inside Tycho Supernova Remnant Hints at Cosmic Ray Origins

X-ray Image of Tycho's Supernova Remnant. (NASA/CXC/Rutgers/K.Eriksen et al.)

[/caption]

The Chandra X-Ray Observatory has taken a brand new, deep look inside the Tycho Supernova Remnant and found a pattern of X-ray “stripes.” The three-dimensional-like nature of this incredible image notwithstanding, nothing like these stripe-like features has ever been seen before inside the leftovers of an exploding star, but astronomers believe they could explain how some cosmic rays are created. Additionally, the stripes provide support for a theory about how magnetic fields can be dramatically amplified in supernova blast waves.

Cosmic rays are made up of electrons, positrons and atomic nuclei and they constantly bombard the Earth. In their near light-speed journey across the galaxy, the particles are deflected by magnetic fields, which scramble their paths and mask their origins. Supernova remnants have long been thought to be the source of cosmic rays, up to the “knee” of the cosmic ray spectrum at 10^15 eV, but so far, no specific sources have been located.

In 2010, the Fermi gamma ray telescope found evidence – also from supernova remnants – where radiation is emitted that is a billion times more energetic than visible light.

High Energy Stripes in the Tycho Supernova Remnant. Credit: NASA/CXC/Rutgers/K.Eriksen et al

But the stripes seen by Chandra, shown above in high-energy X-rays (blue), are thought to be regions where the turbulence is greater and the magnetic fields more tangled than surrounding areas. Electrons become trapped in these regions and emit X-rays as they spiral around the magnetic field lines. Regions with enhanced turbulence and magnetic fields were expected in supernova remnants, but the motion of the most energetic particles — mostly protons — was predicted to leave a messy network of holes and dense walls corresponding to weak and strong regions of magnetic fields, respectively.

Therefore, the detection of stripes was a surprise.

Schematic Illustration of the Tycho Stripes. Credit: NASA/CXC/M.Weiss.

The size of the holes was expected to correspond to the radius of the spiraling motion of the highest energy protons in the supernova remnant. These energies equal the highest energies of cosmic rays thought to be produced in our Galaxy. The spacing between the stripes corresponds to this size, providing evidence for the existence of these extremely energetic protons.

“We interpret the stripes as evidence for acceleration of particles to near the knee of the CR spectrum in regions of enhanced magnetic turbulence, while the observed highly ordered pattern of these features provides a new challenge to models of diffusive shock acceleration,” writes Kristoffer A. Eriksen and his team in their paper, “Evidence For Particle Acceleration to the Knee of the Cosmic Ray Spectrum in Tycho’s Supernova Remnant.”

Source: Chandra

Close Look at Cas A Reveals Bizarre ‘Superfluid’

Credit: X-ray: NASA/CXC/UNAM/Ioffe/D. Page, P. Shternin et al.; Optical: NASA/STScI; Illustration: NASA/CXC/M. Weiss

[/caption]

NASA’s Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star.

The image above, released today, shows X-rays from Chandra (red, green, and blue) and optical data from Hubble (gold) of Cassiopeia A, the remains of a massive star that exploded in a supernova. The evidence for superfluid has been found in the dense core of the star left behind, a so-called neutron star. The artist’s illustration in the inset shows a cut-out of the interior of the neutron star, where densities increase from the orange crust to the red core and finally to the inner red ball, the region where the superfluid exists.

Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. When they’re made of charged particles, superfluids are also superconductors, and they allow electric current to flow with no resistance. Such materials on Earth have widespread technological applications like producing the superconducting magnets used for magnetic resonance imaging [MRI].

Two independent research teams have used Chandra data to show that the interior of a neutron star contains superfluid and superconducting matter, a conclusion with important implications for understanding nuclear interactions in matter at the highest known densities. The teams publish their research separately in the journals Monthly Notices of the Royal Astronomical Society Letters and Physical Review Letters.

Cas A (RA 23h 23m 26.7s | Dec +58° 49′ 03.00) lies about 11,000 light-years away. Its star exploded about 330 years ago in Earth’s time-frame. A sequence of Chandra observations of the neutron star shows that the now compact object has cooled by about 4 percent over a ten-year period.

“This drop in temperature, although it sounds small, was really dramatic and surprising to see,” said Dany Page of the National Autonomous University in Mexico, leader of one of the two teams. “This means that something unusual is happening within this neutron star.”

