Enceladus has All the Raw Materials for Life

Saturn's moon Enceladus isn't just bright and beautiful. It has an ocean under all that ice that could have hydrothermal vents that create organic chemicals. Image Credit: NASA, ESA, JPL, SSI, Cassini Imaging Team

Saturn’s ocean moon, Enceladus, is attracting increasing attention in the search for life in our Solar System. Most of what we know about Enceladus and its ice-covered ocean comes from the Cassini mission. Cassini ended its exploration of the Saturn system in 2017, but scientists are still working through its data.

New research based on Cassini data strengthens the idea that Enceladus has the chemicals necessary for life.

Continue reading “Enceladus has All the Raw Materials for Life”

Spaceflight is Polluting the Atmosphere with Metal

NASA’s Space Launch System rocket carrying the Orion spacecraft launches on the Artemis I flight test, Wednesday, Nov. 16, 2022. Credit: NASA/Joel Kowsky

Humans can’t seem to interact with the environment at all without fouling it in some way. From plastic bags in the ocean’s deepest regions to soot on Himalayan glaciers, our waste is finding its way into Earth’s most difficult-to-reach places.

Now, we can add metals in the stratosphere to this ignominious list.

Continue reading “Spaceflight is Polluting the Atmosphere with Metal”

A Hypervelocity Experiment Mimics the Surface Conditions of Ceres

Dwarf planet Ceres is the largest object in the asteroid belt between Mars and Jupiter. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA, taken by Dawn Framing Camera
Dwarf planet Ceres is the largest object in the asteroid belt between Mars and Jupiter. NASA's Dawn mission found complex organic molecules on Ceres. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA, taken by Dawn Framing Camera

It might be oxymoronic to say that the more we find out about something, the more mysterious it becomes. But if that’s true of anything in our Solar System, it might be true about Ceres, the largest body in the main asteroid belt.

Continue reading “A Hypervelocity Experiment Mimics the Surface Conditions of Ceres”

Is it Life, or is it Volcanoes?

This artist's illustration shows an exoplanet with active volcanoes. But from a great distance we can't see the volcanoes, only the effect they have on their atmospheres, and that can muddy the waters when it comes to biosignatures. Image Credit: NASA’s Goddard Space Flight Center/Chris Smith (KRBwyle)

Astronomers are working hard to understand biosignatures and how they indicate life’s presence on an exoplanet. But each planet we encounter is a unique puzzle. When it comes to planetary atmospheres, carbon is a big piece of the puzzle because it has a powerful effect on climate and biogeochemistry. If scientists can figure out how and where a planet’s carbon comes from and how it behaves in the atmosphere, they’ve made progress in solving the puzzle.

But one of the problems with carbon in exoplanet atmospheres is that it can send mixed signals.

Continue reading “Is it Life, or is it Volcanoes?”

The JWST Just Found Carbon on Europa, Boosting the Moon’s Potential Habitability

This reprocessed colour view of Jupiter’s moon Europa was made from images taken by NASA's Galileo spacecraft in the late 1990s. Credit: NASA/JPL-Caltech

Most planets and moons in the Solar System are clearly dead and totally unsuitable for life. Earth is the only exception. But there are a few worlds where there are intriguing possibilities of life.

Chief among them is Jupiter’s moon Europa, and the JWST just discovered carbon there. That makes the moon and its subsurface ocean an even more desirable target in the search for life.

Continue reading “The JWST Just Found Carbon on Europa, Boosting the Moon’s Potential Habitability”

Strong Evidence that Supermassive Black Holes Affect Their Host Galaxy’s Chemistry

This is a composite image of the spiral galaxy Messier 77 (NGC 1068), as observed by ALMA and the Hubble Space Telescope. Red and blue are different chemicals. Red are cyanide radicals concentrated mostly in the center and a large-scale ring-shaped gas structure, but also along the bipolar jets extending from the center towards the northeast (upper left) and southwest (lower right). Blue is carbon monoxide isotopes which avoid the central region. Image Credit: ALMA (ESO/NAOJ/NRAO), NASA/ESA Hubble Space Telescope, T. Nakajima et al.

Supermassive Black Holes (SMBHs) are impossible to ignore. They can be billions of times more massive than the Sun, and when they’re actively consuming stars and gas, they become luminous active galactic nuclei (AGN.) A galaxy’s center is a busy place, with the activity centred on the SMBH.

New research provides strong evidence that while going about their business, SMBHs alter their host galaxy’s chemistry.

Continue reading “Strong Evidence that Supermassive Black Holes Affect Their Host Galaxy’s Chemistry”

JWST Gazes into the Dark Molecular Clouds at the Heart of the Milky Way

The Central Molecular Zone; the Heart of the Milky Way. Image Credit: Henshaw / MPIA

There’s an unusual object near the Milky Way’s heart that astronomers call “The Brick.” It’s a massive cloud of gas called an infrared dark cloud (IDC). The Brick is dense and turbulent like others of its type, but for some reason, it shows few signs of star formation.

Why?

Continue reading “JWST Gazes into the Dark Molecular Clouds at the Heart of the Milky Way”

Another Key Molecule for Life Found in Space by JWST

An international team of scientists have used data collected by the NASA/ESA/CSA James Webb Space Telescope to detect a molecule known as the methyl cation (CH3+) for the first time, located in the protoplanetary disc surrounding a young star. This graphic shows the area, in the centre of the Orion Nebula, that was studied by the team. Credit: ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), PDRs4ALL ERS Team
An international team of scientists have used data collected by the NASA/ESA/CSA James Webb Space Telescope to detect a molecule known as the methyl cation (CH3+) for the first time, located in the protoplanetary disc surrounding a young star. This graphic shows the area, in the centre of the Orion Nebula, that was studied by the team. Credit: ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), PDRs4ALL ERS Team

The search for life is an incredibly evocative driver of cosmic exploration. It captures our imagination to think that there might be living things out there somewhere else. That’s one reason why we point our eyes—and telescopes—to the stars.

Continue reading “Another Key Molecule for Life Found in Space by JWST”

Another Key Amino Acid Found in Space: Tryptophan

Tryptophan found in the nebula IC348. Credit: Jorge Rebolo-Iglesias/NASA/Spitzer Space Telescope

Astrochemistry is the study of how molecules can form and react in space. Its roots trace back to the 1800s when astronomers such as William Wollaston and Joseph von Fraunhofer began identifying atomic elements from the spectral lines of the Sun. But it wasn’t until recent decades that the field began to mature.

Continue reading “Another Key Amino Acid Found in Space: Tryptophan”

Earth Might Have Formed in Just a Few Million Years

Planets form by accreting material from a protoplanetary disk. New research suggests it can happen quickly, and that Earth may have formed in only a few million years. Credit: NASA/NASA/JPL-Caltech

Earth formed about 4.6 billion years ago. That simplistic statement is common, and it’s a good starting point for understanding our planet and our Solar System. But, obviously, Earth didn’t form all at once. The process played out for some period of time, and the usual number given is about 100 million years.

New research suggests that Earth formed more quickly than that in only a few million years.

Continue reading “Earth Might Have Formed in Just a Few Million Years”