Neutron stars contain the densest known matter that is directly observable; one teaspoon of neutron star material weighs six billion tons. The pressure in the star’s core is so high that most of the charged particles, electrons and protons, merge — resulting in a star composed mostly of neutrons.

The new results strongly suggest that the remaining protons in the star’s core are in a superfluid state and, because they carry a charge, also form a superconductor.

Both teams show that the rapid cooling in Cas A is explained by the formation of a neutron superfluid in the core of the neutron star within about the last 100 years as seen from Earth. The rapid cooling is expected to continue for a few decades, and then it should slow down.

“It turns out that Cas A may be a gift from the Universe because we would have to catch a very young neutron star at just the right point in time,” said Page’s co-author Madappa Prakash, from Ohio University. “Sometimes a little good fortune can go a long way in science.”

The onset of superfluidity in materials on Earth occurs at extremely low temperatures near absolute zero, but in neutron stars, it can occur at temperatures near a billion degrees Celsius. Until now there was a very large uncertainty in estimates of this critical temperature. This new research constrains the critical temperature to between one half a billion to just under a billion degrees.

Cas A will allow researchers to test models of how the strong nuclear force, which binds subatomic particles, behaves in ultradense matter. These results are also important for understanding a range of behavior in neutron stars, including “glitches,” neutron star precession and pulsation, magnetar outbursts and the evolution of neutron star magnetic fields.

Sources: Press releases from the Royal Astronomical Society and Harvard. See additional multimedia at NASA’s Chandra page, and the two studies in MNRAS and Phys. Rev. Letters.

 

 

Chandra Captures Giant Ring of Black Holes

Arp 147 contains a spiral galaxy (right) that collided with an elliptical galaxy (left), triggering a wave of star formation. Credit: X-ray: NASA/CXC/MIT/S.Rappaport et al, Optical: NASA/STScI

[/caption]

From a Chandra press release:

Just in time for Valentine’s Day comes a new image of a ring — not of jewels — but of black holes. This composite image of Arp 147, a pair of interacting galaxies located about 430 million light years from Earth, shows X-rays from the NASA’s Chandra X-ray Observatory (pink) and optical data from the Hubble Space Telescope (red, green, blue) produced by the Space Telescope Science Institute (STScI) in Baltimore, Md.

Arp 147 contains the remnant of a spiral galaxy (right) that collided with the elliptical galaxy on the left. This collision has produced an expanding wave of star formation that shows up as a blue ring containing in abundance of massive young stars. These stars race through their evolution in a few million years or less and explode as supernovas, leaving behind neutron stars and black holes.

A fraction of the neutron stars and black holes will have companion stars, and may become bright X-ray sources as they pull in matter from their companions. The nine X-ray sources scattered around the ring in Arp 147 are so bright that they must be black holes, with masses that are likely ten to twenty times that of the Sun.

This composite image of Arp 147 shows Chandra X-ray data in pink, Hubble optical data in red, green and blue, ultraviolet GALEX data in green and infrared Spitzer data in red. (Credit: X-ray: NASA/CXC/MIT/S.Rappaport et al, Optical: NASA/STScI)

An X-ray source is also detected in the nucleus of the red galaxy on the left and may be powered by a poorly-fed supermassive black hole. This source is not obvious in the composite image but can easily be seen in the X-ray image. Other objects unrelated to Arp 147 are also visible: a foreground star in the lower left of the image and a background quasar as the pink source above and to the left of the red galaxy.

Infrared observations with NASA’s Spitzer Space Telescope and ultraviolet observations with NASA’s Galaxy Evolution Explorer (GALEX) have allowed estimates of the rate of star formation in the ring. These estimates, combined with the use of models for the evolution of binary stars have allowed the authors to conclude that the most intense star formation may have ended some 15 million years ago, in Earth’s time frame.

Will the Milky Way’s Black Hole Become ‘Hyperactive’?

Composite images of galaxies Abell 644, left, and galaxy SDSS J1021+131. Illustration credit: Credits: X-ray: NASA/CXC/Northwestern Univ/D.Haggard et al. Optical: SDSS

[/caption]

From a NASA press release:

A new study from NASA’s Chandra X-ray Observatory tells scientists how often the biggest black holes have been active over the last few billion years. This discovery clarifies how supermassive black holes grow and could have implications for how the giant black hole at the center of the Milky Way will behave in the future.

Most galaxies, including our own, are thought to contain supermassive black holes at their centers, with masses ranging from millions to billions of times the mass of the Sun. For reasons not entirely understood, astronomers have found that these black holes exhibit a wide variety of activity levels: from dormant to just lethargic to practically hyper.

The most lively supermassive black holes produce what are called “active galactic nuclei,” or AGN, by pulling in large quantities of gas. This gas is heated as it falls in and glows brightly in X-ray light.

“We’ve found that only about one percent of galaxies with masses similar to the Milky Way contain supermassive black holes in their most active phase,” said Daryl Haggard of the University of Washington in Seattle, WA, and Northwestern University in Evanston, IL, who led the study. “Trying to figure out how many of these black holes are active at any time is important for understanding how black holes grow within galaxies and how this growth is affected by their environment.”

This study involves a survey called the Chandra Multiwavelength Project, or ChaMP, which covers 30 square degrees on the sky, the largest sky area of any Chandra survey to date. Combining Chandra’s X-ray images with optical images from the Sloan Digital Sky Survey, about 100,000 galaxies were analyzed. Out of those, about 1,600 were X-ray bright, signaling possible AGN activity.

Only galaxies out to 1.6 billion light years from Earth could be meaningfully compared to the Milky Way, although galaxies as far away as 6.3 billion light years were also studied. Primarily isolated or “field” galaxies were included, not galaxies in clusters or groups.

“This is the first direct determination of the fraction of field galaxies in the local Universe that contain active supermassive black holes,” said co-author Paul Green of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. “We want to know how often these giant black holes flare up, since that’s when they go through a major growth spurt.”

A key goal of astronomers is to understand how AGN activity has affected the growth of galaxies. A striking correlation between the mass of the giant black holes and the mass of the central regions of their host galaxy suggests that the growth of supermassive black holes and their host galaxies are strongly linked. Determining the AGN fraction in the local Universe is crucial for helping to model this parallel growth.

One result from this study is that the fraction of galaxies containing AGN depends on the mass of the galaxy. The most massive galaxies are the most likely to host AGN, whereas galaxies that are only about a tenth as massive as the Milky Way have about a ten times smaller chance of containing an AGN.

Another result is that a gradual decrease in the AGN fraction is seen with cosmic time since the Big Bang, confirming work done by others. This implies that either the fuel supply or the fueling mechanism for the black holes is changing with time.

The study also has important implications for understanding how the neighborhoods of galaxies affects the growth of their black holes, because the AGN fraction for field galaxies was found to be indistinguishable from that for galaxies in dense clusters.

“It seems that really active black holes are rare but not antisocial,” said Haggard. “This has been a surprise to some, but might provide important clues about how the environment affects black hole growth.”

It is possible that the AGN fraction has been evolving with cosmic time in both clusters and in the field, but at different rates. If the AGN fraction in clusters started out higher than for field galaxies — as some results have hinted — but then decreased more rapidly, at some point the cluster fraction would be about equal to the field fraction. This may explain what is being seen in the local Universe.

The Milky Way contains a supermassive black hole known as Sagittarius A* (Sgr A*, for short). Even though astronomers have witnessed some activity from Sgr A* using Chandra and other telescopes over the years, it has been at a very low level. If the Milky Way follows the trends seen in the ChaMP survey, Sgr A* should be about a billion times brighter in X-rays for roughly 1% of the remaining lifetime of the Sun. Such activity is likely to have been much more common in the distant past.

If Sgr A* did become an AGN it wouldn’t be a threat to life here on Earth, but it would give a spectacular show at X-ray and radio wavelengths. However, any planets that are much closer to the center of the Galaxy, or directly in the line of fire, would receive large and potentially damaging amounts of radiation.

These results were published in the November 10th issue of the Astrophysical Journal. Other co-authors on the paper were Scott Anderson of the University of Washington, Anca Constantin from James Madison University, Tom Aldcroft and Dong-Woo Kim from Harvard-Smithsonian Center for Astrophysics and Wayne Barkhouse from the University of North Dakota.

Taking a Galaxy’s Temperature

The image above shows the variation in temperature over the span of NGC 5813. The outline encircles a region 367,000 light years in diameter, and the temperatures indicated are in millions of degrees. Red indicates warmer temperatures, blue cooler. This image uses information from the Chandra X-Ray Observatory and optical imaging from the Sloan Digital Sky Survey (SDSS). Image Credit: Credit: X-ray: NASA/CXC/SAO/S.Randall et al., Optical: SDSS

[/caption]

The role that supermassive black holes play in the formation of galaxies is a “hot” topic in astronomy. Using the Chandra X-Ray Observatory, an international team of astronomers have been able to create a temperature map of one galaxy, NGC 5813, which is located in the Virgo III Group of galaxies. The new map shows in unprecedented detail the history of various periods of activity of the Active Galactic Nucleus (AGN), which is associated with a supermassive black hole that resides at its center. They found that regular outbursts of the AGN maintained the temperature of the gas in the region of the galaxy, continually reheating the gas that would otherwise have cooled down.

Paper co-author Dr. Scott Randall of the Chandra Mission Planning Team at the Harvard-Smithsonian Center for Astrophysics said, “Although there are other systems that show AGN outburst shocks, this is still the only system where unambiguous shocks from multiple outbursts are seen. This allows us to directly measure the heating from shocks, and directly observe how often these shocks take place. Thus, at present NGC 5813 is *uniquely* well suited to the study of AGN heating.”

By studying images taken by the Chandra X-Ray Observatory, and combining these observations with those taken by the Giant Metrewave Radio Telescope (GMRT) and the Southern Astrophysical Research Telescope (SOAR), they were able to make out large cavities produced by periods of activity in the supermassive black hole. The researchers were able to determine that there were three pairs of large cavities, which corresponded to active outbursts of the galactic nucleus 3 million, 20 million and 90 million years ago (from our perspective here on Earth).

What makes the galaxy NGC 5813 especially suited to this study is its relative isolation from other galaxies that could influence the formation of these cavities – it is an older galaxy that is relatively undisturbed, allowing for these cavities in the gas to persist over such a long time period.

Current models of galaxy formation must take into account just how much of an influence the output of the supermassive black hole at the center of a galaxy has on the formation of stars within the galaxy, and the evolution of the shape and size of the galaxy as a whole. This process of “AGN feedback” has a dramatic influence on how the galaxy takes shape. The research by Dr. Randall, et. al shows an intimate portrait of this process.

Dr. Randall explained, “This is an important result for stellar formation and galaxy evolution. The AGN heats the gas, preventing it from cooling and forming large amounts of stars. There have been several galaxy evolution models proposed that require this kind of “AGN feedback” near the centers of galaxies to explain the observed differences in galaxies. Here we show explicitly that this kind of feedback can and does take place, at least in this system.”

A labeled image of the various shock waves and cavities formed by the activity of the AGN. Image Credit: Credit: NASA/CXC/SAO/S.Randall et al.

As you can see in the image directly above, various outbursts of the AGN create shock waves in the gas near the center of the galaxy. As these shock waves expanded and the galaxy evolved over millions of years, the heat generated by the shocks spread outwards and into the gas surrounding NGC 5813. The gas between all of the galaxies in a cluster is called the intracluster medium (ICM). The heat – which is produced by the friction of the gases at the edge of each of the shock waves – radiates outward into the surrounding gas, increasing its temperature.

The output of the jets streaming from the supermassive black hole in the center vary over a span of roughly 10 million years, and the amount of energy that each outburst puts out is rather variable – the difference between the last two largest outbursts, for example, is almost an order of magnitude.

This process is cyclical, though the details of the mechanisms involved are still a topic that isn’t completely understood.

Dr. Randall explained this process as follows:

“…the gas cools radiatively, and flows in towards the AGN. The cool gas is rapidly accreted by the black hole, dirving [sic] an energetic outburst. The outburst heats the gas (via shocks), stopping the inflow and starving the AGN. The gas is then able to cool once more, and the cycle repeats, with, in this case, a period of about 10 million years. However, the fine details of how the jet and the ICM interact are not currently well uderstood [sic], and it is not clear how well this simple model describes reality. Our goal with the upcoming deep Chandra observation is to better understand the details of this process, most likely through comparisons with detailed numerical simulations.”

Further observations of NGC 5813 in the fall of 2011 using Chandra are in the works, Dr. Randall said. The results of their analysis will be published in the Astrophysical Journal. A preprint version of the paper, “Shocks and Cavities from Multiple Outbursts in the Galaxy Group NGC 5813: A Window to AGN Feedback,” is available on Arxiv.

Sources: Chandra press release, Arxiv paper, email interview with Dr. Scott Randall

Has a Recent, Nearby Supernova Become a Baby Black Hole?

This composite image shows a supernova within the galaxy M100 that may contain the youngest known black hole in our cosmic neighborhood. Credits: X-ray: NASA/CXC/SAO/D.Patnaude et al, Optical: ESO/VLT, Infrared: NASA/JPL/Caltech

[/caption]

Back in 1979, amateur astronomer Gus Johnson discovered a supernova about 50 million light years away from Earth, when a star about 20 times more massive than our Sun collapsed. Since then, astronomers have been keeping an eye on SN 1979C, located in M 100 in the Virgo cluster. With observations from the Chandra telescope, the X-ray emissions from the object have led astronomers to believe the supernova remnant has become a black hole. If so, it would be the youngest black hole known to exist in our nearby cosmic neighborhood and would provide astronomers the unprecedented opportunity to watch this type of object develop from infancy.

“If our interpretation is correct, this is the nearest example where the birth of a black hole has been observed,” said astronomer Daniel Patnaude during a NASA press briefing on Monday. Patnaude is from the Harvard-Smithsonian Center for Astrophysics and is the lead author of a new paper.


SN 1970C belongs to a type of supernova explosions called Type II linear, or core collapse supernovae, which make up about 6% of known stellar explosions. While many new black holes in the distant universe previously have been detected in the form of gamma-ray bursts (GRBs), SN 1979C is different because it is much closer and core collapse supernovae are unlikely to be associated with a GRB. Theories say that most black holes should form when the core of a star collapses and a gamma-ray burst is not produced, but this may be the first time that this method of making a black hole has been observed.

There has been a debate on what size star will create a black hole what size will create a neutron star. The 20 solar mass size is right on the boundary between the two, so astronomers are not completely sure this is a black hole or a neutron star. But since the X-ray emissions from this object have been steady over the past 31 years, astronomers believe this is a black hole, since as a neutron star cools, the X-ray emissions fade.

This animation shows how a black hole may have formed in SN 1979C. The collapse of a massive star is shown, after it has exhausted its fuel. A flash of light from a shock breaking through the surface of the star is then shown, followed by a powerful supernova explosion. The view then zooms into the center of the explosion: Credits: NASA/CXC/A.Hobart

However, as a caveat, co-author Avi Loeb said, it really takes about a lot longer than 31 years to see big changes, but he said the fact that the illumination has been steady gives evidence for a black hole.

Although the evidence does point to a newly formed black hole, there are a few other possibilities of what it could be. Some have suggested the object could be a magnetar or a blast wave, but the evidence is showing those two options are not very probable.

Another intriguing possibility is that a young, rapidly spinning neutron star with a powerful wind of high energy particles could be responsible for the X-ray emission. This would make the object in SN 1979C the youngest and brightest example of such a “pulsar wind nebula” and the youngest known neutron star. The Crab pulsar, the best-known example of a bright pulsar wind nebula, is about 950 years old.

“I’m excited about this discovery regardless if it turns out to be black hole or a pulsar wind nebula,” said astrophysicst Alex Fillipenko, who participated in the briefing. “A pulsar wind nebula would be interesting because it would be the youngest known in that category.”

“What is really exciting is that for the first time we know the exact birth date of this object,” said Kim Weaver, an astrophycisict from Goddard Space Flight Center, “We know it is very young and we want to watch how the system evolves and changes, as it grows into a child and becomes a teenager. More importantly, we’ll be able to understand the physics. This is a story of science in action.”

The age of the possible black hole is, of course, based on our vantage point. Since the galaxy is 50 million light years away, the supernova occurred 50 million years ago. But for us, the explosion took place just 31 years ago.

Read the team’s paper: Evidence for a Black Hole Remnant in the Type IIL Supernova 1979C
Authors: D.J. Patnaude, A. Loeb, C. Jones.

Source: NASA TV briefing, NASA

Even ‘Weakling’ Magnetars are Strong and Powerful

An artistic impression of a magnetar with a very complicated magnetic field at its interior and a simple small dipolar field outside. Credits: ESA - Author: Christophe Carreau

[/caption]

The name alone, “magnetar” elicits a magnificent, powerful and strong astronomical object, and most of these “magnetic stars” are whirling, X-ray blasting dynamos, shooting out strong bursts of energy. But there are some magnetars which seem to have a softer, quieter side, and are called soft gamma repeaters and anomalous X-ray pulsars. However, they might not be as soft as they appear. A team of astronomers using the several different space- and Earth-based observatories have found a supposed ‘weakling’ was only masking its superpowers. The new findings indicate the presence of a huge internal magnetic field in these seemingly less powerful pulsars, which is not matched by their surface magnetic field.

Magnetars are a type of neutron stars, which are the collapsed remains of massive, rapidly rotating stars. They collapses down to tiny cores, with the hot neutron liquid rising and falling from the center to the crust setting up a dynamo effect, creating that incredible magnetic field. Although they are on average only about 30km in diameter, a magnetar can have a magnetic field billions of times that of our Sun.

It was thought that dramatic flares and bursts of energy came from only the strong class of magnetars, but these same features have been observed emanating from a weakly magnetized, slowly rotating pulsar.

“We have now discovered bursts and flares, i.e. magnetar-like activity, from a new pulsar whose magnetic field is very low,” said Dr Silvia Zane, from UCL’s (University College London) Mullard Space Science Laboratory, and an author of the research.

The neutron star, SGR 0418+5729, was discovered on June 5, 2009 when the Fermi Gamma-ray Space Telescope detected bursts of gamma-rays from this object. Follow-up observations four days later with the Rossi X-Ray Timing Explorer (RXTE) showed that, in addition to sporadic X-ray bursts, the neutron star exhibits persistent X-ray emission with regular pulsations that indicate that the star has a rotational period of 9.1 seconds.

What makes SGR 0418 different from similar neutron stars is that, unlike those stars that are observed to be gradually rotating more slowly, continued monitoring of SGR 0418 over a span of 490 days has revealed no evidence that its rotation is decreasing.

“It is the very first time this has been observed and the discovery poses the question of where the powering mechanism is in this case. At this point, we are also interested in how many of the other normal, low field neutron stars that populate the galaxy can at some point wake up and manifest themselves as a flaring source,” said Zane.

The team of astronomers, led by Dr. Nanda Rea of Institut de Ciencies de l’Espai (ICE-CSIC, IEEC) in Barcelona, wonder how large an imbalance can be maintained between the surface and interior magnetic fields. SGR 0418 represents an important test case.

“If further observations by Chandra and other satellites push the surface magnetic field limit lower, then theorists may have to dig deeper for an explanation of this enigmatic object,” said Rea.

Sources: Chandra Blog, University College, London (via Eurekalert)

Cosmic Volcano Erupting in M87

A new composite image of M87 features X-rays from Chandra (blue) and radio emission from the Very Large Array (red-orange). Credit: NASA/Chandra

[/caption]

It’s the Eyjafjallajokull of space! Chandra and the VLA have teamed up to find an erupting galactic “super-volcano” in the massive galaxy M87. Hot gas glowing in X-ray light (shown in blue) surrounds M87, and as the gas cools, it can fall toward the galaxy’s center where it should continue to cool even faster and form new stars. But radio observations with the Very Large Array (red-orange) suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy’s atmosphere because of their supersonic speed. Scientists say this action is similar to what took place with the Eyjafjallajokull volcano in Iceland that occurred in 2010.

With Eyjafjallajokull, pockets of hot gas blasted through the surface of the lava, generating shock waves that can be seen passing through the grey smoke of the volcano. This hot gas then rises up in the atmosphere, dragging the dark ash with it. Remember the close-up movie of the volcano’s eruption — (see below)? Shock waves propagating in the smoke are followed by the rise of dark ash clouds into the atmosphere.

In the case of this cosmic volcano in M87, the energetic particles produced in the vicinity of the black hole rise through the X-ray emitting atmosphere of the cluster, lifting up the coolest gas near the center of M87 in their wake. This is similar to the hot volcanic gases that drag up the clouds of dark ash. And just like the volcano here on Earth, shock waves can be seen when the black hole pumps energetic particles into the cluster gas. The Chandra team has provided a labeled version of the image which shows the energetic particles, cool gas and shock waves.


M87 is about 50 million light years from Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies.

Source: Chandra